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A previously constructed laser model with quantum (noncommuting) noise sources was shown to lead near

threshold to a quantum rotating-wave Van der Pol oscillator. A full dynamical correspondence between

quantum and classical random processes allows one to compute the average of any time-ordered,

normal-ordered operator function by averaging the associated function of classical random variables.

Numerical calculations for the associated classical Van der Pol oscillator of the steady-state distribution, the
total intensity fluctuations, and the linewidth versus operating point were amply confirmed experimentally.
Measurements (and calculations) of higher than two-time correlations were sparse and contradictory.
Photocount distributions, at times short compared to the intensity correlation time, confirm only the steady
state of the laser. Photocount distributions at intermediate and longer times are difficult to compute because

they involve multitime correlations of high (00) order. By providing an exact solution for photocount
distributions and their moments for all times, we expected to stimulate measurements near threshold which

would provide an adequate test of the Van der Pol laser model. Comparison of the results reported here

with recent photocount experiments of Meltzer, Davis, and Mandel and of Jakeman, Oliver, and Pike
provides gratifying agreement and confirmation of our statistical understanding of laser fluctuations near
threshold.

I. INTRODUCTION

The present paper provides an "exact" (i..e. ,
with no stochastic approximations) solution of a
long-standing problem in laser statistics: the
probability p(m, T) of observing m photocounts in
a time T produced in a photodetector by a laser
operating in the vicinity of threshold for all times
T, short, comparable to, or long, compared to
the laser-intensity correlation time T,. Well
above threshold, laser fluctuations are negligible,
and the photocount distribution reduces to a Poisson
distribution. Well below threshold, the statistics
are Gaussian, and the problem reduces to a well-
known but nontrivial problem on fluctuations of
time-integrated intensities of a Gaussian variable
for which exact numerical solutions have been
given. ~ 3 The region near threshold holds a spe-
cial interest because the onset of lasing is a phase
transition, 4 ' and the region near threshold is
equivalent to the critical region near the transition
temperature in a second-order phase transition.

Our solution is exact in that no quantum-mechan-
ical or stochastic approximations are made in

treating the rotating-wave Van der Pol (RWVP)
model of a laser (described more fully in Sec. IV).
Of course, many key approximations were made in
arriving at this model: (i) The atom-field sys-
tem was treated as a Markoffian system with non-
commuting noise sources~ ~ ~~; (ii) the atomic
variables were adiabatically eliminated by assum-
ing that they responded to the instantaneous field
variables~4; (iii) restoring forces higher than
quadratic in the intensity were then neglected near
threshold with a fractional error of the order of
I/& where n'" -10 is the number of photons at
threshold. The Markoffian approximation as-
sumes that the duration of a collision with a res-
ervoir atom (-10 ~2 sec) is short compared to the
mean time (I' ~-10 8 sec) between collisions —an
excellent approximation used in the Boltzmann de-
scription of gases. The adiabatic approximation
appears to assume that atomic decay rates (I'-108/
sec) are fast compared to photon decay rates
(y- 10~/sec), but actually involves the much weaker
approximation that all of these rates are fast com-
pared to the intensity relaxation rate near thresh-
old, 6-y/m'". These remarks support our gener-
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and n ' is the normalized second factorial moment
(n(n —1& )/(n) —= (e ) of the photooount distribution
p(n, T) as T-0. In this limit, n ' —1= ((Ap) )/(p) and
I/Io is the light intensity normalized to threshold value
(p =0&, i.e. , I/Io= (p)/(p)qh= (p)/1. 128.

al contention that all well-designed oscillators be-
have like Van der Pol oscillators near thresh-
old. ' ' The slowness of the intensity relaxation
rate y/n' is produced by a time scaling, ' and
the smallness of cubic terms is produced by an
amplitude scaling. ~ The occurrence of this
scaling for both ordinary oscillators (e. g. , vacu-
um tube) and lasers near threshold is the analog
of scaling that takes place in a phase transition
near the critical temperature in which long-time
long-wave fluctuations become of importance.

The simplest problem of laser statistics is the
photocount problem for times so short (compared
to the intensity correlation time) that the laser in-
tensity does not change, so that the counts repre-
sent the steady-state photon or intensity distribu-
tion in the laser. Early measurements of this dis-
tribution by Freed and Haus and Smith and Arm-
strong and of moments of this distribution by
Arecchi, ~ Chang et gl. , Gamo, Grace, and Wal-
ter, 3 and Davidson and Mandel 4 agree with the

-15 0 5 15

P

FIG. 1. Experimental verification of the Van der Pol
model for lasers operating near threshold. The theoreti-
cal curves are from Hempstead and Lax (Ref. 15). The
experimental points 6, ~, and O are from Gamo, Grace,
and Walter (Ref. 23), Davidson and Mandel (Ref. 24),
and Arecchi et al. (Ref. 35), respectively. Lower-case
p is the pump parameter of the model, (A) is the effec-
tive linewidth of intensity fluctuations,

steady-state distribution for the Van der Pol mod-
el [Eq. (18BSO) of the Brandeis lecturesss or Eqs.
(7. 18) and (7.21) of this paper. ] See Fig. 1 for a
comparison of the second factorial moment ~'~'
= (m(m —1) )/(m) of the counting distribution with
theory. A bibliography of initial experimental
papers is given in Table III extending a similar
table of Pike, ~s and a related set of initiating theo-
retical papers is given in Table II in Sec. XI.

The intensity fluctuation spectrum was harder to
compute since it involved two time averages. To
overcome these difficulties, we introduced a quan-
tum-regression theorem that related two-time
averages to one-time averages and a dynamical
correspondence~4'2~ ~ between quantum random
processes and associated classical random pro-
cesses which permitted the translation of the prob-
lem into a classical stochastic problem. The i &&-

tensity fluctuation spectrum, calculated for the
associated classical Van der Pol oscillator by
Hempstead and Lax~5 and by Bisken and Vollmer34
was found to be approximately Lorentzian with a
linewidth possessing a minimum in the vicinity of
threshold. Agreement displayed in Fig. 1 between
the theoretical linewidth and experimental results
of Gamo, Grace, and Walter, ~ Arecchi ef; a3. ,
and Davidson and Mandel 4 gave further support
to the Van der Pol model.

The laser spectrum (of amplitude and phase fluc-
tuations) is also found to be Lorentzian with a line-
width that varies inversely with the laser power,
and contains in addition a factor that varies from
2 to 1 as one goes from below to above threshold
(see Fig. 2). By heterodyning two lasers against
one another, measurements of the phase linewidth
have been made by Hinckley and Freedss and by
Manes and Siegman. 36 These measurements yield
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FIG. 2. Spectrum for phase and amplitude fluctuations
of a laser is Lorentzian to a good approximation. The
dimensionless (Ref. 15) half-width && times the dimen-
sionless (Ref. 15) mean power p are plotted against
laser power. The experimental results are those of
Gerhardt, Welling, and Guttner (Ref. 36). The theoreti-
cal curves I and II are due to Grosman and Richter (Ref.
34) and curve III to Risken (Ref. 34) and Hempstead and
Lax (Ref. 15).
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FIG. 3. Time-dependent photocount distribution

p(m, T) for a laser operated near threshold. The solid
lines are the predictions of the present work (Ref. 3S)
and the circles correspond to measurements done by

Meltzer, Davis, and Mandel (Ref. 39). Here s = (A) T
= T/T~ is the time in units of the correlation time (5.26).

a linewidth with the correct inverse power rela-
tionship, with a numerical coefficient in approxi-
mate quantitative agreement with theory. The re-
sults did not traverse the threshold region, how-

ever, and so did not display the predicted factor-
of-2 change in the coefficient. These results sum-
marize earlier phase linewidth measurements. 3~

After this manuscript was submitted for publi-
cation, measurements using a Michelson inter-
ferometer technique (with multiple-reflection de-

lay paths as long as 2 km) were reported by Ger-
hardt, Welling, and Guttner. 36 These measure-
ments explore the threshold region displaying ex-
cellent agreement with the Bisken34 and Hempstead
and Lax' calculations. These calculations which

are exact solutions of the Fokker-Planck equation
for a HWVP oscillator agree significantly better
with the experimentally observed change in line-
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FIG. 5. Same as Fig. 3.
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width in the threshold region than the attempt by

Grossman and Richter34 at an approximate calcu-
lation in the spirit of the Landau theory of phase
transitions.

The most detailed verification of the Van der Pol
model, and the most difficult to achieve, is the

photocount distribution for intermediate times,
since this distribution involves multitime correla-
tions of all orders. A preliminary report of our
"exact" theoretical resultss stimulated measure-
ments of p(m, T) by Meltzer, Davis, and Mandel. "
The excellent agreement between experiment (cir-
cles) and theory (solid wave) is displayed in Figs.
3-5. Measurements of the second-, third-, and

fourth-normalized factorial moments of p(m, T)
were done by Jakeman et al.4 and compared with

theory in Figs. 6-8. The theoretical curves in

Figs. 3-8 are calculated by the methods discussed
in this paper.
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FIG. 6. Time-dependent normalized factorial moments

(~r) eb& —( [r3m)l(m)r where (m ~~)= (m(m —1)...
(m —~+1)) are the ~ factorial moment. The solid lines
are the predictions of the present work and the dots cor-
respond to measurements done by Jakeman, Oliver, Pike,
Lax, and Zwanziger (Ref. 40).
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E'(r, f) =Zu, (r)a,(t),

The successful calculations in this paper of the
photocount distribution p(m, T) are based on the
Glauber photocount formula, 4~'42 Eq. (2. 18). In
our use of this formula, however, we find it es-
sential to describe the (positive frequency part of
the) electric field E' at the detector as proportion-
al to the (quantum) amplitude b(t) of the normal co-
ordinate of the single mode in which the laser is
operating. Thus, we use a single random ampli-
tude that is got free but subject to the random
fluctuations induced by spontaneous-emission ef-
fects, collisions, transmission losses, etc. The
Glauber viewpoint, which has also been adopted by
Mandel and Wolf, 43 Klauder and Sudarshan, 44 and
Kelley and Kleiner, 4' is that with the detector away
from the source, the electric field behaves as a
free field. This viewpoint is, of course, correct
but it inhibits the usefulness of the formula. In
the free-field case, the field must be expressed
as an infinite linear combination of normal modes,

components b~ and b„, which is more information
than required to solve our photodetection problem
and more difficult to obtain.

Instead of dealing with the infinite number of free
variables (a,(t), at(t)$, we deal with the single pair
b(t), bt(t) describing a Van der Pol oscillator in
interaction with reservoirs that supply fluctuations
as well as damping (and pumping). Since our solu-
tion of the photocount problem differs so markedly
from that envisaged by Glauber, it is desirable to
rederive, in the context of a nonlinear open sys-
tem, the photocount formula Eq. (2. 18) first given
by Glauber4~ and rederived by Kelley and Kleiner. 4~

We shall not attempt to take account of attenuation
effects in the detector, as discussed by Mollow, 4~

nor shall we idealize the photodetector as a har-
monic oscillator to avoid perturbation techniques
as has Glauber. However, in Sec. II we shall
handle all combinatorial aspects of the problem
reducing it to the question of calculating the quan-
tum-mechanical probability of obtaining one count
in each of n infinitesimal intervals (f~, t& + b, tz) for
j= 1, 2, . . . , n without the complicated requirement
that no counts occur in between, The latter prob-
ability is calculated in the unexpurgated version4~
of this paper by ordinary perturbational techniques
without treating the electromagnetic field as a free
field.

Section III describes the quantum classical cor-
respondence that allows us to reduce our quantum-
mechanical problem to an exactly equivalent classi-
cal one, and Sec. IV reviews the theory of the
laser model. In Secs. V-VII, we deduce our meth-
ods for calculating photocount distributions and in
Secs. VIII-X, we describe the numerical aspects
of our work. A summary is given in Sec. XI.

II. REVIEW OF PHOTODETECTOR THEORY

Light detectors with some probability absorb a
photon and emit an electron, which in a photo-

each of which obeys the free-field time dependence

a~(t) = a~(0)e '"&' (1.2)

This procedure achieves the desired aim of sep-
arating the source problem from the detector prob-
lem. Moreover, the time dependence of the inten-
sity at the detector, E (ro, f) ~ E'(ra, f), is entire-
ly specified by Eqs. (1.1) and (1.2), and the prob-
lem is reduced to knowing the distribution of the
initial values a„(0), i. e. , the initial density opera-
tor p(0) which is a function of the set of operators
(a„, ag or the corresponding Glauber-Sudarshan
representation P(fn„nf)) in terms of the coher-
ent states. Since ~~= ck, the amplitudes a,(0) are
the individual Fourier components b„of b(t) at +

Thus, the complete density operator
p(fa» ag) describes all correlations oi all Fourier
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multiplier results in a current pulse. A typical
experiment consists of counting the number rpg of
pulses in a given time interval T. The photocount
distribution function p(m, T) describes a. compound-

ing of fluctuations in the light source with random-
ness in the detection processes. The aim of this
section is to derive a formula for p(m, T) which
takes account of the Poisson character of detection
fluctuations so that attention can be focused on the
laser fluctuations.

An ideal photodetector is assumed to produce a
sharp signal pulse (in time) for each photoabsorp-
tion, as compared to the observation time T. In
addition, after each pulse, the ideal photodetector
is assumed to reset itself instantaneously to the
state it was in prior to the occurrence of the
pulse. (Dead-time corrections are a separate
problem considered by experimenters in reducing
their data )48.

A. Classical Photodetectors

The probability of registering a pulse in a small
time interval (T, T+bT! is proportional to the
time interval DT, the photon field intensity4~ p(T),
and an efficiency factor & that includes geometry
as well as quantum efficiency. For an ideal classi-
cal photodetector, the probabilities gp(T)ET and
1 —qp(T)AT for registering or not registering a
count are independent of previous events. With
these assumptions, it follows immediately that the
distribution p(m, T) which describes the detector
photocount fluctuations for a fixed sample p(t) of
the possible source intensity fluctuation obeys a
Poisson distribution,

P(m, T) =(1/m!)n e-", (2. 1)

with distribution

v(~) = (n&w(n) . (2. V)

when evaluated by inserting E(l. (2. 8) are found

to be just the moments of V(~):

n("'(T) = f (u" V((u) d(d = ((u" & . (2. 10)

This result explains why factorial. moments are
measured in order to characterize the statistical
properties of the light source embodied in V((d).

B. Quantum-Photodetector Theory

Kelley and Kleiner break up the time inter-
val [0, T] into a set of N intervals and calculate
the probability P(m, T) that counts occur in m of
these intervals, with no counts in the remaining
intervals. Such "exclusive" probabilities are dif-
ficult to deal with. However, Kelley and Kleiner
have shown that the exclusive nature of the prob-
ability is a combinatorial matter which can be han-

dled separately. A simplified version of the
Kelley-Kleiner proof can be given" by direct use
of the generating function

M(!, T) =Z(1-~)"P(m, T) (2. 11)

to show that

E(luation (2. 3) can be written

p(m, T)=f [(&m&(u) /m!]e-' '" V((o)d(o . (2.8)

The normalized factorial moments g'" (T) of p(m,
T), defined by n("'(T) = (m'"' &/(m)" or

(„)( ) g m(m —1).. . (m-r+l)P(m, T)
( )

(m &"

(2. 2)

where n is the time-integrated intensity variable
T

n=~ f p(t)dt.
M(X, T) =Q, dt„. . .!)n

no n Jp 0

dt's dt's
"0

where the distribution of time-integrated intensi-
ties is

w(n) = (b(n - ~ f, p(t) d t) ) . (2. 4)

The mean number of counts equals the mean num-
ber of photons absorbed, and E(l. (2.2) gives

(m&= &n&= ~(p&T . (2. 5)

Let us define a scaled variable ~, the normal-
ized time-integrated light intensity hitting the de-
tector:

(g =n/(n) = f p(t)dt/(p)T (2. 8)

The photocount distribution averaged over the ran-
dom process p(t) reduces to the form given by
Mandel, I
p(m, T)= (p(m, T)&= f (n"/m!)e "W(n)dn, (2. 3)

where
(2. 13)

bq
= b(tq), bq

=—b(tq)—

are creation and destruction operators (at time t&)

for the laser mode and the ( ) implies a trace
against the density operator oz, s(0) of the field
with its sources and reservoirs (but not the detec-
tor). These proofs involve the use of perturbation
theory (from t& to tz+ &t&) followed by the use of
projection operators " (from t&+ bt& to t&+ &tJ)

xw„(t, , t2, . . . , t„), (2. 12)

where zo„(t, , t2, . . . , t„)btqbta. . . 4t„ is the non-
exclusive probability of a count in each of the n in-
tervals 4t&, j=1, 2, . . . , n zeitA, no restrictions
on intexveninI, events.

A variety of proofs have been given ' that
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on the detection apparatus. One finds

cr~ „(t,+ &t,') = ~at, b(t, )o~., (t,)b'(t, ), (2. 14)

where & is an efficiency factor that involves the
strength of coupling to the detector. The assump-
tion is then made that if the system is not observed
from t) + +t) to tg+ y )

o~, ~ (t„,) = o~, , (t, + &t)). (2. 15)

M(~, r) =(Z~-'"-),
so that

(2. 17)

This assumption neglects the reaction of the de-
tector on the laser which is negligible in practice.
Moreover, the photon loss due to the detector can
be understood to be included in the loss parameter
describing the laser (e.g. , the inverse "Q" of the
laser mode).

It is further assumed that after each interaction
the detector is restored to its initial state. The
iteration of Eqs. (2. 14) and (2. 15) then leads to

oz, ~(t„+ht„) = e"b,t,At~. . . b, t„

&&b„~ . b2.b'av~, q(0)bqbt3. . . bt, (2. 18)

a result which under the trace operation reduces
to Eq. (2. 13). If we let the symbol T~ indicate that
the operators following it are to be placed in nor-
mal order and in the apex time sequence shown in
Eq. (2. 13), Eqs. (2. 12) and (2. 13) can be com-
bined into the simple form

is not calculational but caused by their assumption
of a model that "does not correspondtothefamiliar
experimental situation. " Their model uses the
steady state of the laser as an initial condition,
removes the lasing atoms from the cavity, and re-
places them by detecting atoms. At long times,
their detector depletes the photon supply. This is
unrealistic experimentally, and leads at infinite
times to unit quantum efficiency: if n photons
were in the cavity initially, all n will be counted.
Thus, the mean number of photocounts in a time
T saturates in this model, whereas it is linear in
T in the typical photodetector situation. Moreover,
their results depend only on the initial laser den-
sity matrix and not at all on laser dynamics repre-
sented, for example, by the laser-intensity-fluc-
tuation correlation time.

III. QUANTUM+LASSICAL CORRESPONDENCE

An exact correspondence between quantum-
mechanical operators and c numbers can be set
up providing a definite ordering rule is adopted.
The best-known correspondence, 5~ that of normal
ordering (all bt 's to the left of all b's), relates a
c-number function M "'(P, P*) to an operator
M'"'(b, bt) in normal order by the normal ordering
symbol ot which makes the replacements P- b, P~

and places the result in normal order:

M(b, bt) =M'"'(b, bt) = &M'" (P«P-')

fd'P-M'"'(P, P')5(P" b')5(P—b), —(S. 1)

Op e~ ~op (2. 18)

where d P=2d RePdlmP and

5(PA bt)5(P b)
—(I/ 2) fe" 4(s I ) 0 («b) d2]

(3. 2)

where
T

QOP=~ b tbt dt (2. 19)

This is analogous to the corresponding classical
results, Eq. (2. 2). We shall refer to Eq. (2. 18)
as the Glauber photocount formula, ' since it was
first stated and derived by him for the free-elec-
tromagnetic-field case. It is to be emphasized,
however, that in the derivation discussed here"
we have not assumed that b(t) is associated with a
free field, or even a superposition of free-field
modes. ]in the free-field case we would have
[b(t&), b(t&)] = 0, whereas in the derivation of our
quantum rotating-wave oscillator, '4 commutators
between b(t) and b(t+ ht) —b(t) were found to be
nonvanishing. Thus, in our case, the time-order-
ing operation in Eqs. (2. 1V) and (2. 18) is essen-
tial, whereas it could have been ignored in the
original Glauber derivation. )

A formula that agrees with Eq. (2. 18) for short
times, but disagrees for larger times, has been
derived by Scully and Lamb. " The disagreement

For example,

bb'= b'b+I= ~(IP I'+» ~ (3.3)

The connection between Eq. (3. 1) and the Glauber-
Sudarshan diagonal representation"" has been
established, but the form (S.1) has the advantage
that it can readily be generalized to many times.
For example, if v'N denotes replacing c numbers
by operators and placing the latter in normal or-
der and in the apex time sequence of (2. 13), we
can set up the correspondence

M(bs «b2, . . . «b„; b„, . . . , bs)

= & M(P(, Pg, .",P.";P. , ",Pi)

= fd'Pg, «d'P.M(PF««P.*«&.« ~ Pi)

xb(P f bt), . . . , 5(P„* bt)5(P„

x 5(Pq —bq), (3.4)

where b&= b(t&) as in Eq. (2. 13). The trace of Eq.
(S.4) against the density matrix can be written

(M(b~~, . . . , bt; b„, . . . , bg) )
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~Ne

T~(&"„/m!)e "»= &~(Q"/m ) )e

where

(s. 7)

(3.8)

1,-l p(t)l'«,
the characteristic function and desired counting
distribution can be obtained from

(s. 9)

~(~, Z) =(e-'"), ,

p(m, T) =((a"/m! )e-"), ,

(s. 10)

(3. 11)

even though averages over an arbitrarily large
number of times appear when the exponential is
expanded.

Any function E(Q) of the time-integrated inten-
sity 0 such as in Eq. (S. 10) or (3. 11) can be re-
written as an integral

(P(n)), = fZ(n)W(n) dn, (s. 12)

where the work has been transferred to finding the
distribution of intensities,

WW=&b(f1- e J,
'

l
p(f) I'df)). . (3. 13)

Equations (3. 10) and (S. 11) apply whether or not
the photon system alone can be regarded as Mar-
koffian. We have shown, however, that if the elec-
tromagnetic system is Markoffian in the sense that
the regression theorem is obeyed, the g-time
pseudoprobability factorizes,

P(P. , P.*, t.;,Pg, P f, 4)'

=P(p„, p„*, f„l p„„p„*„f„,)
x ".P(P„Pf, f, l P„pg, t, )

"P(P, P*, f
l P, Pf', t )P(P, P*, t ), (3 14)

showing that multitime averages can be calculated
with use of products of two-time conditional prob-
abilities just as for an ordinary classical Markoff-
ian process. Moreover, P(P, P*, tl P, , P f, f,) is
that solution of the equation of motion obeyed by
the one-time distribution

P(P, P', f) =(b[p'-b'(f)]b[p-b(f)]), (3. 15)

= J d'A» d'PnM(PI'~ ) Pn*~ Pn» Pi)

xP(p„, P„*,t„;.. . ; P,P(,ff,), (3. 5)

where

P(P, P,",f, '
~ ~ P P I' t ) =—( ~ (P $ —b ), ~ ~ ~,

xf)(p.*- b'.)b(p. —b.), ". , b(p, b—,)) . (s. 6)

Equation (S. 5) tells us that provided our opera-
tors are in the chosen normal-ordered apex time
sequence, quantum-mechanical averages can be
replaced by associated c-number averages which

we shall denote ( ),. Since
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FIG. 9. Laser model. Radiative transitions (wavy
arrow) are induced hy the dynamic atom-field coupling.
Nonradiative transitions (straight arrows) and quantum-
noise sources are derivable consequences of the coupling
to the reservoirs.

which reduces to b(p* —p f)5(p- po) at f = to (i. e. ,
the Green's function).

IV. LASER THEORY

A laser model in which a single electromagnetic
mode couples equivalently (except for phase) to
many atoms is depicted in Fig. 9. Field losses
and atomic collisions are produced by reservoirs.
Instead of referring to all authors who have studied
this model, we indicate in Ref. 55 reviews written
by proponents of the three most active groups in
this field: Haken of Stuttgart, Lamb and Scully
of Yale and the University of Arizona, and Lax of
Bell Telephone Laboratories and City College and
their co-workers.

For the case of a homogeneously broadened line,
after removal of certain phase factors, the field
couples in a symmetrical way to all atoms. Thus
a closed description can be given in terms of six
variables: the field variables b and b, the total
upper- and lower-state populations N, and N» and
the transition polarization variables I and M~.
For this reason the ansatz for the density matrix
of a laser made by Gordon3~ and the six-variable
description of Lax and Yuen" are exact.

As discussed in Sec. I, only for the region near
threshold are powerful techniques required. For-
tunately, in that region the long time scale of the
fluctuations (increased by a factor n '"-10' over the
usual decay times) permits the adiabatic elimina-
tion of all but two variables. The result is an
equation of motion for the density operator p(b,
b, f) or the associated pseudoprobability P(P, P*,
t) defined in Eq. (3. 13).

Moreover, the long time scale means that all
interactions with atomic variables take place so
rapidly compared to the relevant times that these
variables can be adiabatically eliminated leaving a
Markoffian process for the field variables b(t),
b (t) or the associated "classical" random process
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P(t), P(t)* described by P(P, P', f). This random
process can equally well be described as a Lange-
vin or noise-source process. In this form, we
have established'6 that near threshold a homoge-
neously broadened laser is describable as a RWVP
oscillator:

= [2y —(&oo —~,)](II—RoiPi )P+Eo(t), (4. 1)

where y is the cold-cavity decay rate, vo the reso-
nant frequency, II an effective pump rate, and Bo
a saturation parameter. " The noise sources F&
and Ef are treated as approximately Gaussian with

sP(p, q, t) I,P(p, y, f)
Bt (4. 12)

8 82 82
—L = ——A(p)+ o D(p)+ o D„„ep 9p Qy

8 Q2
= ——(2Pp —2p +4)+ o(4p)+ —

o . (4. 13)
ep p ~e' '

When we are concerned entirely with intensity fluc-
tuations, as we shall be in this paper, the pseudo-
probability P(p, y, f) can be assumed independent
of y and the last term in I, omitted [see Eqs.
(5. 18) and (5.19)].

& Eo(t) "Eo(u) ) = 2Doeo6(t u)— (4. 2)
V. PROBABILITY DISTRIBUTION V(u)

P=(p', (4. 3)

our RWVP model can be reduced for the in-tune
case to the canonical scaled form

d '
„,, =(P- ~P'~')P'+E, .(f'),

&Fs'(t )*Fo'(u )) = 45(t —u )

(4.4)

(4. 5)

If we introduce intensity and phase variables p,

pi 1/2 - fy
7 (4. 6)

and drop the prime from t', the equations for P'

and (P')* transform to'

—=A (p) +
E p(t),dp

(4 7)
A(p) =2pp —2p +4,

(and the complex-conjugate equation) as the only
nonvanishing second moments. The parameters
II, Ro, and Dz*z are constants which depend on the
particular model assumed for a laser, e. g. , homo-
geneous or inhomogeneous, and depend on pump
rates, decay constants, etc. We have previously
given reasons for expecting such an RWVP form for
any well-designed single-frequency oscillator
including vacuum-tube oscillators. By a combina-
tion of amplitude and time scaling,

Since we cannot directly evaluate the desired dis-
tribution function

W(Q) =—&5[Q —e f p(t)dt]), (5. 1)

we calculate instead its Laplace transform

M(X') = f e " "W(Q) dQ

for real X', and in Secs. VIII and IX invert this
Laplace transform numerically to obtain W(Q).

It is convenient to work with the scaled variable
T

(o=Q/&Q)= f, p(t)dt/&p)T, (5. 3)

which has a distribution

(5. 2)

V(v) = &Q) W(Q) (5.4)
that is independent of the efficiency parameter &:

T
V(~)= &5[~ —(1/&p) T) f p(f)df]) . (5.5)

By writing X'= X/e, Eq. (5.4) transforms into

M(X) = J e "'" "V(&o)d&o

=
& exp( —x J p(t) dt) ) . (5.6)

Following techniques used by Kac and Siegert, '
Laxe showed that for random Markoffian processes
in a set of variables a, p (a) being an arbitrary
functions of a, the path-integral average, Eq.
(5. 6), can be calculated from

(x) = f da, Po(ao) fda P(atl ao to), .

—=E (t)
dip

dt

(Fp(t)F p(u) ) = 2Dpp5(t —u),

Dpp D(p) = 4p, ——

&F,(t)F, (u)) =2D„,5(t —u),

D„=(1/p),

&Fp(t)E„(u)) =0 .

(4 8)

(4. 9)

(4. 10)

(4. 11)

' (,")=-LP(a,f), (5.8)

where L is a linear differential or integral opera-
tor, and

LPo(a) = 0 (5. 9)

f —to= T &0 . (5.7)

Here the Markoff random process a(t) has a prob-
ability distribution P(a, t) which obeys

Corresponding to the Langevin-noise-source
equations (4.6) and (4. 8), there is the associated
Fokker-Planck form

defines th&steady state of this random process.
The probability I' describes the same process mod-
ified by a loss rate —Xp(a)P:
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~P—= —(L+ Xp)P
Bt

(5. 10) P„(p)=ZP, (p) c;„ (5. 20)

LPy = A~P~,' L yq = A]*y),

(p, , P,) = fday,*(a)P~(a) =5,~ .
(5. 12)

(5. 13)

We also assume we can obtain the eigenfunctions
of the modified operator L+ A.p,

(L+ Xp)Py ——A~P~,' (5. 14)

(L'+X*p*)j,=A+j„(j„P,)=5„. (5. 15)

The Green's-function solution of Eqs. (5. 10) and

(5. 11) can be written+ +

P(a, t~ ao, t ) =Z e P (a)j„*(ao), t —t = T&0 .
(5. 16)

We show in Appendix A that for random process-
es obeying time reversal and stationarity,

V„*(a)= P„(a')/Po(a),

p„*(a)= P„(a )/P, (a), (5. 17)

when g,. =z g~ according to whether a~ is even or
odd under time reversal. Inserting Eqs. (5. 16)
and (5. 17) in Eq. (5.7) gives us our basic working
for IQula:

iaaf(~) =Ze-"'[ fP„(a)da]'. (5. 18)

For any laser model, M(X) yields V(&u) through
the inverse of Eq. (5. 6), and V(~) gives p(m, T)
through Eq. (2.8).

The operator L for the laser model we are con-
sidering, given by Eq. (4. 13), has eigenfunctions
of the form f(p)e"". The integral over p in Eq.
(5. 18) assures that only the I =0 (amplitude-fluc-
tuation) modes contribute to p(m, T). We can thus
restrict our attention to

8 82
L = -—(2P' 2pp 4) —

2 (4p) .--
Bp Bp

(5. 19)

Alternatively, we could have arrived at this re-
sult directly by arguing that iVJ(A) in Eq. (5. 6) in-
volves the statistics of p but not y.

The eigenfunctions of L and L+ Ap of Eq. (5. 19)
cannot be found in simple closed form, and a nu-
merical approach is necessary. One can solve
for the eigenfunctions P„(p) of L+Ap in terms of
our previously computed eigenfunctions" P„(p) of
L by setting

and Eq. (5.7) makes use of a conditional probabil-
ity, or Green's-function solution of Eq. (5. 10),
that obeys the initial condition

P(a, t,
~
a„ t, ) = 5(a- a, ) . (5. 11)

L is usually a non-Hermitian operator in the
Sturm-Liouville sense. We will assume that L and
its Hermitian adjoint L have complete sets of bi-
orthogonal eigenfunctions, 6

where

p, = fdp», (p)PP (p)/Po(p)

From Eq. (5. 17), yg =1, and Eq. (5. 13) gives

fdpP, (p)=5O-, .

(5. 22)

(5. aS)

The insertion of (5. 20) and (5.23) into (5. 18) yields
for iVf(x),

Af(~) =Zexp(- sA„/(A)) (C,„)', (5. 24)

a result that requires no knowledge of P„(p) other
than the matrix elements p„. of Eq. (5.22). The
matrix elements p, ~ as a function of operating point

p are available from one of us (M. L. ) on request,
but are omitted to save space.

Here we have introduced the dimensionless time

s= (A)T, (5. 25)

where (A) is the linewidth of the spectrum of inten-
sity fluctuations,

(A) '= T. = &(~p)') ' 1 &Ap(t)~p(0) )«, (5. 26)

Ap = p(t) &p), — (5. 27)

known~ to be approximately Lorentzian, arid

thus given by the ratio of the area to z times the
height of the spectrum. (A) is referred to by
other authors as A,« for effective A; it can be ex-
pressed as a superposition of the eigenvalues A, ,

(A)-1 —A-1 Q P~ (5. aS)

where the weights

pn po, n (pon) ~ pOm
TWO

and the eigenvalues A„= AD „have been computed by
Hempstead and Lax~' and Risken and Vollmer. 34

Equation (5. 6) can be written as a Laplace trans-
form,

i'(X)=At(v)= f e ""V(~)d~

= &exp[- (v/s) f (x(t) dt]), (5. 29)

where

a(t) =p(t)/(p), v = X(p)T= X-(p) s/(A) . (5. 30)

Equation (5.21), with the change of variables of
Eq. (5.30), becomes

~[(A; —A. )6~~+ (v&A)/&P )s)p~~]C,„=0, (5. 31)

in Eq. (5. 14) to obtain secular equations for Cz„
and A„:

Q [(A, —A„)5,q+ Xp(q]Cy„-0 for all i, (5.21)
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TABLE I. Eigenvatues of the Fokker-Planckopera-
tor I = —(8/ep) (2p -2pp -4) - (8 /ep ) (4p) corresponding
to the RWVP laser model, Eq. (5.19), in the text for
various values of p. The lowest eigenvalue AD=0 in eac

is ed. The remaining A„ increase monotoni-
e 0= 1n each

cally with n. The results for n =1 2 10n=, , .. . , are given
s . or e armonic-meansequentially. (lambda) stands for th h

s= l0

p=-10
2. 1469 x 10
4.4871 x 10
6.9954x 10
9.6546 x 1p
1.2452 x 1p2

1.5377 x 10
1.8421 x 102

2.1579 x 10
2.4843 x 10
2, 8210 x 10

(lambda)
2. 1479 x 10

4. 6358
1.1286 x 10
2, 0387 x 10
3, 1396 x 10
4.4p64x 1Q
5.8220 x 10
7.3738 x 10
9.0520 x 10
1.0849 x 102
1.2757 x 10'

(lambda)
5.1750

or else

p=-2
7.878
1.8948 x 10
3.2312 x 10
4.7573 x 10
6, 4487 x 10
8.2888 x 10
1.P265 x 1P
1.2368 x 102

1.4589 x 10
1.6922 x 10'

(lambda)
7.9889

5.6976
1,0236 x 10
1.7657 x 10
2, 6900 x 10
3, 7774x 10
5.0111x 10
6.3789 x 10
7.8714 x 10
9, 4809 x 10
1.1201x10

(lambda)
7.1122

p=-1
6.6358
l.6498 x 10
2, 8688 x 10
4.2791x 10
5, 8559 x 10
7.5821 x 10

- 9.4451 x 10
1.1435x 102

1,3544 x 1Q2

1.5764 x 1G2

(lambda)
6.7927

9.4499
1.1582 x 10
1.8059 x 10
2, 5614 x 10
3.4882 x 10
4. 5578 x 10
5.7588 x 10
7.0820 x 10
8.5200 x 10
1.0067 x 102

(lambda)
1.1231x 10

5.6266
1.4363 x 10
2.5452 x 10
3.8461 x 10
5.3139x 10
6.9314x 10
8.6859 x 10
1.0567x 102

1,2568 x 102

1,4681 x 10

(lambda)
5.8539

p=8

1.4651 x 10
1.4967 x 10
2. 3666 x 10
2, 8389 x 10
3.6289 x 10
4, 5398x 10
5, 5858 x 10
6, 7524x 10
8.0320 x 10
9, 4184x 10

(lambda)
1.5462 x 10

4. 9284
1.2604 x 10
2.2664x 10
3.4642x 1Q

4.8287 x 10
6.3427x 10
7.9935 x 10
9, 7711 x 10
1,1668 x 102

1,3676 x 10

(lambda)
5.2688

p =10

1.9114x 10
1,9124x 10
3.4518 x 10
3.5394 x 10
4. 4496x 10
5, G780x 10
5.9745 x 10
6.9813 x 10
8.1069x 10
9, 3398 x 10

(lambda)
1.9582 x 10

I 2

FIG. 10. Probability distributions V((d) of the normal-
ize ( (') =1) integrated light intensity co comp t d f

e RWVP oscillator model of a laser operating near
threshold, for various values of the pump p and the
scaled time s. See Table V (Ref. 47) for more corn lete
results.

re comp ete

stricted to the van der Pol oscillator. More gen-
eral nonlinearities are possible. The factoriza-
tion of eigenfunctions into the form P ( ""d,„p e oes
require, however, that all the drift vectors and
diffusion coefficients be independent of y, although
they can remain arbitrary functions of p.

VI. MOMENTS OF DISTRIBUTION V(u)

Z [(Z, —Z„)5,q+ pp(y] Cy„= 0 (5. 82)

with

(5. ss)

(5. s4)

p = v/(p)s = X/(A),

Z, =-A, /(A), Z„=-A„/(A) .
Equation (5. 24) now reads

M(X) =M(v) =Re ~""[Cs„(p)]
n

Equations (5.29), (5. S2), and (5. 84) are espe-

b
cially useful since sets of A. and p have al d
een computed by Hempstead and Lax'5 ~ for a

range of values of the pump parameter p. Values
of A, and (A) are listed4~ in Table 1. The previ-
ously unpublished values of p&& (see Ref. 4V) were
used in the present work to compute M(v). Alter-
na ively, one can numerically integrate the per-
turbed eigenvalue equation (5. 14) and work with
Eq. (5. 18).

The inverse I.aplace transform of M(v), V(~ ),
was computed as described in Sec. IX. The prob-
ability distributions V(~) obtained are shown in
Figs. 10-12 for a range of values of p and s.

The procedure by which we have reduced the
problem to a purely radial problem is not re-

For comparison with the factorial-moment g'"'
data of Jakeman et a/. ,4p we shall in view of Eq.
(2. 10) obtain the exact moments (&o") of V(&u).

From Eq. (5.29), one derives

s=l

0 I

0
FIG. 11. Same as Fig. 10.



760 M. LAX AND M. ZWANZIGEB

I V((s)& s=lO

We expand the derivatives of P„(p) in terms of

P„(p):

(6. 3a)

82
—~P„=P„"=ZP E „, (6. 3b)

3

o P„—= P„'"=ZP F „, (6.3c)

4

4 P„-=P„""=ZP G „. (6. 3d)

From Eqs. (5.20) and (5.23), we see that

0
0

F/Q. 12. Same as Fig. 10.

P„dp=ZC „P dp=Co„,
~i

and from Eqs. (6. 3), likewise,

(6.4)

Equation (5.30) gives the identity

er 1 v gr
„Af(v) = —

—, „JVI(&() .
Bv" p T

(6.2)

Cob f pndp Do 2 Con @on 2

Co =&o. ~ Cp.
'" = ~pn ~

(6. 5)

We now take the derivatives of Eq. (5.24), set
&(=0, and use Eqs. (5.25), (6. 1), (6. 2), (6. 5), and

the fact that Co„(X=O)=6o„, to obtain

666

((6& ) —1 = s 2Eoo+ 2E/ e " Do+ +2 (p) ~ -sg /(A& o s( Ao )

n )t, =0

A

(te') —1=(s —21sss —Ss e ' " Zs„ses„.x i(~& ' (- 3AoAo')

(A) „"" A) )).=p

(6. 6a)

+s~~bbssAssbs"+SEe ' "'11t„b„')/(6), , (6 66)

-4
(+s) —1= (s 26ssers ' "'"'(ssess~ szsss. ))s

n

sss

+ g —8EppAp —12.Epp
"—""— e ' & ' 24ap„Ep„'+12DQ„" A

+s' 4A'A"'+3 "'+12Zpp A' '+12
- )t-"0

(6.6c)

The dependence on (A) in Eqs. (6. 6) is illusory,
since Eq. (5.32) suggests that (A) can be elimi-
nated entirely. Equations (6. 3) and (6. 6) remain
valid with (A) set equal to 1 if all derivatives in
both sets of equations are reinterpreted as deriva-
tives with respect to &L

= A/(A).
It is seen from Eq. (6. 6) that the residual mo-

ments ((o&")—1), as expected, approach constants
for small s, and are proportional to 1/s for large
So

In Appendix B we calculate A„', , A„", A„'", A„'"'
and D, E „, E, G„„from Eqs. (5. 14) in
terms of A and p, , .

The second, third, and fourth moments of P'(((&)

were computed by this procedure, and are com-

pared in Figs. 6-8 to the second, third, and fourth
factorial moments of the photocount distribution
&o(»&, T) measured by Zakeman, Oliver, Pike, Lax,
and Zwanziger. 4P

For long times (s» 1), Eq. (5.34) is well ap-
proxima, ted by its first term alone,

M(v)-e o""[C (p)] (7.1)

The inverse of Eq. (5.29),

V((d ) = (I/2vi) f, e""M(v) dv,

can be written, changing variables according to
Eq. (5. 33) and inserting Eq. (7. 1),

(7.2)

VII. ASYMPTOTIC APPROXIMATIONS FOR V(w) AND p(m, T)
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F (cu) The variance of P„(&u),

&(/) o/)'& = &~'&p —&~ &~
= (m+1)/&m &' (V. 13)

2.=2

0
0

I

.5
IO

.I

I

l.5 co

FIG. 13. Functions F(~) appropriate to the asymptotic
approximation (g»1) of V(ur), V(u) =s I" ((d)e ' (e).

(7. 14)

tends to zero for large (m) while the variance of
V(o/) tends to zero for large s. For a given s,
(m) can be made sufficiently large so that P (~)
is sharp compared to V(o/), and Eq. (7.9) can be
integrated to give

V(m/(m))
P mp T

( )
For times T short compared to T, = (A), the

correlation time of intensity fluctuations p can be
assumed to remain constant under the integral in
Eq. (5.3):

f, p(f) df = pT ~~ = p/&p & (V. 15)

V( ) ( (p &s/2 itf) f e sksp&u
)-P &P )(@3[ C ( )L)]2 d)4

(7. 3)
Large s makes the exponential a rapidly varying
function compared to C pp, and we may integrate
Eq. (7.3) by the method of steepest descent. ~ The
point )4„at which the exponential in Eq. (V. 3) is a
maximum is an implicit function of &d.

Since the distribution of p is the steady state Pp
defined by Eqs. (5.9) and (5. 19),

P (p) ~ePP/2 P /4

where N is a normalization factor, we have, in
this limit,

1 d A

Eo ~ )4m = )4m(o/) ~

gpss dp

%e have

(V. 4)
V(~) =&exp[l~P&P& —(-'~&P&)'] s«1 (7 17)

The moments of V(~), according to Eq. (V. 15), are

V(~) =[C ()L„)] &p) sexpot-s[Zo{p, „)—p, „&p&~]}

x . exp[--2'sZ,"(P,„)(p,—p„)2] . (7. 5)

Replacing (p, —g„) by ix and integrating, we find

&o/'&= &p")/&p&" =(&/&p)") f, p" exp( 'f/p 'p'-) dp—-
(V. 18)

and can be calculated from the following formula,
obtained from Eq. (V. 18) or integrating by parts
(see Ref. 15, footnote 27):

V( ) 2/2P( )
- Pz ((u) (7. 8) &P" ) = p &P" ')+ 2(~-1) &P" ') .

where

P(~) =[ &p&/(2~)"'] [Coo() .)1'/[-Eo'() .)],
E( )=Eo()4 ) —V„&p& (7.8)

The derivatives of Ep and Qpp with respect to IL(. are
related to the derivatives of Ao and CM with re-
spect to X. The latter can be computed for A, and
as shown in Appendix B and in Eq. (6. 5).

The functions E(&u) and Z(o/) computed for our
laser model are shown in Figs. 13 and 14.

Next, an asymptotic approximation for p(m, T)
in the limit of large &m) is obtained. Equation
(2.8) can be written

p(m, T) = f dk) P (u) ) V(u) )/ &m &, (7.9)

where the normalized Poisson distribution

In particular,

(p)=p+v 2(e' J e ' 'dt) ',
&p') = p &p&+2.

.5-

(V. 20)

(7. 21)

P„((s)=((m&(u)"e '"'" &m&/m! (V. 10)
0

0 .5 I. l,5 M 2,

has moments

&o/&~ = (m+ 1)/(m),
&(o &/. =(m+2) (m+1)/(m)' ~

(V. 11)

(7. 12)

FIG. 14. Functions E(u) appropriate to the asymptotic
approximation (s»1) of V(~), V(u) =si/ E(co)e~ "i. For
all curves, @(e=1)=0; they are displaced for clarity by
the length of the line connecting the minima to the point
co=1, E =0,
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I.O

0.5

IO S IO

FIG. 15. Scale factors G.' and P used in computations
described in Sec. VIII.

VIII. INVERSE LAPLACE TRANSFORM:
DISCRETE APPROXIMATIONS

There is no known general procedure of nu-

merically inverting a Laplace transform, known

only on the real axis, guaranteed to give accurate
results in every case. The difficulties involved
are well illustrated in the book by Bellman,
Kalaba, and Lockett, s' and they all arise from the
fact that the Laplace transform is a smoothing
operation. Significant figures will be lost on the
inverse unsmoothing operation. Each problem
must be tackled individually and the only useful
guide is an a priori knowledge of the general nature
of the solution. In our case, we know that V(w)

are normalized positive functions, zero at the ori-
gin and approaching zero for large values of ~.

The over-all shapes of V(~) were first studied
by obtaining discrete sets of values V(~, ) as func-
tions of p and s. An extensive collection of possi-
ble ways is given in the book by Krylov and
Skoblya. M For example, Eq. (5.29) can be written,
with ~ = ex,

M(v) = 1 e "[ne"e " "V(nx) Idx. (8. 1)

IX. INVERSE LAPLACE TRANSFORM:
CONTINUOUS APPROXIMATIONS

To obtain continuous functions V(~) rather than
discrete sets of values, we introduce the new pro-
cedure of representing V(~) by a, judiciously chosen
function times a polynomial. The N-polynomial
coefficients are determined to satisfy N values of
the Laplace transform. The choice of the approxi-
mating function is guided by the information we
already have o, n V(&o).

In the region —10&p & 1 we represent V(~) by

V((u) = [I'(a)j
' a'(u' 'e '" Z b„u)" .

n=o
(9.1)

My = M(Pj), G(g = o.'A) e (8. 5)

The nature of the problem makes G,z an ill-condi-
tioned68 matrix, that is, significant digits are lost
in the calculation of its inverse. One tries to
mitigate this detrimental effect by experimenting
with different quadrature formulas (which yield
different sets of x; and A, ) or values of the scale
factors n and P.

The 15-point Gauss-Laguerre integration for-
mula was found to work well over our entire —10
(p(10 range. The values of A, and x, were ob-
tained from Ref. 69 where A, are denoted ~, . The
optimum parameters z and P, found by trial and

error, varied with g, but were independent of p.
Figure 15 summarizes their behavior. Figure 16
shows typical results, with good and poor choices
of n and P, compared to continuous approximations
of V(~ ) obtained as described in Secs. IX and X.

The MJ defined by Eg. (8. 5) were computed using
the matrix method of Eqs. (5. 32) and (5. 34).

By use of the Gauss-Laguerre integration formu-
la, 7

.8

p=O s=l

0O

e-"f(x) dx = RA, f(x,),

one approximates Eg. (8. 1) as

M(t ) =5 nA, e" "'"~ V(o x, ) .

(8.2)

(8. 3)

.6

4

.2

-2—

M, =KG)yV), (8.4)

with

V, = V(~,)=V(nx, ),

The choice of a linear set of points v&
= Pj, j=0, 1,

. . . , n —1 (which is not the only, nor necessarily
the optimum, choice), gives a system of algebraic
equations

FIG. 16. Comparison of V(co) distributions computed
numerically by inverting a Laplace transform with differ-
ent methods. The solid smooth curve is obtained by the
representation method, Kq. (9.1) of the text. The dashed
curve is obtained by the Fourier-transform method of Sec.
X; where not apparent, it coincides with the previous
curve. The solid circles are the result of the "discrete"
technique of Sec. VIII; the open circles, connected by
straight lines for clarity, exemplify a poor choice of scal-
ing parameters o.' and P in the discrete technique.
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We call the function multiplying the polynomial in
Eq. (9. 1) the Rice-Mandel~o approxi. mation. It is
normalized and has unit first moment, and a is
chosen so that it approximates the correct second
moment of V(iz) known from Eq. (6. Ba) as a func-
tion of s and p. From Eqs. (5.29) and (9. 1), one
obtains

a' I (a+ n)M(v)=
( ) b„( )„„ (9.2)

and the moments of V(&), defined by Eq. (9.1), are

( „) pb r( a+g +r)
n r( )~mr (o. s)

In the region 1 & p & 10, we use the approximations

V((u) = N e " ' "i ' 0 d (u"n (o. 4)

and

x= —,'(u p —n/p, y = (n —v)/p, (o. 5)

and N = N(n/p) is the normalization factor of the
Gaussian (truncated at & = 0) multiplying the poly-
nomial. Again, ~ and P are chosen so that the
Gaussian approximates the first and second mo-
ments of V(~) as s and p vary. The moments of
Eq. (9.4) are given by

Ne' 2"
19(v) = Z d„— (x+y)" e "2dx, (9.5)

p . "p
where

and (g).
For the coefficients b„and d„ for p= —10, -2,
ly Oy ly 2y 4 6y By 10 and s 0 ly 0 2y 0 5y ly

2, 5, 10, 20, 50, and 100 see Ref. 47. Figures
10-12 show some of the V(+) curves obtained by
Eqs. (9. 1) and (S.4). Although we did not compute
V(~) for p less than —10 or more than 10, the
representations used in Eqs. (9.1) and (9.4) are
definitely suitable in those ranges as well for rea-
sons to be discussed below.

For p& -10, the laser statistics are already
close to those of a damped harmonic oscillator as
is evident in Fig. 17. (The exact results for the
harmonic oscillator are obtained in Sec. X. ) Fig-
ure 17 also illustrates the breakdown, at small g,
of the Rice-Mandel approximation [see comment
after Eq. (9. 1)],

V((~)„M
= [r(a)]-'a'&'-'e-'",

a ' = ((u'& —1,
(9. i2)

(o. is)

for the laser below threshold (and thermal fields).
The Rice-Mandel curve shown has the same sec-
ond moment as the RSVP curve shown.

For p & 10, the laser is already amplitude sta-
bilized (((&p) )/(p&3 is small, as shown in Fig. 1),
permitting one to make the usual quasilinear ap-
proximation. ~' By expanding the drift and diffusion
coefficients of Eq. (5. 19) in series about their
mean value, and by retaining linear terms only,
Eq. (5. 19) is reduced to

n+r "
((u" &=Ne"" 2 d„—"P x"'"e "2dx,

8 82
L =-—(A+ Bp) —C

Bp ep
(S. i4)

(o.7)
where the integrals can be written in terms of the
incomplete I' function. Equation (9.7) can be re-
duced by partial integration to

((u" &=Ed„I„,„,
where

where A, 8, and C are independent of p but func-
tions of p. This results in a Gaussian distribution
for p, which in turn implies a Gaussian distribution
for ~'.

V((u)~, =[2m(((u'&-1)] '"
xexp [-—,'(~ —1)'/(((g' &

—1)]. (9. 15)

I„=(2n/p')I, + (2/p') (m —l)I
with

I =1, I =2n/p +(2/p)E,

(o.o)

(9.10)

I V(&u)

I.O —
HQ
RW

s=l

Z-'= e"""f e-" 2dx. (o. ii)- 0. /8

We use linear sets of points vz=yjy j =0, 1, . .. ,
N ifor determining -b„and d„by Eqs. (9.2) and

(9. 5). The algebraic system obtained from Eq.
(S.2) was found to be least ill conditioned when y
=0. 1 for all choices of s and p. For the system
obtained from Eq. (9. 5) it was necessary to vary
y from 0. 2 to 1.0 as [(~2 &

~] varied from about
0.3 to about 0.0003. Up to 15 coefficients were
necessary for expansion (9.2) when V(&) displayed
a sharp rise near the origin (small values of s

.6

4
I

I
I
I

.2 '

0 2

FIG. 17. Comparison of V(m) distributions given by
the harmonic-oscillator (HO) model of a laser operating
below threshold, by the BWVP oscillator model at p = —10,
and by the Rice-Mandel (HM) approximation determined
by the second moment of the HO curve.
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better approximation to the laser above threshold
than the Glauber-Lachs model.

X. ACCURACY OF COMPUTATIONS

1.0—

0.9—

IO

I I I I ill( I I I I I IIII

IO I

I I I I IIIII

IO S IO

Three independent tests were performed to check
the accuracy of our continuous representation
method for obtaining the inverse Laplace transform
V(v).

A. Laser below Threshold

The operator
FIG, 18. Comparison of moments of V(cg) obtained

from the RWVP model and from models of the laser
operating well above and well below threshold. B„
= ((ct) ) 1)Ho/((co ) 1)~~p where HO stands for the
damped harmonic-oscillator model, and p = —10 was used
in the RWVP model. A„= ((cP) —1)Rlllvp/((III") j-)gr. ,o1, ~

where QL stands for the quasilinear model (solid lines)
and GL stands for the Glauber-Lachs (Refs. 72 and 73)
model (dashed lines) of a superposition of coherent and
incoherent fields. A2 was set equal to unity, and p =10
was used in the BWVP model.

[Since V(ol)~„ is highly localized around ol = 1, we
integrate over — & & & ~ to obtain the normalization
factor. ] The higher moments of V(ol)+L of Eq. (9. 15)
are determined by the second moment:

&~'&e~ —1= 3((~'&oL —1» (9. 16a)

(ol4&oL —1=6((ol &@L
—1)+3((to2&oL —1) . (9 ~ 16b)

In Fig. 18, we display ratios of the moments of
the harmonic-oscillator model to the moments of
the RWVP model at p= —10, and ratios of the mo-
ments of the BWVP model at p=10 to the moments
of the quasilinear model, using the second moment
of the RWVP model at p =10. The proximity to
unity of the various ratios is a good indication that
we covered the full range of P for the BWVP model
of the laser which cannot be handled by simpler
methods.

It may be of interest to note that an early model
proposed by Glauber and Lachs 3 for a laser
above threshold is a superposition of a perfect co-
herent signal with a Gaussian noise. Jakeman
and Pike and Jaiswal and Mehta calculated the
moments of V(ol)o„[i.e. , the factorial moments
of p(m, T)] for such a field, assuming a Lorentzian
spectrum. Choosing the ratio of coherent to inco-
herent signals so as to match the second moment
of V(ol) for the RWVP model at p= 10, we calculated
the corresponding third and fourth moments of
V(ol)on for the Glauber-Lachs model. The ratios
of the moments of the RWVP model at p=10 to the
moments of the Glauber-Lachs model are shown
as dashed curves in Fig. 1S. By comparing these
with similar curves for the quasilinear model it is
safe to conclude that the quasilinear model is a

8 82
L=—

(2pp+4) ()
2 (4p),

8p ep
(10.1)

(10.2b)

where L„are the Laguerre polynomials, and I p I

stands for —p since p & 0. The matrix elements
defined by Eq. (5.22) are

P« = (2/I pl ) (2i+1),

pi, 1+1 Pl+1, 1 (2/Ipl ) (f+ 1),

(10.3a)

(10.3b)

all others zero. The effective linewidth (A) is
calculated to be

&~&=~,=2lpl . (lo. 4)

Equation (10.1) corresponds to a damped har-
monic-oscillator model of a laser operating below
threshold, whose field P is described (see Ref.
25) by the Langevin equations:

(10.5a)

(1O. 5b)

P= x —iy, (10.6)

where !pl is a dissipation coefficient and E„and
I', are random Markoffian forces which account
for the interaction with reservoirs. Equation
(10.1) can be obtained similarly to the way Eq.
(3.4) of Ref. 15 is calculated from Eqs. (2. 1) and
(2.2) of that reference.

M()t'), defined by our Eqs. (5. 1) and (5.2), is
given by Eq. (18C31) of Ref. 25,

M(A') = e' [coshzs'+ —,
' (z+ 1/z) sinhzs'] ', (10.7)

where

s' =
I p I T, s = (1+4)l'e (p &/(A &)'i' . (10.8)

The inverse Laplace transform of Eq. (10.7),

W(n) = (1/2vf) f, s'"m()t') d) ', (10.9)

can be integrated by the usual residue methods

which is Eq. (5. 19) without the p term, has eigen-
functions and eigenvalues

P.4»= llpl (1/~t) s ' "'~.(llplp), (1o 2a)

A„=2Ipin,
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-()" to be effec-for large m& we assume V ~ &

and ex-tively zero ou st ide some interval (0, ("e),
pan id 't in a Fourier series:

V((d)e '"=Z C))e' (10.14)

e = (2w/(d ~),
C, =(o/2v) J "[V((d)e '"]e-'""d(o

=(o/2v) J [V((o)e '"]e '"'"d(d .

(10.15)

(10.16).

0 I
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19. Probability distribution coV(co) of the normal-
d

'
h 'ty o d

illator model of a laser
= 1) time-integrate zg
dam ed harmonic-osci a orth p

operating well below thresho erm
ous values of the scaled time g.

(10.17)

Writing

e inte ral in Eq. (10.16) is just the Laplace
+ i'm. Comparison mith Eq.transform of V((d) at a+iko'. o

(5.29) then yields

C, =(o/2~) iaaf(a iso) . .

M(a+ i') = A), +iB), , (10.18)
l' the result according to Eqs.giving, after sca ing

(5.3) and (5.4),

V((u) = 2e'Z y„' exp ([1 ——,'( y„'+ 1)(d]s'}

x[(2y„s'+ y„+ 1/y„) siny„s'

+ e'( y„'- 1)cosy„s']-', (10.10)

where y„are ethe positive roots of the equation

'=2 /(y' —1) . (10.11)tanys y

ublished earlier by Jakeman andp
Pike. ~s Equations (10.8), (10.4), and
the relation

lace Transform to a Pouter8. Reduction of the Inverse Lap ac
Series

'
n (7.2) can be converted to a FourserEquation & . ca

transform y eb the change of variables v= a

V(o =(e'"/2n) f" e'""M(a+ix)dx. (10.13)

(10.12)s' = -', (A )T = —,'s

man-Pike time parameter (s' andbetween the Jakeman-
It is also to be noted that —, isours (s).

lf 'dth at half-power'matel equal to the half-wiproxima e y q
am litude) noise spectrumof the total (phase and mp i e

only for e ath laser below threshold (see Ref.
Above threshold this is not true.
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d of E . (10.10) (see Fig.the residue method o q.

were also calcu a e u 'l t d usingThe same distributions we u '

'
n method, Eq. (9. 1) with M vthe representation met o, q. . '

v

computed from qs.
4,'. Agreement to two significan i

'ch bolstered our confidencegenerally found, which o s er
in the representation technique.

Eq. (10.14) becomes

)'w =d'"
2

A(0)+2r (A, cosle+ —B,s(nor~)).

(10.19)
. (10.19) requires the calculat|onThe use of Eq. . ' ulation

of M for large complex arguments, an
of E . (5.31) may no longer ematrix procedure o q. . r e

e used the Numerov met o ~
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el usi the operator ofharmonic-oscillator model using
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i . 16 along with results ob-result is shown in Fig. ,
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anc between e rth epresentationsmall discrepan y

thod and the Fourier-series me o i
n e th resentation method.essarily an e

s used with 20 points asThe Fourier method was used wi
well as wi e'th th 40 points on which Fig. 16 is
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FIG. 20. Moments of V(u) for p =0 (threshold). The
solid lines are obtained by the exact perturbation method
of Sec. VI. The dots correspond to the continuous repre-
sentation described in Sec. IX, and were computed from
the data contained in Table V (Ref. 47); (~~) = (mt"~)/(~)".

based. Improved agreement accompanied the
change from 20 to 40 points. It might take 200
points to be sure of convergence of the Fourier
method. Although the Fourier-series method is
potentially more accurate, because it avoids ill-
conditioned matrices, we thought it too expensive
to generate families of V(&d) curves.

C. Comparison of Moments of V(w)

The problem of determining the statistical dis-
tribution of the integrated intensity of a Gaussian
random variable has been given considerable at-

Moments of V(c&) were calculated using Eqs.
(9.8) and (9.8). These are based on our represen-
tation method of inverting the Laplace transform,
and are shown as points in Fig. 20. The points
agree quite well with the curves obtained from the
potentially exact formulas (8. 1) based on perturba-
tion theory.

In summary, we believe our V(~) curves are
generally accurate to about 1/c of peak value except
when the V(cc) curves rise sharply near the origin
(small s and small ~). The reason for this con-
fidence is based on (a) agreement between repre-
sentation results with exact residue results for the
harmonic-oscillator model, (b) agreement of rep-
resentation method (real X information) with the
"exact" Fourier method (inversion of the Laplace
transform in the complex plane), (c) agreement of
representation moments with "exact" moments,
(d) agreement between the representation method
and the asymptotic results of Sec. VII for large
s (s&10).

XI. DISCUSSION AND COMPARISON VOTH EXPERIMENT

tention in the past, ' mostly because of its relation
to the study of noise in amplifier systems like laser
sources. We have shown (see, for example, Fig.
IV) that the light field of a laser operating in a single
mode below threshold behaves like a thermal light
field, i.e. , itisdescribed by a random complex
variable with a Gaussian probability distribution
and Lorentzian frequency spectrum. Well above
threshold, on the other hand, laser light is ade-
quately described by a quasilinear approximation
which leads to a Gaussian distribution in intensity
and a single effective decay rate. Because a super-
position of a coherent field with Gaussian noise
was thought to be a good approximation to a laser
well above threshold, an extensive literature was
built up on photocount statistics for such a model.
Although we have shown that the quasilinear ap-
proximation is more accurate (see Fig. 18) and
easier to apply, we have, nevertheless, reproduced
and extended a table of Jakeman and Pike~ that
summarizes the initiating papers in this theoretical
literature (see Table II). This literature is still
relevant for understanding scattering and hetero-
dyning experiments that mix coherent and Gaussian
signals. A similar bibliography to the experimen-
tal photocount statistics of laser and thermal light
is given in Table III. Near threshold, the nonlin-
earities in the laser equations must be retained,
and calculating the time-dependent photocount sta-
tistics of the field is a complicated quantum-me-
chanical problem. We made use of an exact quan-
tum classical correspondence, valid for Markoffian
processes, to associate our operator variables to
classical variables, and then calculated the dis-
tribution of the integrated intensity of the field
variable from classical equations of motion cor-
responding to the laser system.

Measurements (see Table III) substantiate the
RWVP oscillator model for a laser operating near
threshold. Following publication of our main re-
sults, photocount experiments were performed
that are in excellent agreement with our theory.
In Figs. 3-5, we show the time-dependent photo-
count distributions measured by Meltzer, Davis,
and Mandel, l and in Figs. 6-8, the time-depen-
dent moments measured by Jakeman, Oliver, and
Pike are displayed. Any small discrepancies be-
tween theory and experiment are comparable to the
quoted errors in theory and experiment.
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APPENDIX A: TIME REVERSAL AND THE
EIGENFUNCTIONS OF Lf

The purpose of this appendix is to show that the
relation y„*(a)= P„(a )/Pa(a) of Eg. (5. 17) relating
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TABLE II. Theoretical photocount statistics of Gaus-
sian-Lorentzian and coherent fields, a bibliography of
initial papers Eafter Jakeman and Pike (Ref. 2) with addi-
tions]. The numbers in parentheses are the year of pub-
lication. The following notation is used: ———,inco-
herent-field spectrum; , coherent-field spectrum;
cue, frequency of the coherent field; +0, mean frequency
of the incoherent field; (A), linewidth of the incoherent-
field spectrum; (I,), mean intensity of the coherent field;
(I;), mean intensity of the incoherent field; (a), mathe-
matically equivalent calculation; (b), not formal expan-
sion in 1/s, s=(~)T; (c), in these early papers, bunch-
ing was thought to be a property of photons; (d), recur-
rence relations only; (e), numerical calculations; (f),
to second order in 1/s; (g), various spectral shapes; B,
Bedard (Ref. 3); G, Glauber (Refs. 41, 42, 72); H,
Helstrom (Ref. 84); JM, Jaiswal and Mehta (Ref. 85);
JP, Jakeman and Pike (Ref. 86); L, Lachs (Ref. 73); M,
Mandel (Ref. 87); MP, McLean and Pike (Ref. 88); P,
Perina (Ref. 89); PH, Tsarina and Hordk (Ref. 90); Pu,
Purcell (Ref. 91); R, Rice (Ref. 70).

on the two-time probability where a represents a
set of variables denoted a in the text, and g is
the set of time-reversed variables, called a~ in
the text. Thus, for any component variable,

a =—KaK =+a, (A2)

where K is the time-reversal operator which
leaves unchanged even variables and reverses the
sign of variables odd under time reversal. Con-
dition (Al) has been given a detailed justification
by De Groot and Mazur.

Equation (Al) can be rewritten in terms of con-
ditional probabilities,

P(a, t~ ao to) Po(ao) = P{ao tI a to)Po(a), (AS)

where Po(a) is time independent in the (assumed)
stationary case. - If the limiting condition

limP(a, ti ao, to) = G(a —ao) as t- to (A4)
FIELD LIMIT M(X) V (~) p {m,T)

JP (69)
PH (69)
JM (70)
JP (69)
PH (69) PH (69) PH(69)
J M (70)

PH (69) PH (69)
L(7I)(g)

PH (69)

rI (~)

JP (69)
PH(69
JM (70)
J P (69)
PH (69)
JM (70)
JP (69)
PH (69)
J M (70)

&g&~C)
~c=~o

J P (69)
J M (70)

J P (69) JP (69) JP (69)
J M (70)

0 J P (69) JP(69)
PH (69) PH (69)

I JM (70)

PH (70)
JM (70)

PH (69)
JM (70)

PH (69)
JM (70)

JP (69)
JM(70)

is applied to Eq. (AS), one must conclude that the
stationary state Po(a) obeys

P,(a) =Po(a) . (AG)

When transition probabilities exist, i.e. , for g
4a',

limP(a, t+tzt)i a', t)/&t=zo(a, a') as tz. t-0 (AG)

n
y I

g

&yc&=0

G (66)

H (64)

R (45)(a) G (66) L(65)
P (67) L (65)

G(65)
J P (68)(e) B(66)(d) B(66)(e)

JP(68)(e) JP (68)
L(7I)(a)

R (45)(a)
G (66)
L (65)(d)

B(66)(e)

&i&=0 G (65) R(45) (a) G (65) R(45) (a) R(45) (a)
M (64) M (64) G (65) G (65)

R(45) {a)
G (65) R(45) (a) M (59) R(45) (a) G (66)

M (64) M (58) L(65) (d)
. M(59)(b) Ptj(56)(c)

G(65) (b) JP (68) MP(65) M(58)(c) G(65)
&P&~ H(64) {b) JP(68)(f ) G(65)

exists, and the Chapman-Kolmogoroff equation
for a Markoff process can be rewritten as a master
equation:

SP(a, t)
zo(a, a') da' P(a';t) —I'(a)P(a, t), i (A7)

where the first term describes all transitions into
state a and, with

r(a) = f zo(a', a) da', (A8)

the second term describes all transitions out of
state a. Equation (A7) can be written in the form

the eigenfunctions of Lt to those of L is a conse-
quence of time reversal and stationarity. The
proof given here will generalize an earlier proof
(Ref. 25, Chap. 8) from a Fokker-Planck process
to a general Markoffian process, and from vari-
ables even under time reversal to variables odd
under time reversal.

The original version of this paper made the first
generalization. Risken9~ and Graham and Haken93

in the meantime have considered the Fokker-
Planck process with odd variables. We shall,
therefore, briefly present a proof which makes
both generalizations simultaneously.

If the steps in Eq. (8D1-7) of Ref. 25 are re-
peated without assuming variables even under
time reversal, we obtain the condition

—= —LP = — (a~ Li a') da' P(a', t),

where

(ai LI a') -=—zo(a, a')+ r(a)G(a- a')

P(a, t+ tzt I

a' t) —G(a —a')
~t-0

Equation (AS), with the help of (A5) and (A10),
leads to the conditions

(A9)

1
zo(ao, a) =, , zo(a, ao)Po(ao),

POL~J

I"(a)=r(a) .

(A11)

(A12)

KLK = (1/W)LW, (A1S)

These results are equivalent to the single condition

P(a, t; ao to) =P(ao t; a, to) (Al) where 5 is an operator whose eigenvalue on a
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L'y„= A„*y„ (A15)

state of definite a is Po(a), so that

(al(1/W)LWI~&=ll/P0(a)] (alLI~&P (~& (A14)

This result, which follows from the definition of
the operator L in terms of the conditional prob-
ability, is thus applicable to the master-equation
form of the transport equation, as well as to the
Fokker-Planck form when L is approximated by a
second-order differential operator. In either case,
the complex conjugate of the adjoint equation

y„*(a)= P"„(a)/P,(a), (A20)

and the Green's-function solution (5. 16) can be
written

(A21)p( tl t ) p -L„(t-to) P (a)P (ao)P tiaot =
( )

~

Note that although P„(a) is, in general, complex,
P„* does not appear in Eq. (A21). For the Van der
Pol oscillator, the complex variable P = re '",
where y= y; (Ii) = —q. The eigenvector P„requires
a double index n, X and can be written

when multiplied by W and E, leads to P„=tt„(r, ~)e'"", (A22)

or

WKLy„* = WKA„y„* (A16) so that

P(ri y, t~ ro, yo, 0)

W(KLK )Ky„*=A„(WKy„*).
The use of (A13) leads to the result

(AIV)
= Ztt„(r, ~)tt„(r„~)e"" 'o' e-"" (A23)

n, )t

L(WKy„*) = A„(WKy„*), (A18)

so that QKy„* is an eigenfunction of L with eigen-
value A„which can be identified with P„. Thus,

y+(a) = W-'KP„(a) = P„(a)/P, (a) . (A19)

To obtain y„* we must replace L by L+ Ap as in Eq.
(5. 10). If p(a) = p(a), then Eq. (A13) with I. re-
placed by L+A.p continues to be obeyed with the
same g. Thus,

a result which we have previously given~' as valid
even in the presence of detuning.

Ii one is concerned only with intensity fluctua-
tions, one can restrict oneself to the X=O terms in
(A23) and use the even variable p= IPi'=r .

P(p, T; p0, 0)=Re " P„(p)P„(po) . (A24)

Alternatively, the XWO terms in Eq. (A22) disap-
pear after the integration over y in Eq. (5. 18).

TABLE rrr. Experimental photocountstatistics of laser and thermal fields, a bibliography of initial papers, after Pike
(Ref. 26). The year of publication is given in parentheses. The following abbreviations are used: A, Arecchi (Ref. 21);
CDKAH, Chang, Detenbeck, Korenman, Alley, Jr. , andHochuly (Ref. 22); CKD, Chang, Korenman, and Detenbeck (Ref.
22); FH, Freed and Haus (Ref. 19); GG, Grace and Gamo {Ref. 80); GGW, Gamo, Grace, and Walter (Ref. 23); JMP,
Johnson, McLean, and Pike (Ref. 81); JOP, Jakeman, Oliver, and Pike (Ref. 82); P, Pike (Ref. 83); MDM, Meltzer,
Davis, and Mandel (Ref. 39); SA, Smith and Armstrong {Ref. 20).

Field

Laser
below
threshold
(thermal)
RWVP
p& —10

Laser
Dear
threshold.
RWVP
—10» p»10

Laser
above
threshold
RWVP

p )10

p(m, T)

FH(eo)

FH(65)

FH(es)
JMP(65)

sA(ee)
MDM(vo)

I (ev)

MDM (Vo)

JOP(V0)

FH(65)

FH(65)

FH(65)

FH(65)
sA(65)

FH(65)

FH {65)

DM(ev)
sA(ee)
GGw(es)

p(ev)

CKD{68)
JOP (70)

Frr(65)
sA(e5)

Fr-r(65)

Fr-r(65)

FH(es)'

FH(e5)

FH(65)

A(67)
CDKAH(ev)

CKD(68)
JOP(70)

CKD(68)
JoP(vo)

FH(65)

Fr-r(65)

FH(65)

FH(65)

FH(65)

FH(65)

CDKAr-r(6v)

CKD(e8)
JoI (vo)

cKD(68)
JOP (70)

Fr-r(65)

FH(65)

FH (65)

(4)

JOP(68)

JOP(68)

GG(69)

GG(69)

GG(69)

Jop(68)
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APPENDIX B: DERIVATIVES OF A„AND P WITH
RESPECT TO X

Let P„and A„be defined by Eqs. (5. 14) and

(5. 15) having the property of Eq. (5. 17). Further-
more, let the derivatives of P„with respect to X be
defined by Eqs. (6. 3). Differentiating the first of
Eqs. (5. 14), multiplying from the left-hand side
by q„* and integrating, one obtains with the help of
Eqs. (6. 3a) a,nd (5. 15),

».'=(»'.
I»» f»+&»1I») =(» , »»)=.», (Bla)

a generalization of the well-known Feynman-Hell-
man theorem to the non-Hermitian case.

By differentiating Eq. (Bla) and using Eqs.
(5. 17) ~d (6. 3a),

A„"=(i„',pP.)+(P. pP. )

=ED (y„,pP„)+ED (y„,pP )

from which we conclude that

(A„—A )D = p —A' 5„

or

D.„=p„„/(A„-A.), m~n . (B8a)

Similarly by differentiating Eq. (5. 14) successive-
ly, and by using Eqs. (6.3), one obtains

E = -
fi Zp iDi„—AD i, m&n (B8b)

» = Z» &»&„—»'z„„—»D ), m»n

(B8c)

a =-. ,—+ p , F,„-»„„'» —-'. »„"» —»"'» .),
n elm l

m&n . (B8d)

The diagonal coefficients are calculated from
Eq. (5. 15) in which we expand y„and P„ in a Taylor
series arid collect terms of same order:=» (p + p..) =»p.A (Blb)
1=(j„(X+~),P„(X+A))

»„"'=2 Zp„„» +Z p, „D D,„),
m l, m

(Blc)

where the last step follows from the symmetry of
p. Similarly one obtains, = (i„,P„)+ ~[(i„,P„') + (y.', P„)]

+ 2 '[(i., P„")+2(i„',P„')+(j„",P„)]+~ ~ ~ . (BQ)

ii„"'=» Zp„.»„„+»5 jj,.z„„»,„) .
m l, m

(Bld) Thus, all coefficients of the powers of b, must be
zero. This implies, for example,

With the use of (5.20), Eq. (Bla) can be written

&Cy„C&~,
fj

(B2) 0 = (j„,P„') + (cp„', P„)

with p„. defined by Eq. (5. 22), and the C&„deter-
mined by the secular equations (5.21). The coeffi-
cients D, E, E „, and G are calculated as
follows. Differentiating the first of Eqs. (5. 14),
we find

Thus,

D„„=o f.or all g. , (Bl la.)

=ED (j„,P )+ED „(j„,P„)=2D„„. (B10)

but

(L+ Ap)P„'+ pP„= A„'P„+A„P„',

pP„=Z P.p

(B3)

(B4)

and similarly,

Z„„=-ZD'„„,

F„„=-ZD E~,

(Bl lb)

(Bllc)

since

(V pP.)=~(F P )p .=p. (B5)
G„„=-4 ZD P —3ZZ' . (Bl ld)

By inserting P„' from Eq. (6. 3) and using (B5) and

(5. 14), Eq. (B4) becomes

Z(D A„+p )P =Z (fi.„'5„„+D „A„)P, (B6)
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