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The effect of departures from Ornstein-Zernike correlations on the decay rate of order-
parameter fluctuations in fluids near the critical point is considered here in the framework of
the Kawasaki and Ferrell theories. For reasonable forms for the correlation function, the
effect of departures from Ornstein-Zernike behavior varies from1 to 11%, which is measurable
using currently available light-scattering spectroscopic techniques.

The decay rate of order-parameter fluctuations
in fluids near the critical point has been investi-
gated theoretically by Kawasaki, who obtained an
integral expression for the leading singular term in
the decay rate (I'„) from a detailed mode-mode
coupling analysis of order-parameter fluctuations,
and by Ferrell, who applied the fluctuation-dis-
sipation theorem to obtain an integral form for I"„.
Kawasaki and Ferrell evaluated the integrals for
I'„using the Ornstein-Zernike form for the cor-
relation function, in which case both theories yield
for fluctuations of wave vector q

I'„=P,r/s~, ['] If,(q(),

where $ is the correlation range of the order-pa-
rameter fluctuations, g, is the shear viscosity
(called the "high-frequency" shear viscosity in the
mode-mode coupling theory), and

K (x) = —,'[I+x + (x —x ') tan 'x].

The temperature dependence of the decay rate of
order-parameter fluctuations has been extensively
investigated in numerous light-scattering experi-
ments on pure fluids and binary mixtures near the
critical point; in these experiments the decay rate
I', is equal to the linewidth of the central component
in the spectrum of the scattered light. The singu-
lar part of the linewidth, obtained by subtracting
from the measured linewidths the background terms
which arise primarily from the nonsingular parts
of the transport coefficients, has been found to be
described fairly accurately by Eq. (1), evaluated
using independent data for g, and g. 3'4 However,
as the accuracy of the data has improved, it has
become clear that there are systematic deviations
from Eq (1), espec. ially very near the critical
point. '4

Recently Lo and Kawasaki have refined the mode-
mode coupling calculation of I'„, obtaining the con-
tribution of the simplest vertex corrections, all of

which were ignored in Kawasaki's original deriva-
tion of Eq. (1); the vertex corrections reduce Eq.
(1) by 2. 44/o for q(«1 and increase it by 0. 40%
for qg»1. Kawasaki and Lo have also recently
examined the viscosity which enters Eq. (1) in the
mode-mode coupling theory and have obtained a
relation between this "high-frequency" shear vis-
cosity and the shear viscosity determined in mac-
roscopic measurements. The result is that if g,
in Eq. (1) is taken as the macroscopic shear
viscosity, then Eq. (1) must be increased by 5. 5%
in the hydrodynamic region (q$ «1), and the cor-
rection increases rapidly for increasing qg above

qg = 1, amounting to 23% at q$ = 10. Perl and Fer-
rell~ have also considered the effect of the q de-
pendence of the viscosity in Eq. (1), using Fer-
rell's approach to the dynamics of a fluid near the
critical point; however, in this calculation the non-
local shear viscosity was obtained only in the limit
q)» I.

Kawasaki and Ferrell have both noted that the re-
sult for I„is sensitive to the form used for the
correlation function. Thus it is of interest to eval-
uate the linewidth integrals for correlation func-
tions other than the Ornstein-Zernike form which
was used in all previous calculations. We report
here the results of calculations of I'„ for three dif-
ferent forms for the correlation function which
have been proposed to describe departures from
Ornstein- Ze mike behavior.

Fisher and Burford have shown that the Orn-
stein-Zernike form for the correlation function,
which at the critical point decays asymptotically
as I/r, is not valid for the three-dimensional Ising
model and is probably incorrect for a real fluid as
well. The correct asymptotic form for the corre-
lation function at the critical point is expected to
be I/x '" with q &0. The effect of a very small val-
ue for g would be difficult to detect experimentally;
however, a lower bound for q significantly dif-
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Equation (1) follows from either (2) or (3) when the
Ornstein-Zernike form for the correlation func-
tion is used:

Go, (q —k) ~ [g '+ (q —k)'] '

in Eq. (2) or

Gos(r) ~ (e "/')/~

in Eq. (3). [We omit proportionality factors inde-
pendent of q or r, since they cancel in both Eqs.
(2) and (3). ]

Before presenting the results of calculations of
the linewidth for different correlation functions,
we first point o t that Kawasaki's result, Eq. (2),
and Ferrell's res lt, Eq. (3), are equivalent for
any form of the correlation function. This follows
if G(q —k) = f dr G(r) e"' "' 'is substituted into Eq.
(2) and the integration is performed over k, or
G(r) can be substituted into Eq. (3) and the inte-
gration performed over r. Thus in evaluating the
linewidth integrals for different correlation func-
tions we can consider either Eq. (2) or Eq. (3),
whichever is mathematically convenient.

We consider the following forms for the correla-
tion function G(q):

sin[(l -q) tan 'qg]
q((-&+q&)(j n)/2-

G ~ [(( 2 2)1 n/2] 1

(4a)

(4b)

(g
2 y2 2)n/2

+ (1+—'qp )q2

G& is the q-space form [Ref. 9, Eq. (6. 19)] of
G, (r) ~ (e " ')jr"", which is sometimes suggested
as a form which may describe departures from
Ornstein-Zernike behavior. G& has frequently

(4c)

ferent from the Ornstein-Zernike value g = 0 is
expected on the basis of the following inequality
rigorously proved (for ferromagnets) by Fisher
q&2 —3(5 —1)/(6+1), where 5 is the exponent which
describes the shape of the critical isotherm. A
scaling-law analysis" of the data in the critical re-
gion of a number of ferromagnets and fluids yielded
6 = 4. 4 + 0.3; hence the inequality implies q & 0. 11
+ 0. 06.

Kawasaki's integral expression for the decay
rate of order-parameter fluctuations, applicable
for any correlation function, is'

@AT "
q q k G(q —k)" (2~)y, T /' G(q)

where G(q) = J dk G (r)e'' ' and G(r) is the density-
density (or concentration-concentration) correlation
function. Ferrell's expression corresponding to
Eq. (2) is'

TABLE I. Linewidth ratio C;(q$) for the correlation
functions t"; (i=1, 2, 3) in Eqs. (4).

c& (q~)

q( @=0.05 q=o. l
C, (q&)

g=0. 05 g=o. l
C3(q()

g=0. 05 q=o. l
0 1.053 1.111 1.036 1.076 1.007 l. 014

0. 1 1.052 1.111
0.2 1.052 1.110
0. 5 1.050 1.106

1.036
1.036
l. 035

1.076
1.076
l. 074

1.007
l. 007
l. OOS

1.014
1.015
1.016

10
20
50

1.045
1.038
1.032

1.029
1.028
1.028

l. 095
1.081
1.067

1.062
1.060
1.058

l. 033
l. 030
1.028

1.027
1.027
1.026

1.070
l. 064
1.058

1.057
1.056
1.056

1.009
1.013
1.020

l. 024
1.026
1.026

1.019
1.026
1.042

1~ 051
1.055
1.056

1.027 1.058 1.026 1.056 1.026 1.056

been used" in interpreting scattering experiments
near the critical point, including neutron scattering
in the antiferromagnets MnF~' and RbMnF~ and
light scattering' in the binary mixture n-hexane
and nitrobenzene; the values for the exponent q
determined in these three experiments were 0. 05
+ 0.02, 0.055 + 0.010, and 0.06, respectively. If
q is small, then 0, and Gz are related by'

n(2 n)—e'&'
G~ (G|) 1+ ~,~,

~

+ )
The function G3 was proposed by Fisher and Bur-

ford, who found that this form accurately de-
scribes the Ising model of a ferromagnet in both two
and three dimensions. For the three-dimensional
Ising model, which also serves as a model for a
lattice gas and a binary mixture, the parameters
in G3 are q = 0. 056 + 0.006 and P = 0. 15 + 0. 01, in-
dependent of the type of lattice. 9'8 Since both P
and q are small, the q dependence of G, does not
differ significantly from that of Goz unless (qg)
»1. G2 and G3 behave in the same way in the limit
(Pqg)»l, where 62~ G~~q

Careful experiments very near the critical point
a,re required in order to observe definitely any
departure from Ornstein-Zernike behavior. The
correlation function G3 has seldom been used in the
analysis of experimental data because the deter-
mination of the two small parameters (q and P)
which characterize the departure from Ornstein-
Zernike behavior would be very difficult; however,
this form is more satisfactory theoretically since,
as explained in Ref. 9, it leads to the correct
asymptotic behavior at large x both at the critical
point and asvay from the critical point [where the
Ornstein-Zernike form G(x) cc (e "/~)jr should be-
come valid].

We have evaluated the Kawasaki-Ferrell line-
width integral for the correlation functions G,
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FIG. 1. The linewidth ratio C(q() =—I'~~(G;, g, q$)/
I'; (Goz, 0, qf) calculated using different correlation func-
tions 0; IEqs. (4) ] in the Kawasaki-Ferrell linewidth in-
tegral [with the parameter p in G3 equal to 0.15 (Refs. 9
and 16)].

(i=1, 2, 3, ) with @=0.05 and q=0. 1, and the result
for the linewidth ratio,

C(qg) = r„(G„q,-qg)/r„(G„, 0, qg),

is shown in Fig. 1 and tabulated in Table I. The
A

linewidth integral involving G& was obtained in
closed form in terms of the hypergeometric func-
tion, but for C3 only the I k! and azimuthal-angle
integrals mere obtained in closed form, the polar-
angle integral being evaluated numerically on a
computer. For G, both the 1k 1 and polar-angle
integrals were obtained numerically. The numer-
ical integrations were performed for various
meshes to check the accuracy of the results, and
as a further check the integrals for all three cor-
relation functions were evaluated using alternative

techniques in the limits qE «1 and qg» l.
In each case most of the variation of the ratio

C(qg) is in the region q)=0. 1 to qua =10, with C(qg)
approaching a constant in the limits of qg «1 and
qg»1 (see Table I)."

The magnitude of the departure of the linewidth
from the result previously calculated using the
Ornstein-Zernike correlation function is typically
several percent, comparable to the vertex cor-
rection calculated by I o and Kawasaki' and the non-
local shear viscosity corrections obtained by
Kawasaki and I o and Perl and Ferrell. 7 With the
recently developed precision pulse-correlation
technique, light-scattering linewidth measurements
can be performed with accuracies of 1% or better,
so it is now possible to investigate these cor-
rections. Indeed, Chu et a/. , who used the re-
sults of our calculation of 1"„(Gs,q, qg), have found
that the inclusion of the vertex, viscosity, and
correlation-function corrections significantly im-
proves the fit of the theory to their linemidth data
for the mixture isobutyric acid and water.

In scattering-intensity experiments the depar-
tures from Ornstein-Zernike behavior can be de-
finitively detected only in measurements for q(» 1,
a region where experiments are extremely difficult.
On the other hand, the linewidth, which in the
Kawasaki and Ferrell theories is given by an in-
tegral over al/ q$, reflects departures from Orn-
stein-Zernike behavior even for qg«1. Further-
more, the (q$) dependence of the linewidth is quite
different for the different correlation functions in
the region 0. 1 & qg & 10, a region which is experi-
mentally accessible. Therefore, insofar as the
Kamasaki and Ferrell theories correctly describe
the dynamics of fluids near the critical point, our
calculations indicate that linewidth measurements
on fluids near the critical point should yield nem

information on the form of the correlation func-
tion.
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A previously constructed laser model with quantum (noncommuting) noise sources was shown to lead near

threshold to a quantum rotating-wave Van der Pol oscillator. A full dynamical correspondence between

quantum and classical random processes allows one to compute the average of any time-ordered,

normal-ordered operator function by averaging the associated function of classical random variables.

Numerical calculations for the associated classical Van der Pol oscillator of the steady-state distribution, the
total intensity fluctuations, and the linewidth versus operating point were amply confirmed experimentally.
Measurements (and calculations) of higher than two-time correlations were sparse and contradictory.
Photocount distributions, at times short compared to the intensity correlation time, confirm only the steady
state of the laser. Photocount distributions at intermediate and longer times are difficult to compute because

they involve multitime correlations of high (00) order. By providing an exact solution for photocount
distributions and their moments for all times, we expected to stimulate measurements near threshold which

would provide an adequate test of the Van der Pol laser model. Comparison of the results reported here

with recent photocount experiments of Meltzer, Davis, and Mandel and of Jakeman, Oliver, and Pike
provides gratifying agreement and confirmation of our statistical understanding of laser fluctuations near
threshold.

I. INTRODUCTION

The present paper provides an "exact" (i..e. ,
with no stochastic approximations) solution of a
long-standing problem in laser statistics: the
probability p(m, T) of observing m photocounts in
a time T produced in a photodetector by a laser
operating in the vicinity of threshold for all times
T, short, comparable to, or long, compared to
the laser-intensity correlation time T,. Well
above threshold, laser fluctuations are negligible,
and the photocount distribution reduces to a Poisson
distribution. Well below threshold, the statistics
are Gaussian, and the problem reduces to a well-
known but nontrivial problem on fluctuations of
time-integrated intensities of a Gaussian variable
for which exact numerical solutions have been
given. ~ 3 The region near threshold holds a spe-
cial interest because the onset of lasing is a phase
transition, 4 ' and the region near threshold is
equivalent to the critical region near the transition
temperature in a second-order phase transition.

Our solution is exact in that no quantum-mechan-
ical or stochastic approximations are made in

treating the rotating-wave Van der Pol (RWVP)
model of a laser (described more fully in Sec. IV).
Of course, many key approximations were made in
arriving at this model: (i) The atom-field sys-
tem was treated as a Markoffian system with non-
commuting noise sources~ ~ ~~; (ii) the atomic
variables were adiabatically eliminated by assum-
ing that they responded to the instantaneous field
variables~4; (iii) restoring forces higher than
quadratic in the intensity were then neglected near
threshold with a fractional error of the order of
I/& where n'" -10 is the number of photons at
threshold. The Markoffian approximation as-
sumes that the duration of a collision with a res-
ervoir atom (-10 ~2 sec) is short compared to the
mean time (I' ~-10 8 sec) between collisions —an
excellent approximation used in the Boltzmann de-
scription of gases. The adiabatic approximation
appears to assume that atomic decay rates (I'-108/
sec) are fast compared to photon decay rates
(y- 10~/sec), but actually involves the much weaker
approximation that all of these rates are fast com-
pared to the intensity relaxation rate near thresh-
old, 6-y/m'". These remarks support our gener-


