
P HYSICAL RE VIE W A VOLUME 7, NUMBER 1 ZANUARV 1973

Magnetic Interactions of One-Electron Atoms and of Positronium

H. Qrotch and R. Kashuba
DePaxtment of Physics, &he pennsylvania &tate University, University I'awk, Pennsylvania 16802

(Received 28 August 1972)

This paper constitutes a continuation of previous work on magnetic interactions of one-
electron atoms. In earlier papers the magnetic moment of a hydrogenic atom in its ground
state was calculated, including radiative and nuclear-mass corrections. In this work the

gz and gl factors are calculated for arbitrary hydrogenie states, including radiative and nu-
clear-mass corrections. The magnetic moment of a hydrogenic atom is obtained for any
state. An extensive analysis of the Zeeman levels of positronium is carried out for the p =1
and g =2 states, including higher-order corrections. For the n =1 state, the results confirm
the validity of the Breit —Rabi formula with g factors in agreement with those given in an
earher paper by Grotch and Hegstrom. The annihilation diagram is included in the analysis
but does not lead to any additional correction terms (to the accuracy we are working with).
The Zeeman corrections in the n =1 state are relevant to the precise experimental determina-
tion of the positronium hyperfine structure. The analysis of the z =2 state Zeeman structure
of positronium is similar to that carried out by Brodsky and Parsons for the z =2 states of
hydrogenic atoms. Although the results in the hydrogenic case were immediately applicable
to Lamb-shift measurements, the present results are not yet applicable since at present
there is no experimental data on the excited states of positronium.

I. INTRODUCTION

In the past few years experiments have been per-
formed to a high degree of precision to determine
energy levels of one-electr on atoms. The inter-
pretation of these experiments requires a precise
understanding of the Zeeman levels of such atoms;
therefore, considerable theoretical effort has been
expended to provide that understanding,

The theory of Zeeman levels in the g = 2 state of
hydrogenic atoms, as discussed by Brodsky and
Parsons' and Brodsky and Primack, 3 provides the-
oretical results needed in the precise experimental
determinations of the Lamb shift. The work of
Grotch and Hegstrom, 3 Faustov, and Close and
Qsborn' on the bound-state corrections to g values
in the ground state of hydrogenic atoms has been
confirmed by measurements of g, (H)jg, (D), and has
also provided theoretical results needed for the re-
cent precise determin"tion of p, /p~, the ratio of
magnetic moments of a free electron and a free
proton. This ratio appears in the theory of the
hyperfine structure of hydrogen. Thus, a detailed
understanding of Zeeman levels is a necessary in-
gredient in the continuing x'esearch on precision
spectroscopy of one-electx on atoms.

In this paper we extend previous work on Zeeman
levels in several directions. The work of Qrotch
and Hegstrom is extended in Sec. II by evaluating
explicitly the g~ and gr factors for all states of hy-
drogenic atoms with nucleax spin —,'. The correc-
tions given include anomalous moment terms, bind-
ing corrections, and nuclear mass corrections lin-
ear in m/M. A simple formula is obtained explic-
itly for any state.

In Sec. III the Zeeman levels of the ground state
of positronium are discussed. The annihilation di-
agram is incorporated in the zero-field Hamilto-
nian and is shown to produce a negligible effect on
the magnetic field shifts. For the ground state,
terms are calculated which are essential in the ex-
perimental measurement of the positronium hyper-
fine interval.

Section 1V is an extension of the work of Brodsky
and parsons (n= 2 state of hydrogenic atoms) to the
g = 2 states of positronium. In the case of hydrogen,
correction terms of relative order (Zo. )'~/M give
very small contributions which were neglected in
Ref. 1. In positronium, corresponding terms are
of order Q since the mass ratio ls unity. These
additional terms are therefore needed in the analy-
sis of Zeeman levels. At the present time, how-
ever, there are no experimental measurements in
the g= 2 state of positronium, although experimen-
tal groups are working on the problem. In Sec. V
some conclusions are made concerning the rele-
vance of these calculations to experiments.

II. gJ AND gr FACTORS FOR AI.I.STATES OF
HYDROGENIC ATOMS

Grotch and Hegstrom and others have calculated
the magnetic moment of hydxogenic atoms in the
ground state to very high accuracy. We have
found, in this paper, that these results can be ex-
tended to any sta,te of a hydrogenic atom. While
our value for g~ mill be completely general, inde-
pendent of the value of the nuclear spin, the only
restriction on the results concerns the higher-or-
der corrections to g„which have only been cal-
culated for a spin- —,

' nucleus.



The calculation of the g factors is accomplished
by using Eq. (40) of Ref. 2. This equation was ob-
tained by IGaking R unitary tI'Rnsfox'IQRtlon of the
two-body Brett Hamiltonian (with anomalous mo-
ment interaction) in the presence of an external
magnetic field. This unitary transformation was
then followed by a Barker-Glover reduction as
discussed fully in Ref. 3.

The corrections to g factors given here mill con-
tain only one power of m/M. Accordingly, the in-
teraction Hamiltonian used will be H, where~

8 (pH =Hq+HI =- 1-——
@ L«H

2m M 2m

+g ~ ) 2~

(nFm~ JL~II ~)nFmg JL)
8=(nFm~ JL~ — g~ J ~ H

2m

+2 g, i H inEm, JL) . (2)

The %'igner-Eckart theorem implies that g~ and

gr will be independent of m~. Therefore, we may
evaluate (2) by setting m~=E. The terms in II~
consist of operators which act only in a (J, mz)
representation. This implies that g~ may be eval-
uated in this representation. We readily find that

—(e/2m) g, JII=(~JLS~II,'~WJLS) . (3)

The value of spin 8 is always ~ since we are dealing
with one-electron atoms. The matrix elements of
the various vector operators appearing in (2) are
easily evaluated. %8 find

(+ )+ ( + )- (+1)
2(J+1)

JJL$
~
$

~
~JL$ )

cr(cT+ 1) —L(L + 1}+${$+ 1)
2{J+1)

)
(nJZLS I S ~ 0'f" Z I nZJLS)

The terms involving I and 8 comprise II~, while-
those involving I make up HI. The zero-field
Hamiltonian includes a hyperfine interaction and
therefore the unperturbed, states are labeled by
InEm~ JL). Hereafter, it is understood that the
QucleRx' spin ls q, Rlthough this pRrtlculRx" vRlue
has no effect on the g~ value. The gz and gI values
may be defined by the relation

— &wJLSI p'ILLS).

prom Eqs. (2) and (4) we readily obtain the value
for g~ . The result, expressed in terms of the
smail quantities ag p c/m~ and m/M Ml

BZ(/+1)-l(I+1)+-,' m Z(2+1)+Q +1)—I—,' c 4Z(/+I)+1 ~ m -Sj(4+1)—+I+I) —-'}
2J{J+1) M 2J(J+1) m 4J(J+1) m M 2J(J+1)

J'(J'+1) —I (L+ 1)+ ~ e —2J'(/+1)+2I (L+1)+~ e m 4J(J+1)-4L(I.+1) —1
J(J+1) ' m 2J(J+ 1} ' m M 2J(J+1)

Here 6 ls the QDIlrelativistlc iHfinite-nuclear-mass
binding energy —{m/2} (Sn/n) and a, = —,

' (g, —2),
where g, is the free-electron g factor. In (5}cor-
rection terms involving a, (e/m) should contain only
1+ (n/2v) for the value of a„since we have not
calculated binding cox x'ections to hi, gher-order '

terms in the anomalous moment of the electron.
The evaluation of gI cannot be done in any sub-

space of the (E, m~) space due to the presence in
Hl of the operator I ~ ~f"H. Thex"efore, we eval-
uate gr directly. Using the Wigner-Eckart theo-

rem we may extract from Eq. (2) the result

E(E+1)+I(I+1)-J{J+1}
2(E+1)

=(nFFJL~IC, I,+C, l ~f;InFFJL), (6}

C& = 2(1+ a~) + (1 ————}+ (1 — }g~
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2c '(, sm) (, Rm)

The matrix elements of I, and of f 7 re may be re-
placed by matrix elements of T F/(E+ 1) and

f ' wx ' F/(E+ 1), respectively. The matrix ele-
ment of f' F is trivial to evaluate .For nuclear
spin —,

' the operator f rr ~ F is equal to e+7 rH $.
Therefore, the matrix elements of the scalar op-
erator consisting of the scalar product of a vector
operator in (I, mz) space and a vector operator in
(J', mz) space are required. Using the 6j symbols
this may be evaluated to obtain

(nFFJI,
~
f ~g. P~IsFFJI. &

moment of the hydrogen atom in any state. Using
Eq. (2), the magnetic interaction may be replaced

e (F(F+ 1)+J(J'+ 1) —I(I+ l)l(
2m 2F(E+ 1) j

Ze E(E+ 1) —J(J'+ 1)+I(I+ 1)
2M 2F(F+ 1)

This result, which is quite fundamental, may be
quite useful to experimentalists in the field of
high-precision spectroscopy of one-electron atoms
of nuclear spin ~.

III. POSITRONIUM

where (JIIS"'IIJ& and (IIIIn'III& are reduced ma-
trix elements of the vector operators obtained from
from r(5 ~ &) and T, respectively. The reduced ma-
trix elements are easily evaluated and are found
to be

(I II
I' III ) = [(2l+ 1)I(I+ 1)]

(J Ils"' ll J&=-'-(2J+1)"' (J(J+1))"'.
We note that these reduced matrix elements turn
out to be independent of I . This implies that the
resulting gi will be independent of orbital angular
momentum and will therefore depend only on the
atomic quantum numbers e and J; I is understood
to be & throughout.

The 6j symbol given above is explicitly given in
Edmonds. Combining the various terms which
contribute togz we obtained

C2 J(J+ 1)—I(I+ 1)+ E(E+ 1)
4J(J+ 1) F(F+ 1)—J(J+ 1)+I(I+ 1)

(10)
This expression is more conveniently written by
factoring out 2(1+ac). We then obtained the final
result;

m 3+ 4ape="'"'I' z '
eMmZ 2M 1+ap

1 j(J'+ 1) —I(I+ 1)+F(E+ 1)
4((/+1) E(e+1)—J(/+1)+l(1~ 1),I

'

(11)
Equations (5) and (11) are in agreement with the
ground-state results given in Ref. 3 and also are
compatible with the gz results given by Lamb' for
the n= 2 states. The present results, however,
contain additional terms beyond those already giv-
en by Lamb.

Finally, by combining the g~ and gi results we
may obtain a complete expression for the magnetic

The Zeeman structure of positronium will be
examined by using the same formalism used to
calculate the g factors. The two-component for-
malism based on the Breit Hamiltonian is correct
except for terms of the order A(binding)'/m'. We
have checked this conclusion, first arrived at by
Brodsky and Primack from the Bethe-Sajpeter
equation. In addition to those terms given in Eq.
(40) of Ref. 3, we must include in the Hamiltonian
the exchange interaction arising from the possi-
bility of virtual-pair annihilation. The exchange-
term contribution is given by

H,„=v, 5'6(r), (13)

( -.- a e,)(((()-++el t+e —op)'H
2, a

ea ( (o', —&e) H & —(&, —&e) ~ r r ~ H &)

The calculation of the Zeeman levels is done us-
ing first-order perturbation theory. The basic un-
perturbed Hamiltonian IIO for positronium is the
same as for the nonrelativistic Coulomb problem
except with a reduced mass &m. We may evaluate
the fine-structure corrections, based on Eq. (40)
of Ref. 3 plus the annihilation term of Eq. (13), by
means of first-order perturbation theory, since
these terms are smaller by two powers of 0,.

where 5 is the total spin for positronium. We have
examined the possibility of additional magnetic-
field corrections arising from H,„in first-order
perturbation theory by retaining magnetic-field
corrections to the wave functions. These correc-
tions turn out to be of order —(e/2m)Hn and are
too small to be retained here.

If we retain only terms to first order in the ex-
ternal magnetic-field Hamiltonian we have for the
field-dependent terms'
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Next, consider the terms proportional to the
magnetic field, given by Eq. (14). Since the or-
bital magnetic moment of positronium is equal to
zero, and the spin-magnetic-moment operator is pro-
portional to the difference of the spins, all matrix ele-
ments (8, Me}RIB', MB & vanishwiththeexceptionof
(0, 01(o, —o~), 11, 0& and (1,01(o, —o~},10, 0). Since

and Mz remain good quantum numbers, we will
examine R between states I I,SEM~) diagonal in I.
and Mz.

Zeeman Structure of the Ground State

In the ground state the magnetic-field Hamilto-
nian connects the M& =0 components of the singlet
and triplet states. The triplet states with M~= +1
are unaffected by the presence of the fieM. The
charaeteristie values ax'e given by

"Z=-,('W+'W)+[-'('W-'W)'+(R&']"'. (15)

Here 3' E denotes the M=O energies of ortho- and
parapositronium, respectively. The energies W,
38' are the fine-structux'e corrections to the Schro-
dinger energy level. Our calculated values for
these quantities are given by

Av 25g hg
v bg —4f g

(ao)

The measurement of Carlson, Hughes, and Theriot
was done at 7900 G and the Zeeman frequency is
about 2. 4 6Hz. If ng= 2&&~ o we find that hv/v
=11&&106 or 11 ppm. Now if we had used the old
value of 3 instead of ~ the diffex'ence would have
lead to a fractional error in 4v/v of about 7 ppm.

IV. ZEEMAN STRUCTURE OF THE n = 2 STATE

For the @=2 state, but with zero orbital angular
momentum, we have essentially the same situation
as for the ground state. We only have splitting for
the M~=0 components of the singlet and triplet
states. The characteristic values are again given
by Eq. {15), but this time

value of v is to the determination of g. If we solve
Eq. (18) for v we obtain

v = (bg
' - 4f ')/4f .

Thus the precision of v depends on the experimental
determination of b and f, and the theoretical value
of g. As a function only of the theoretical g [Eq.
(19)]gives

'W='W+$ mo.' . (18b}

53 4&= —
~Oa4 ~&

~ (21a)

(21b}

Note that for the ground state this matrix element
may be obtained from the g-factor calculation given
by Grotch and Hegstrom. 3

As reported by Carlson, Hughes, and Theriot, '
experiments are in progress to determine the fine-
structure separation of the ground state of posi-
tronium to about 10 pym. We shall show that this
more accurate determination of g is important for
measurements of this precision. As reported by
the aforementioned authors, the measurement of
the fine structure by inducing a direct transition
between the S& and So states is difficult. How-
ever, the separation v= S& —So can be measured
by inducing a transition between the Mz ——0 and M~
=+ 1 levels of orthopositronium. From the Bxeit-
Rabi formula Eq. (15), but with measured values
for the W's, we obtain for the frequency of this
tx'ansltlon

f= E — W= —,
' v([1+(bg /v )] —I], (18)

where 5=—4p~IJ, gis the electron g factor, and
p,~ is the Bohx magneton.

We want to examine how sensitive the measured

As stated above the only nonvanishing matrix ele-
ment of R is between the state I ISEM&& = 10110&
and 10000&. If we denote the expectation value of
the magnetic-field-dependent terms by (R) we have

& R& = —(e/m) a (1+a, —$ cP —P a, n') .

(Z' —'W)

-&olRla&

(Z' -'W)

-&olzll&

-&alRlo&

-&1 lRl 0& =o .
(E*-'W}

I

(22)

For M~=+1 we have 8"= Pa; 5"= I'&, 8'= P&~ 1 3 . O

and

& 2 lR
l
0& = &»2+ I IRI 101+»

= —(I/Wa){e/m} a(l+ a, - Po
n' -$ a, o.'), (aaa)

&R& = —(e/m) e(I+ a, - fs. n' -k a, n') . (21c)

For the states n = 2 and I.= 1, the states which
are connected by the magnetic -field-dependent
terms have the same value of M~ and have b,S= 1.
Thus for the case where M~= +1, the states
1112+1) and 1111+1 & connect with 1101+ 1 ), and for
M~=0 we may have 11120&, 11110), 11100) con-
necting with 11110). However, the matrix ele-
ment of R between 11110&and 11010& has zero mag-
nitude, so again we have two states coupled to a
third by the magnetic-field-dependent term. All
other P states are unaffected by the magnetic fieM.
In each of the above cases we have a third-order
characteristic equation to solve for the eigenvalues.
If we label two of the above states by 2 and 1 and
the third state by 0, then the characteristic equa-
tion can be written as the determinant
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o& =&111+1lxl lo1+1&
= —+ (1/&2) (e/m) H (1+a, - f'6 n ) '. (23b)

For M~=0 we have W= Pz, W= Pp, W= P1 and

&2lsclo& =& 112olzllolo&

3 (e/m) H (1 + a, —fao n + 16o n a,), (24a)

(11&1o) =&11oo

= —(1/v 3 ) (e/m) H [- 1 —a, + f6 n - sf n (1 —a,)],
(24b)

The calculated values of the fine structure are giv-
en by

3 31 4 7 4Pg ——
3Q7g Pl Q +~9Q SSQ (25a)

3 31 4 1 4P1 ——
3pzp SSQ —

~ep SSQ (25b)

3 31
PQ 3Q7$ ~Q 48 (25c)

1 31P1 =
3Q7p S2Q ~ (2M)

The solutions of the two cubic equations which arise

from Eq. (22) have been obtained for values of H up
to 1 T. These are listed in Table I and shown on
Fig. 1. In the numerical calculations, we have
used the values of the fundamental constants given
by Taylor, Parker, and I.angenberg. '3

V. CONCLUSIONS

The results obtained in Secs. I-IV should prove
useful in the precision spectroscopy of one-electron
atoms and also in other situations such as muonic
atoms in which the electrons present constitute a
small perturbation on the muonic levels.

The g factors in the 2S state of hydrogen could
be useful in a determination of p,,/p~, the ratio of
electron-to-proton magnetic moments. In Ref. 6
this quantity was determined by simultaneous mea-
surement of electronic and nuclear magnetic tran-
sition frequencies. As noted, the nuclear moment
interacts much more strongly with the electron
moment than with the external field. Due to this,
to achieve a given over -all precision in the deter-
mination of g, /p&, the proton transition must be
measured to a much higher precision than the elec-
tron transition. If the corresponding experiment

TABLE I. Solutions of the two cubic equations which arise from Eq. (22). Energy listed is in 10 Hz.

H (tesla)

0. 00
0. 02
0. 04
0. 06
0. 08
0. 10
0. 12
0. 14
0. 16
0. 18
0. 20
0. 22
0.24
0.26
0. 28
0.30
0. 32
G. 34
G. 36
0.38
0. 40
0.42
0. 44
0.46
0.48
0. 50
0. 60
0. 70
0. 80
0. 90
1.00

M~=+1
3P

—0. 9809
—0. 9200
—0. 7442
—0.4714
—0. 1237

0.2786
0. 7196
1.1881
1.6763
2. 1787
2. 691.8
3.2130
3.7405
4. 2728
4. 8090
5.3484
5. 8904
6.4346
6.9806
7. 5280
8. 0768
8. 6267
9.1776
9.7293

10.0282
10.8348
13.6077
16.3890
19.1757
21.9660
24. 7586

Mg=+1
P(

—3.5357
—3.5127
—3.4589
—3.3994
—3.3483
-3.3088
—3.2792
—3.2573
—3.2410
—3.2286
-3.2190
-3.2116
—3.2057
—3.2010
—3.1971
—3. 1939
—3.1913
—3.1890
-3.1872
—3.1855
—3.1842
—3.1880
—3.1819
—3.1810
—3.1802
—3.1794
—3.1768
-3.1752
-3, 1742
—3.1735
—3.1730

My=+1
3p

—5. 3606
-5.4444
—5.6740
-6.0063
-6.4051
-6.8470
-7, 3176
-7.8080
—8, 3125
—8. 8273
—9.3500
—9.8786

-10,4119
—10.9490
—11.4890
—12.0317
—12.5763
—13.1227
—18.6706
—14.2197
—14.7698
—15.3209
—15.8729
—16.4255
—16.9789
—17.5325
—20. 3080
—23. 0910
—25. 8787
-28.6696
—31.4628

—0. 9809
—0. 9011
—0.6829
—0.3684

0. 0079
0.4239
0. 8669
1.3290
1.8053
2. 2927
2. 7888
3.2920
3.8012
4. 3154
4. 8838
5.3559
5. 8812
6.4094
6. 9400
7.4728
8. 0075
8. 5440
9.0822
9.6217

10.1625
10.7046
13.4291
16.1717
18.9266
21.6905
24. 4611

My=0

—3.5357
—3.6012
-3.7761
—4. 0181
-4. 2918
-4.5745
—4. 8528
—5. 1184
—5.3665
-5.5944
-5.8008
—5. 9860
—6. 1506
—6.2961
—6.4241
—6. 5366
—6. 6852
—6. 7217
—6. 7978
-6.8647
—6.9237
-6.9759
-7.0222
—7. 0634
—7. 1002
—7. 1331
—7.2550
—7.3310
—7.3813
—7.4160
—7.4410

Mg= 0

Pp

—10.8352
—10.8496
—10.8928
—10.9654
—11.0679
—11.2012
—11..3659
—11.5623
—11.7906
—12.0501
—12.3397
—12.6579
—13.0024

13+3711
—13.7615
—14.1712
-14.5979
—15.0394
—15.4940
-15.9599
—16.4356
—16.9199
—17.4117
—17.9101
—18.4141
—18.9232
—21.5259
—24. 1925
—26. 8971
—29. 6261
—32.3715
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FIG. 1. Zeeman levels for n =2 states of positronium.

could be done in the g= 2 state, the hyperfine inter-
action mould be diminished by a factor of —,

' while
the proton coupling to the external field mould be
essentially unaffected. Thus, to achieve a given
precision in p, /p~ one could get away with a less
accurate determination of the proton resonance
frequency in the g = 2 state. Alternatively, it might
be possible to make a more precise determination
of p.,/p~ in the n = 2 state.

The determination of g~ and gI values in Sec. II
contains correction terms of order (Zn), n(Ze),
( Z)c'm/ Mand n(Zn)'m/M for all states of hy-
drogenic atoms. In these expressions the factor of
u arises from the anomalous magnetic moment of
the electron (or muon for muonic atoms). How-
ever, if the atom is more exotic, such as an anti-
proton bound to a heavy nucleus, then the factor
o/2n may be replaced by the appropriate anomalous
moment. In atoms of this type, with high Z, some
of the correction terms to Zeeman shifts are as
large as the basic Zeeman interaction itself. How-
ever, in these systems Zeeman shifts are extreme-
ly small when compared to the basic level spacing.

As previously discussed our ground-state results

for positronium are useful in the experimental de-
termination of the hyperfine splitting of positroni-
um. Terms neglected in our g-factor calculation
should be of order ~ and smaller, and therefore
the g factor is known to very high accuracy.

The results for the excited states of positronium
have been tabulated and also plotted. It is interest-
ing to note that the M~ = + 1 levels remain degener-
ate in all cases. The matrix elements of R are di-
agonal mith respect to the M» and those involving
+1 are either equal to or the negative of those in-
volving —1 [see Eqs. (23a) and (23b)I. Since the
characteristic equation, Eq. (22), will only involve
the squares of these matrix elements, the equa-
tions are identical for both M~ values. We note
also that the M+ = 0 level is quite close to the M~
= + j. levels in the 3P~ state and that these levels
cross at about 0. 32 T. We have not found any sim-
ple explanation for the closeness of these levels but
rather think it is accidental, being more a conse-
quence of the specific spacing of the zero-field lev-
els than of any symmetry.

At the present time there are no experiments
which have been done in the g = 2 states of positro-
nium. Since this system is so fundamental, it mould
be quite valuable to study these states both theoret-
ically and experimentally. There are at present
several experimental groups attempting to form
and study these levels.

Note added in proof. In this paper we have not
included the finite corrections of order c.(Zo. )~ and
n(Zo. ) I/M to gz and gz arising from terms dis-
cussed in Ref. V. Such corrections appear to exist
for /40. The calculation of these terms appears
difficult due to the sum on states, and the results
are unimportant at present. They may be com-
puted numerically by using Coulomb Green's func-
tions, but a different numerical calculation is re-
quired for each state. As a result, Eqs. (5), (11),
and (12) do not contain all corrections of order
o.(Zn) and e(Zn) m/M for states with nonzero
angular momentum. When this mork was com-
pleted we learned that similar results for Zeernan
interactions of positronium mere also obtained by
Lewis and Hughes [see M. L. Lewis and V. W.
Hughes, in Abstracts of the Third International
Conference on Atomic Physics, Boulder, Colorado,
August, 19V2 (unpublished), p. 149].
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