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a small change.
We have made no reference to the role that He4'

could play in a helium afterglow plasma. Not only
is it impossible to predict the pressure dependence

of He4"/He&' at pressures above 25 Torr3 but also
the electronic-recombination coefficient of He4' is
not known. Thus, any comments about He4' would
be completely speculative.

*This work was supported by the U. S. Atomic Energy
Commission.
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Ground-State Energy of Liquid Hes and Liquid He":
Evaluation from the Sound-Propagation Data*
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Recent measurements on the pressure dependence of the sound velocity c(P) in liquid He3

and liquid He4 are employed for deriving the ground-state energy of these liquids as power
series in the parameter (p- po)/po, where p is the density of the liquid while po is the value
of p at saturated vapor pressure. Results thus obtained are compared with the corresponding
ones derived theoretically. The existence of an almost linear relationship between the vari-
ables c and p, as observed by Aziz et al. on one hand and by Abraham et al. on the other, ip
discussed.

I. INTRODUCTION

Experimental determination of the pressure de-
pendence of the sound velocity c(P) and density
p(P) in liquid He and liquid He~ has been reported
recently. ' The measurements have been carried
out at 150 mK in the case of He and at 100 mK in
the case of He . At such low temperatures, iso-
thermal and isentropic processes are almost iden-
tical. We may, therefore, write

p

Here, E denotes the energy per particle of the
system while. ~ denotes the particle mass. In
view of the fact that the velocity of sound varies
very little over the temperature range 0-150 mK,
the observed data on sound propagation may be
employed to derive, with the help of (1), the ground-
state energy of the system.

Such an analysis for liquid He has been carried
out by Roach et a/. , who employed the relationship

(2)&(P) E(PO)™J P (P )/P ]&P
Pp

and expressed their integrated results in the form

For liquid He they obtained a, = 13.65'K and a,
= '7. 67 'K. The corresponding theoretical values
derived from the work of Massey and Woo were
a2= (16.0+0. 6) K and a3= (10.2+4. 5) 'K, while
similar values derived from the work of Schiff and
Verlet' were a&= (14. 9 a 0. 4) 'K and a, = (2. 6 + 2. 8)
'K.

One could follow the same approach, as of Roach
et al. , for determining the ground-state energy of
liquid He . However, we have preferred to adopt
a procedure that enables us to determine the coeffi-
cients appearing in the power series

Oo)p)=E, +o, ( ') ao ( ')

(4 o) o (o4 po) )4)

directly from the coefficients appearing in the
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series

II. PROCEDURE AND RESULTS

Our approach involves a direct use of the thermo-
dynamic formula (1), at 0'K, in conjunction with

the series (4) and (5). This leads to the following
hierarchy of relationships:

co — (2a p/n2)"'

C g/C p
——

H (Qo/Q2) + 2,
c2/ p = 3 (&4/&2) —p[H (&o/ 2)

—1]

c, /cp = 5(ap/a2) —2(a4/aa) [4 (&o/e2)- 1]

(Ga)

(6b)

(6c)

+ [—",, (a, /a, )'+ —,
' (a,/a, ) + 1], (6d)

etc. Ideally, the coefficients a& should be obtained
from a microscopic theory of the system in ques-
tion, and the coefficients c; derivedfromthemwith
the help of relations (6). In practice, however, the
microscopic evaluation of a& is much too formidable
as compared to the experimental determination of
c~. We, therefore, adopt a reversion of the fore-
going relations and write

aa= 3 szcp ~

1
(Va)

e(e)-e e
(
' ") e (' ")

+co + . . . (5)
P —Po

Pp

This procedure not only obviates the integration
process encountered by Roach et al. but also leads
to more accurate values for the desired coefficients.
We have applied this procedure for analyzing data
on both liquid He and liquid He and have deter-
mined, in each case, coefficients a 2-a5. Compari-
son with theory, wherever possible, is carried
out.

a,=13.67 K,

a4=0. 50 'K,

and for liquid He',

a&= 6. 07 'K,

a4= 0. 85 K,

a, =7. 66 K,

as—- —5. 14 'K;

a3= 3. 22'K,

a5= —1.95'K .

(10)

The first thing one may consider here is the
existence of an almost linear relationship between
c and p. This was observed by Aziz et al. , and
independently by Abraham et al. , to hold remark-
ably well for liquid He; in the case of liquid He,
however, the latter authors observed a slight non-
linear trend as well. These features are implicit
in the coefficients (8) and (9), and are directly
related to the smallness of the ratio cp/c, . In
fact, we observe that even when (p —po)/pp= 20% the
departure from linearity in the case of He is less
than 1/p, in the case of He, however, the departure
from linearity for a comparable value of (p —po)/po
is about 3/p.

A customary way of representing this situation
would be to consider a Gruneisen-like "constant"
of the systems under study, viz. ,

1 2 2 1 1 1 ' P Pp

c 3 2 2 3 2 ~
co co co

cp= 182. 90 m/sec,

ci/cp ——2, 796, c2/c(, ——0. 398, co/co= —0.012

with a standard error of estimate 0. 02 m/sec. Re-
lations (7) then yielded the following values of a& .
For liquid He,

ao/aa= 2 (Cg/Cp 2)

s4/ep= 2[ p/cp+-'( i/ o-3)'],

as/a2= H(co/co+ (cp/co) (c, /cp- o)

(7c)
', (1— ') ( ') +. . . (12)

Substituting the relevant values of c~, we obtain

c,=- 238. 30 m/sec,

c,/cp.= 2. 841, c,/co= 0. 096, co/co= —0. 180, (8)

with a standard error of estimate 0. 01 m/sec; and
for liquid He,

——', [2(c,/c, )'- 9(c,/c, ) + 12]), (Vd)

etc. Hierarchy (7) enables us to derive empirically
the values of the coefficients a& without going
throzgh a Process of integration.

By a least-squares fit of the experimental data '

on c(p) to series (5), terminated at the cubic term,
we obtained the following values of c;: For liquid
He,

H(Heel = 2. 841 —5. 082( 5)
pp

2

+ 13 69 o +. . . 13
Po

H(He')= 2 428 —4. 225( )Po

2

+ 11.46 . +. . . 14
Po

Clearly, the "constant" E varies considerably with
p. To be specific, K(He ) decreases from 2. 841 to
2. 209 as p changes from 0. 14513 to 0. 17246 g/cm,
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while K(He ) decreases from 2. 796 to 1. 983 as p
changes from 0. 08191 to 0. 11576 g/cm'. On the
other hand, the derivative (&c/Sp) does not vary
much with p. To see this, we introduce a param-
eter E+, namely,

1 2
C2 p pp 3 C3 p —pp

(15)
The power series for K* turn out to be

X (He ) = 2 641+ 0 192
( )pp

Woo's calculations is 6. 16 'K, while the value re-
sulting from gstgaard's calculations is 6.53'K; the
empirical value obtained here is 6. 07 'K. The
value of a3 resulting from Woo's calculations is
about 4. 5'K, while the empirical value of this co-
efficient is 3. 22 'K; gstgaard's calculations do not
yi.eld a reliable value for this coefficient. Again,
as in the case of He, we are unable to make any
comparisons for coefficients beyond a, .

Itis, however, possible to obtain density expan-
sions for some of the parameters that appear in the
Landau theory of Fermi liquids, as applied to
liquid He . For instance, the ground-state sound
velocity, according to this theory, is given by '

2
—0. 540 +. . . 16

Po

c~ — ~+ 1 E = p~ 1+Fo
3m'+ 3m I + HE(

(18)

and

H (He ) = 2. 796+ 0. 796(( )pp

2
—0. 034

pp

Obviously, the variation of K* is much less than
that of K, which accounts for an almost Bnear de-
pendence of c on p.

From a microscopic point of view, the foregoing
result stems from the fact that the coefficients a~,
az, and a4 (in the expansion of the ground-state
energy per particle) of the given systems are such
that the combination appearing on the right- hand

side of (6c) is much smaller than the combination
appearing on the right-hand side of (6b). It is
difficult to argue from first principles why it should
be so.

III. COMPARISON KITH THEORY

Theoretical calculations of the ground-state
energy of liquid He have been based on variational
techniques employing suitable wave functions. Two
examples of such a calculation are the ones by
Massey and Woo and by Schiff and Verlet. The
results of these calculations have to be corrected,
in a manner suggested by Woo and adopted by Roach
et al. ,

' so that a meaningful comparison with em-
pirical results can be effected. As demonstrated
by Roach et al. , the theoretical results for a2 and

a3 compare well with the ones obtained empirically.
Unfortunately, the paucity of theoretical calculations
prevents us from deriving reasonable values of
coefficients beyond a3.

Similar calculations for liquid He' have been
carried out by various authors —in particular, by
Woo and @stgaard. We have compared our em-
pirical results with the theoretical results following
from the calculations of these authors. It turns
out that the theoretical value of a~ resulting from

where m* is the effective mass of an He atom,
p& is the Fermi momentum, while Ep and E j are
parameters related to the Legendre transforms of
the function f(p, o'; p', o'), which appears as the
second functional derivative of the total energy S
of the liquid with respect to the distribution func-
tion n(p, o'). The parameter F„being directly
related to m*, can be obtained from the low-tem-
perature specific heat of liquid He'. Its density
dependence can be extracted from the work of
Anderson, Reese, and Wheatley. " We obtain

E, = 3[(m*/m)- I]

= Ofo+ 0) + Qp

3

+ n3 +. . . , (19)
P-Po

pp

where o.o = 5. 6, n, =30, n, = —50, o.3=65. Sub-
stituting the relevant values of p~ and rn, we obtain
from (18) and (19)

Eo = 3.67 —1

=6..6, (',").6.(', ")'
3

~ 6(' ") . . . . (20(
Po

where Po= 9.6, P, = 88, P2= I'75, P~= —35.
Theoretical calculation of the parameters E, and

Eo, as a function of density, has been carried out

by Tan and Feenberg. Results have been reported
for only three values of the particle density. Thus,
a meaningful comparison can be carried out up to
the linear term alone. One obtains np= 3. 84, n,
= 9. 2, Po-—6. 94, P& ——30. Comparison with the em-
pirical values of these coefficients shows that the
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theoretical values arising from the analysis of Tan
and Feenberg are rather low. Nevertheless, the
trend is in the right direction and, as already noted

by these authors, approximations of uncertain
magnitude in the theory call for further theoretical
and numerical investigation.

*Work supported in part by the National Research
Council of Canada.
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Necessary and sufficient conditions are derived for the validity of the bound, trpH ~ E (No), recently
assumed by Abdulnur et al. in their paper [Phys. Rev. A 6, 889 (1972)]. Here p runs over all density
matrices for which trpN =NO, the average number of electrons. II is a Hamiltonian commuting with the
operator for the number of particles N, with ground-state energy E (No) when the number of particles is

No An example is given showing that the above inequality is not true for every pair of commuting
Hermitian operators H and N; thus this inequality differs in a fundamental way from the familiar energy
variational principle. The proof of the inequality requires the property of H that the first ionization poten-
tial is greater than the electron affinity, essentially justifying the application by Abdulnur et al. The failure
of the inequality implies that in the grand canonical ensemble there are nonzero fluctuations in N at zero
temperature, with zero probability of finding N=NO.

Recently a particular average energy (H) was
used in a variational approach to the determination
of one-electron states in central-field models for
atoms. ~ Fundamental use was made of the assump-
tion that (H) is an upper bound on the ground-state
energy for a fixed average number of particles.
Here, necessary and sufficient conditions for this
bound to hold are derived, and the physical mean-
ing of these conditions is discussed. A complete
statement of the variational bound is

(H) = trpH& E~(NO)

for all density operators p such that

3

(H) =Z p„E„, trpN= ep„~
n=&

Take No= 2. Consistent with this and the density-
operator property trp=1 is the choice p&= ps= —,',
p2=0; then

(All states are normalized to 1.)
That the correctness of the bound (1) is not gen-

eral is shown by giving an example of a pair of
commuting Hermitian operators H and N such that
(1) is violated. Let g„, n= 1, 2, 3, be a complete
set of orthonormal vectors with Ng„=ng„, HP„
=E„g„, and pg„=p„g„. Then

trpN=N, . (2)
(H) =-,'(E, +E,) .

But clearly E, (2) = E„and since the E„are arbi-
trary, they can be chosen such that E~ & —,'(E, + E3),
violating (1). Thus it is seen that the bound (1)
differs in a fundamental way from the familiar en-
ergy variational principle expressed by Eq. (3).
The latter is true for any pair of commuting Her-E~(NO) =min(p, Hp) with Np =No/ . (3)

N is the operator for the number of electrons and
commutes with the Hamiltonian H, E (N&) being the
ground-state energy of H for No electrons;


