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(c) Finally consider averages of the form

f(L„J.„I,)).
fyl=2ygA l

Exactly the same method that worked in (b) works
again here:

~~p-1

~

~ ~ ~Z f(L„L„L,) = v t p" dL, dL~
~

dL„
o&=~el&& o o

x exp[ —(I,+ Lz+ ' ' '+ L„)]Zf(Lq, L~, L, ) (As)

Since gf(L„L„L,) is a symmetric function of
L2 ~ I„, we have

(Z f(L„L&, L, ) ) =vp" f dL, f dL2 f dL3 * f dL„exp[ —p(L& pL3+ ~ ~ ~ +L„)]Qf(L L L, )

=v(v- l)(v-2)p' f"dL, f 'dL, f 'dL, f(L„L„L,) f"dL, " dL„p" ~

xexp[- p(L, ,+I.,+ ~ ~ ~ +I,„)]

=v(v —l)(v-2)p' f dL, f dL2 f dL, e "~&'~2+~s' (l —e '~&)" Sf(L„"LR, L,)

= f dL2 fo dLBv(v —l)p e" ~' "f &
&dL, P„2(L,)f(L„L2, Ls). (A9)
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It is shown that the Frank elastic constants may be expressed in terms of even-order Legendre polyno-
mials averaged over the one-molecule orientational distribution function. In particular, it is found that

(El)-E)/E =C—3C'P4/p, + "') (E„-E)l/E=-2C-C'P4/p + ~ ~ ~, (E —g)/E=C+4C'p /p + ...
4 2

where E= (1/3)(Eli +E22 +E33), C and C' are constants, which depend on the details of the system, and

P is the weighted average of the mth Legendre polynomial. Higher-order terms in these series involve

P6, etc. The constants C and C' are calculated for the case of rodlike molecules interacting via a hard-core

repulsion. The results are in good agreement with experiments on the substance p-azoxyanisole.

I. INTRODUCTION

The Frank elastic constants are a measure of
the free energy associated with long-wavelength
distortions of the nematic state in which the local
preferred direction of molecular orientation varies
in space. If the local preferred direction at the
point r is parallel to the unit vector n(r), the free
energy associated with the distortion may be writ-
ten~

&E= p fd r[Kgy(V ' &) +K22(n V x~)

+ K»(n x V x n)'] . (l)

The vector pg is usually called the director. The
distortions corresponding to K», K», and K3~

are called splay, torsion, and bending, respec-
tively. These three types of distortion are illu-
strated in Fig. 1.

In the mean-field approximation the free. energy
of the nematic state can be written as a sum of
three terms2:

Here E is the internal energy, T is the tempera-
ture, S„ is the rotational entropy, and 9, is the
translational entropy. The translational entropy
includes all the entropy of the system not contained
in S„. For a uniaxial system S„ is given by

S„=—u, ~f a(Q) in'(fl) d& .
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K«

x Z(- I)"C(j'j"j;m, m- m)
mN

xi;. „(Q,)I;„„.(Q2)y, ~(~») .
(4)

Here r» is the vector joining the centers of mass
of molecules 1 and 2. The molecules are assumed
to have uniaxial symmetry. The quantity i;~ is the
unit vector corresponding to r». The symmetry
of the system is such that f&,,... is ze-ro-if j', j", or
j is odd. Also f~,z„&=f~„, z. The anisotropi. c
dispersion force used by Maier and Saupe3 has
only f»2, f222, and f2,4 nonzero with

8 ~
' 2f220:f»2:f224::1:V7:6V 7 . (6)

]/
The anisotropic two-body center-of-mass (c.m. )
distribution function may be similarly constructed:

p'= ~ p, '.(I~»l) Z(-I)"C(k'~"~;m, M —m)

PIG. 1. Splay (Kg)), torsion (K~2), and bending (K33)
distortions.

Here jp~ is Boltzmann's constant, N is the number
of molecules in the system, and h(Q) is the one-
molecule orientational distribution function. The
function h(Q) gives the probability that the unique
(long) molecular axis has the orientation Q. It has
the form h(Q) = h(8), where 8 is the angle between
the unique axis of the molecule and the local pre-
ferred direction. The entropy S„ is just an entropy
of mixing.

With any distortion we may associate a wave
number q. The increase in the free energy due to
a long-wavelength distortion will be proportional
to q, because the symmetry of the system ensures
that distortions corresponding to q and —q are
equivalent. It is clear that any change in h(Q),
apart from a rotation of the preferred direction,
due to a distortion, will also be of order q3. Since
the thermodynamically stable state [n(r) = 2] is
stationary with respect to variation of the form of
h(8), there will be no contribution of order q to
the increase in the free energy from changes in the
form of h(8) caused by the distortion. Thus, to or-
der q, the increase in the free energy due to a dis-
tortion may be calculated by keeping P(Q) constant
apart from rotations of the local preferred direc-
tion. In such a calculation, it is clear that the ro-
tational entropy S„, may be neglected.

The form of E and of —TS, may be deduced by
considerations of symmetry; for example, the in-
termolecular interaction may be written

~22(Q1 Q2 r22) ~ fI'I''J(l 2221)
gt gJ iy

I'„~(Q,) I'2", u (Q2) r, , ,(f'g2) . (6)

The function p2 gives the conditional probability
that there will be a molecule at r» with orientation
Q~ if there is one at the origin with orientation 0,.
The function p~, „,, has the same symmetries as
does fz, ~„~. A similar expression can be written
for S,.

In Sec. 0 the increase in the free energy of the
nematic state will be calculated for three specific
distortions and the result compared with that of
Eq. (1) to obtain the three elastic constants. To
keep the notation simple, only the internal energy
will be considered. The formal features of the re-
sult are not affected by inclusion of the transla-
tional entropy.

In Sec. III a calculation based on a specific form
of the translational entropy, called the steric
model, is presented. The only parameter in the
results for the elastic constants is the length-to-
breadth ratio of the molecule.

II. GENERAL FORM OF THE ELASTIC CONSTANTS

The internal energy of the nematic state in the
mean-f ield approximation is

11 3E =
2

— d 8 d u (V»(Q&, Q2, u)p (Q&, Q2, u) )„.
Vp „

(&)
Here vp is the volume per molecule in the liquid.
The angular brackets indicate a thermodynamic
average with weight h. This expression assumes
that the c.m. distribution of the liquid responds in-
staneously to changes in the orientation of the mol-
ecules. This is a reasonable assumption because
the c.m. distribution is determined by the collision
rate, which is fast compared with any orientation
time. On substitution of Eqs. (4) and (6) we have
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x Z p„,,„„(lul) Z (-I)"'C(f'q"q;m, ~-m)

X C(y'y"y; P, q -P) (Y,, (fl„)Y„,(fl„)&.„
&Yp u. (ala. .)Ya" o p( a. s)&a.

xY,. „(u)Y, ,(u) . (8)

The subscripts on the molecular orientation vari-
ables 0, have been changed from the 1 and 2 of
Eq. (7) to the position vectors of molecules 1 and

2, B and B+u. This change has been made to re-
f'.ect the fact that the averages over g depend on
position if there is a distortion present, because
in this case 5 depends on position. Gf course, in
the mean-field approximation the averages over A,

of the two molecular orientations are decoupled.
The most convenient procedure is now to con-

struct, if possible, distortions corresponding to
each individual K«and compute the resulting inter-
nal energy. Fortunately, this construction is pos-
sible in the long-wavelength limit. In order to do
this, consider the distortion corresponding to the
position-dependent director given by

n(t) =zcosg„+xsing„,

with

8„(r)=A, nsin(q r) .
The Frank free energy for this form of the direc-
tor is

P = ,' 1 d'y -(An)'cos'(q r)

x [Iftt(q cos8„—q sillg„) + K»(q )

+ Z3, (q, cosg„+ q„sing„)'] . (10)

For hn«1, this expression may be expanded as a
power series in hn. The leading term is propor-
tional to (An)'. The expansion has a particularly
simple form for three cases:

ql[x P= ,'v(An)'q'z», -

qll y P= e v(An)'q'z»,

qll z P= ,*v(An)Yz-.. .
where V is the volume of the system. To evaluate
the E„, it is only necessary to determine the
change in Eq. (8), to order (An)~qa, caused by these
three distortions.

Since f~,J..J(l ul ) is of short range, g„may be ex-
panded in a power series in q. To order q2,

8„(R+u) = An{q ~ u cos(q ~ R)

+ [1 ——,'(q ~ u)'] sin(q ~ R)] . (12)

In order to be able to perform the integration over
u for a given value of 8, it is useful to introduce

q ll z A8„= An(cos(q ~ R) [qz, An sin—(q ~ R)qx']

——', sin(q ~ B) [q z'2 —2q~x'z' An sin(q ~ R)]] .
Here x', y', and z' are the coordinates of u in the
primed system. In Eq. (13) terms proportional to
powers of 4n higher than the second have been
neglected. Note that the components of the vector
q are given in the unrotated coordinate system.

It is clear that it is necessary to know

& Ya (0„)),„. This is most easily calculated by
transforming to the coordinate system with z axis
parallel to the director at x, that is, parallel to
the symmetry axis of h(Q). If the orientation of
the director with respect to the space fixed axes
is denoted by Q„=(8„, qt„].,

[& Ya, n{ r)&ay]rotated-coorstaatesystem ~ (14)

Here D~„ is the rotation matrix of order k. In the
rotated- coordinate system:

P„=f '
P~(cosg)h(8)d(cosg),

2k+1 '~~

=PaYa, (0„) . (16)

It is clear that the angle y plays no essential role
in this discussion. Using the result of Eq. (16),
we have in the primed coordinate system:

&Y, , (n,', „)&.„=P„Y„.(A8„, 0) . (17),
In the limit that An becomes very small 48„be-

comes very small, so Ya, (A8„, 0) may be ex-
panded in a power series in 4n and q. Each of the
terms in this series contains factors of cos(q ~ B)
and sin(q ~ 0). The integration over R will be zero
fo some of these terms. It can be readily proved
that terms which give nonzero contributions to the
free energy of order (An)~q2 can be obtained by
consideration of the fol, lowi~ simplified form of

a primed coordinate system. This is accomplished
by rotating coordinates through an angle
An sin(q ~ B) about y. In the primed coordinate
system the angle 48„, between the director at
8+u and the z axis is given by

q ll x Ag„= An(cos(q ~ B) [qx + An sin(q ~ B)qz ]
——,

' sin(q ~ B)[q'x" + 2q'x'g An sin(q ~ 0)]j,
q ll y Ag„= An [cos(q ~ R)qy

(13)
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1
4

1
2

TABLE I. The values of the low-order E, S, T, and
B coefficients. K(0) = 0, X(2) =- &, E(4) = —

3, Sp(m) = Tp(m)
=Bp(m) =0,

2 pp+ y
1/2

P;...(&„„)).,= q'u' P, Z(j")b.,
2

~ qp y
1 /2

+P, S,„(m)I'~(u) +Pj„- &... (20a)

2g'+1 '"
(20b)

S4 3'/4
—3'/4

3
2 3%3/4

-3v 3/4

b 8„ for the three cases of interest:

(I l~ x b, 8„=an[cos(q ~ R)qx' —anqax'g' sina((I R)],
L8„=bn[cos((l R) qy ], (18)

~8„=~nfcos(q R)q~s'+&nq x'z'sin ((I R)] .
It can also be shown that the integration over H

gives zero for the terms of order quan and —,'V for
the terms of order (bn)~q . The free energy can
be calculated to order (4n)~q by setting

(I ~~ x b.8„=b,n(qx —q~x.s,),
(I([g 48„=4n(qy' ), .

jI[ 2 b 8„=4n(qs .+ q'x z'),
replacing the integral over R by ~ P, and setting
bn e(lual to one. To this order we have for (I II x

For the case of q I) g and (I li z, 8&. (m) is replaced
by T&., (m) and Bj,.(m), respectively. This nota-
tion indicates that the distortions are splay, tor-
sion, and bending. In E(I. (20a) some terms have
been omitted. There are terms proportional to
p'z, a& „(u) in the expression for ( F&. , (Qs, „))„
but, as we shall see, they do not contribute to the
free energy so they have been omitted. The term
in Eq. (20a) of order q gives the free energy of the
undistorted state. The difference between this
free energy and the free energy of the distorted
state must be compared with the Frank free ener-
gy of E(l. (11). This can be conveniently done by
dropping the term of order q at this point.

The values of the Z(j ) and the (), T, and B
coefficients can be obtained from the explicit form
of the spherical harmonic functions or from the
differential equations. The values of the lower-
order coefficients are given in Table I.

E(luation (8) must be brought into a form such
that E(I. (20) may be used. To do this it is neces-
sary to express the product of spherical harmonic
functions in such a way that Q~, „and Q~ appear as
the arguments of a product of two spherical har-
monies. The result of this combination is

flag",

(I ul ) P)k k'(lul ) —, ~ c(j k'a; 00)c(j"k"b;oo)
vp 4„ ~'g"y a x" n ab

xC(j'j"j; m, m-m)C(k'k"k; p, q f) &,, „(u)I-;, ,(u)(&g, „.,(fl~))., (&~, u. o,(f1~.„))„(21)
Q1ith the aid of E(l. (20) the integration over u may be done. There remains a sum over m, p, bf, Q.
sum may be evaluated. The result is

4vQ „
u duq Z Z, ,2 f&,&„p~,z, ~ (2j+1) (2k+1) C(j.k2; 00)

1'y" y py»y 4 ~)

x[(2j'+1) (2j"+1) (2k'+1) (2k" + l)]~ 2 2 P,P, C(j'k'a; 00) C(j"k"b; 00)

x)~ (8 a), X(j k a; j"k kljkk)+i!a'll'„"k. l -,
k M) jj(a) W(j j"k'k";ja)) . '

2g+ 1 Q~gg2; 00

Here X(j'k'a; j"k"b;jk2) are the X coefficients
and W(j'j 'k'k; ja) are the Racah coefficients de-
fined in Ref. 4. Equation (22) is appropriate for

the case of q II g. For the cases of q II y and q II g,
the coefficients (8, a), must be replaced by (T, a),
and (B, a), , respectively. These coefficients are
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related to the S„(m) by

&S, a &„=Z (- 1)"C(b2a,' x, —x)S~(x) . (23)

They have the following properties. They are zero
if either a or 5 is zero. Also

(S, a&, +(T, a&, + &B, a&, =0,
(S, 2), = (S, 4)„etc.

The coefficients of low order are

(24)

&S, 2&, =~k&T, &o=-~v&B, &2=~4,
(25)

&S~ 4&o= o ~vo &» 4&a=2 ~vo &B~4&o ——10~vo ~

The elastic constants are obtained by comparing
Eq. (22) with Eq. (11). From these equations it
is seen that one has K„=AZ/(4 V/4), where b E is
as given by Eq. (22) and &S, a&, is used for i= 1,
&T, a&, for i=2, and &B, a&, for l=3.

We now focus on results which are the conse-
quence of the formal features of Eq. (22) rather
than on those which depend on the details of factors
involving the intermolecular interactions. This is
possible because Eq. (22) is of the form of an ex-
pansion of the internal energy in terms of moments
of the distribution function Pg. It is expected that
P, will decrease rapidly as g increases. Also,
each of the P, will have a different temperature de-
pendence. It should be possible to extract the co-
efficients of each of the terms P,P, from the ex-
perimental data. Comparison with the theory is
made easier by noting that owing to the relation of
Eq. (23) the quantities hK„=K„—K, with K
=-';(K»+K»+K»), do not depend on the K(a) coef-
ficients. It may be verified that Eq. (22) gives
the correct magnitude of K (to within 20/o), for a
simple choice of the intermolecular interaction. ~

It is therefore of interest to investigate the quan-
tities AK, , /K. If the explicit values of the (S, a&,
are used, we have to relative order P4/Po.

the type of intermolecular interaction used. For
this reason it is not possible to make an unambigu-
ous check of Eq. (26).

It is possible to verify that b and 6' are posi-
tive as required if the experimentally observed
ordering of the elastic constants (K33 Ku K2o)
is to be obtained. The radial integrals in Eq. (22)
heavily weight terms which are large at large val-
ues of u. It is expected that f&, '.&(j', j'', jS 0) will
be of longer range than p„„,„(k', k", kc0). This
is the case because the intermolecular interaction
is anisotropic even if the molecules cannot over-
lap for any orientations but the anisotropy in the
c.m, distribution function is expected to be most
pronounced for values of the c. m. separation such
that the molecules can overlap for some orienta-
tions. For this reason only contributions of Eq.
(22) with k '=k "=0 will be considered for the
purpose of this argument. The only contributing
terms are f», and f,». In both cases it is easy
to decide the sign. The most anisotropic aspect
of the intermolecular interaction is the difference
between the following two configurations; molecules
1 and 2 at right angles to each other with x,z in the
plane defined by their orientations. By requiring
that the second configuration be the preferred one,
we find that fo» &0 and f4» & 0. For both cases we
find 6 and 6' positive.

III. EXPLICIT RESULTS FOR SPHEROCYLINDERS

For the case of hard spherocylinders (cylinders
capped with hemispheres at both ends) it is possi-
ble to explicitly evaluate ~ and ~'. Here, of
course, it is the translational entropy term which
completely determines the elastic constants. In
the limit of no volume change, the mean-field ex-
pression for the translational entropy can be writ-
tenv

—TS, /N= —,'(4. 541)kT, ff dflgdflok(fly)k(flo)B(8go),
(27)

&Kgg /K= & —3&'(P4/Po) + ~ ~

~K, /K= —2~ ~'(I /P, )+

nK„/K= ~+ 4~'(P4/P, )+ ~ ~ ~ .
(26)

where S» is the second virial coefficient,

B(8&o) = —', o a + n a l+ a l
~
sin8~o

~

.
The obvious generalization of this result is

The quantities 6 and 6' depend on the details of
the molecules. There is at present no way of cal-
calculating them. Equation (26)predicts that in the
limit that P4«P~, which is expected tobe the case in
the limit of small P&, E&&=K». It also predicts
that the departure from this equality is related in
a simple way to the ratio P4/P, . If the tempera-
ture dependence of these moments of the distribu-
tion function were known independently it would be
possible to evaluate 4 and 4' from the data on the
Frank elastic constants and check Eq. (26), Un-
fortunately it has not been possible to measure P4.6

Calculations of this moment depend sensitively on

—TSg/N= —,
' (4. 541)kT,

xf f fdn, dn, d'vk(n, )k(a, )6(r, n„n, ) . (26)

Here r is the vector joining the centers of mass of
molecules 1 and 2, 6(r, Q„Qo) is unity if the
molecules overlap and zero if they do not. In
principle this calculation could be done by express-
ing g as a sum of terms as was done for the inter-
molecular interaction. In practice this does not
prove to be convenient. For this reason the cal-
culation will be done in another way. The results
of the previous section can be used as a partial
check on the method. As in Sec. II, the method
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of the calculation will be to evaluate changes in

Eq. (28) caused by three types of distortions. Al-
so as discussed in the previous section, a local
coordinate system such that the direction between
the preferred direction and the z' axis is given by

k(Qg) =—Z a„P„(cos8,)
1

n n

Z (2n+ 1)P„P„(cos8~) .1

n

(3O)

(splay) &8„=qr„q'r„-r, ,

q II y (torsion) a8„=qr, ,

(bending) a8„=-qr, +q r„r, ,

can be chosen for these three distortions. The
Frank elastic energies corresponding to these
three distortions are —,

'
Vq K», —,

'
Vq K», and

—,'Vq II"33, respectively. For the purposes of this
calculation the series expansion of the orienta-
tional distribution function will be exploited. At

the point r=0 we have

For zw 0, the spherical addition theorem may be
used to write

k(Q, ) = —
I I+4~P,Z r, „(Q,)r,*„(~8„,O)+ 1.

4m

(31)
For small q the F„*„(b,8„, 0) may be expanded in a
power series in q. As before, a term of order qo '

will be neglected because it gives rise to the un-
distorted result. There are no terms of order q
which contribute to the final result. The terms of
order q are

fO

= —,
' (4. 541)kT, dQidQ, d rq 6(r, Qi, Qo)ZP„

x b„o(&„o(Qo)+ &„o(Qo)) r, + b o&,o(Qo)

&x&c.b„,(F„,,(Q.) —I„, ,(Q.))

X 8

x Z P„,P„,(cos8i) . (32)
2''+ 1

4m

Here

2&+1i'~'
b.o = —l n(n+1)

4m )

'=- - (;:)"('")"
(n 2)!'t~~o 2n+]

b„,= -', (n —1)n(n+ 1) (n+ 2) n+2!j 4m

The top entry in the column vectors of Eq. (32) is
to be used for the case of the splay distortion, the
second entry for torsion, and the last for bending.

The function P may be visualized in the following
manner. The locus of points where 5 changes from
one to zero describes a closed surface. Inside the
surface 5=1, outside 5 =0. There are three mu-

tually perpendicular planes containing the origin
which are mirror planes for the surface. Consid-
er two spherocylinders A and B. The center of A.

is at the origin. We introduce a primed coordinate
system such that the long axis of A is perpendicular
to the z' axis and at an angle —,'8» with the x' axis.
The long axis of B is perpendicular to g' and makes
an angle ——,'8» with the x' axis. The surface is the
surface traced out by the center of B as it is moved

to all points such that the surfaces of the two

spherocylinders are tangent to each other. It is

clear that the mirror planes are the planes per-
pendicular to x', y', and g'. More concretely, the
surface may be constructed by placing at the origin
a prism of height 2g with rhomboidal base of side
l and angle 8&z. The base is oriented such that
the diagonal joining the angles 8» is parallel to the
x' axis. The other diagonal is parallel to the y'

axis. The rest of the surface is made up by plac-
ing all of the sections of a cylinder of height 2l
and radius g, and of a sphere of radius g on the
four nonbasal faces of the prism to form a smooth
curvilinear surface. There is only one way in

which this may be done. Here, as above, a and

a+ I are the width and length of the spherocylin-
ders, respectively. An exploded diagram is pre-
sented in Fig. 2.

The construction described above gives a very
easy way of calculating the second virial coeffi-
cient for hard spherocylinders B(8,o). This quan-

tity was first calculated by Onsager. o It is just
one-half of the volume enclosed by the surface dis-
cussed above:

&(8&o) = —', (2al sin8&o+ 2lm'a +fwa ) .
The relationship between the primed and un-

primed coordinate systems is given by the trans-
formation matrix equation:
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('l Xi+ X2

cos(-,'8,2)

Sf+ X2

2 cos(28»)

Xi X2

2 sin(-,'8„)
Sf- J2

2 sin( —,'812)

Pf Z2 —$28
sin(g„)

Zf X2 Z2xf

sin(812)

Zf+ Z2 Zf 82
2 cos(-,'812) 2 sin(-,'8,2)

X132 X23

sin(8, 2)

Here (g1, y» 21) are the coordinates of a unit vec-
tor parallel to 01, (x2, y2, z2) are the coordinates
of a unit vector para, llel to 0» and!9» is the angle
between molecules 1 and 2.

An inspection of Eq. (32) reveals that it is
necessary to calculate the integrals over z of the
product of 5 and one of the following: y, y„y„
and z„z,. These integrals can most easily be done

by transforming to the primed coordinate system
to take advantage of the symmetry of 5. We have

2 (+1+&2) r 2 (+1 +2) r 2

o '(-' ) " '(-' )

+ y1.22 y2 ' (r,')2+cross terms . (33)

There are corresponding expressions for y„y„
and &„r,. In the primed coordinate system p has
reflection symmetry in the three coordinate planes
so the cross terms in the expression above do not
contribute to the integral. For this reason the
only quantities which need be calculated are

R„„=fd'~'(~„'-)'6(~', &1 f12),

R„=fd'~'(r, '-)'6(~', &„&2),
R„-=fd23'(r,')'6(~', n„O,,) .

These integrals can be evaluated in a straightfor-
ward but tedious manner using the construction of
the surface discussed a,bove. The results are

R„=—,
' [a ] [2al sin(812)+ 2wla + +&2a2]

R 3 al' sin(812) sin'(-,'8») + —,
'

2 a'l ' sin'(-,'8»)

+42 a2l sin(8») + -2'va4l cos2(2'8, 2)
. (36)

+2—a l 812 s1n (2812)+ 1ra l sin (2812)

+ $2a',

All that remains is a complicated integration
over Af and 02. A typical term is proportional to

+ 2

d~1 d~2(~n, 2(~2) + +n, -2(~2)) 4 2r 1gcos g~

x R„,(8»)P„,(cos81)P„P„, . (36)

For any reasonable model of the nematic state P„
decreases rapidly as n increases. (This is most
true near T,.) Hence the dominant contributions
to the elastic constants are given by the lowest
values of (n+n ) in Eq. (36). Of course, as we
have seen, the terms where either yg or g' is zero
do not contribute to the elastic constants. Hence,
the dominant terms in Eq. (32) are those with n
=2=yg'. Next in importance are those with g=2,
z'=4 or a=4, z' =2. The integrals necessary to
construct these terms are evaluated in the Appen-
dix. Terms with n+n' & 6 are neglected.

Collecting the results of the Appendix and sub-
stituting into Eq. (32), we obtain the results:

—TS~ = (V/va) ~ (4. 541)AT, q a +222
n'

!

r 284 —2B2

x @(P2) (VR +20R )+ —4R +4R, +fig2P2P4

—3R +SR

-R4(-,' )R'

4R4 —(—", )R'

(37)

Here R= l/a. The elastic constants are obtained
from this expression by dividing by —,

' Vq, the top
entry in the column vectors is to be used for K»
etc. We have

2R' —2+27(P4/72) (- fL R'+ —,')

2R2 —2+ 27(P4Ã2) (-,
' R' - -,')

782+20

This form of the elastic constants is consistent
with the form of Sec. II. The values of & and &'

are

—4R + 4+ 27(P4P2) (- f12 R + 12 )
22/ 7A'+ 20 7

& = (2R —2)/(VR +20),
~'= 27(ft2R'--,' )/(VR'+20) . (39)
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FIG. 2. Exploded diagram of the surface corresponding
to the function ~.

IV. COMPARISON WITH EXPERIMENT

There is one result of this theory which is model
independent. This is the prediction that in the lim-
it of small P„K»=K» and that all three elastic
constants are proportional to P~3. This result mas
derived for the case of London dispersion forces
by Nehring and Saupe. This work has extended it
to arbitrary intermolecular interactions. The
early experiments of Zwetkoff and Saupe» are in
agreement with the prediction that the elastic con-
stants of p-azoxyanisole (PAA) are proportional
to P&. However, they found K» to be much larger
than K». Recent experiments by Gruler for PAA
and Shtrikmann ef gE. 3 for N-p-methoxybenzyli-
dene (MBBA) indicate that Ks~ is not substantially
larger than K&& near T= T,.

The values of the elastic constants at the transi-
tions for PAA and MBBA are» ' 3

K» is a much faster decreasing function of the
temperature than is p~. Since PAA is a relatively
inflexible molecule, it is possible to apply the
model of Sec. III. The best fit to the data is ob-
tained with a length-to-breadth ratio of 3. 4 and a
value of the ratio P4/P2 of 0. S. With these num-

bers the values of ~ and 4' mere reproduced to or-
der 1%. The value of the length-to-breadth ratio
is almost in exact agreement with the actual di-
mensions of the molecule (17x7x2 A). The value
of the ratio P4/P~ is in good agreement with the
theoretical value obtained if the model intermolec-
ular interaction is taken to be proportional to
I'sine~~~. The only disagreement between theory
and experiment is on the temperature dependence
of Kgy The departure from proportionality to P3
should be nearly as great for K&, as for K» but of
the opposite sign according to Eg. (26). It is
possible that higher-order terms in this series
tend to interfere destructively in the case of the in-
termediate elastic constant K» and eonstruetively
in the case of the largest K». It would be very
useful to have an experimental result for P4. If
this quantity were known, it would be possible to
have a definite answer for this question.

It should be noted that for temperatures much
lower than T, the variations in the elastic con-
stants may reflect the onset of a smectic phase, a
possibility neglected here.

APPENDIX

There are 12 terms in Eq. (32) which must be
evaluated. Nine of them are of the form

f f anl an2 t A@2(~n, 2(n2) + ~n, -2(n2))

+ b„oY'„0(nz)] IP„,(cose&), (Al)

with correspondences given in Table II. Three of
them are of the form

z= f f an, an, f„,(I„,(n, ) —y„,(n, ))

PAA:

&Kgg/K= 0.02,
MBBA:

~K„/K= 0. 16,

AK33/K= —0.42, 6 gK/3%=0. 41,
(4o)

+K23/K= —o. 41, &Kgg/K=0. 26 .
The corresponding values of 4 and 6' are

PAA: ~=0.18, &'= 0.054,

MBBA: & = 0.20, b ' = 0.016 .
The detailed temperature dependence of the elastic
constants of MBBA has not been observed. The
theory predicts that there should be little depar-
ture from the temperature dependence of P ~z. The
experimental observations of PAA indicate that
K» and K» are nearly proportional to P ~ but that

X-

XY

YZ

(sf+ x2) R„„(6f2)/ 4 cos (28f2)

1 +2) Ryy(~f2)/ 4 sin (2~f2)

(yf+y2) R„„(of2)/ 4 cos'(—,'ef2)

(yf -y2) Ryy{of2)/ 4 sin (2ef2)

(&f+&2)' R„„(0f2)/ 4 cos (2ef2)

( — 2)'R„(ef2)/4 s '(-,'ef2)

{&fy2 &2yf) Rgz(6 f2)/ sln2(ef2)

&2~f ) R ( ~f2)/ sin {~f2)

(y1~2 y2~f) R88(012)/ sin (Of2)

TABLE II. Terms of the form given in Eq. (Al).
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TABLE U. The coefficients g (lm) for
n'= 2.

TABLE III. Terms of the form given in Eq. (A2). the case n=2,

I
(xi+x2) (zi+z2) 8 (012)/ 4 co/( —'012)

«1-x2) (zi -z2) z (012)j 4 san (-;0„}

(Xi&2-X2&i) «e2 x2J1} ~gz(012)~ s~n (012}

gCCYZ CaY+ Zs Y XZ

0 0 0 3 1

0 Q 0 0

m

yp2

4 2 «20

98
0

m4 0 8
m

0 0

0 0

5F

0 0

«25 «22

T47 78

0 0

3 0
xIP„,(cose,), . (A2) 1

9F

v
44

Trr

with correspondences given i.n Table III. As dis-
cussed in Sec. III, the contribution to the elastic
constants of a given order of P„IT„, is proportional
to

«1

7

10

5

T4?

0

«ii«6

ki.

2 0

k2
5

1 0

z„: (x+)+(x-)+ Iz+(c+)+(c-)+cc,
@22: (I'+)+(I-)+xz „

z,, : (z+)+(z-)+ xI —c+) —(c-) —cc.

15
0 00 0

(As)

= 4, and n = 4, n' = 2 are the same so only the coef-
ficients for the former are recorded here. The
coefficients g~(lm) are given in Tables IV-VI.
Note that g'(lm) =g'(l —m).

When the sums of Eg. (A5) are carried out, the
results are as given below. In these expressions
x = cos8&2. For n = 2, n' = 0

The most complex part of the integrands of the in-
tegrals J is the dependence on 8». This suggests
that the integrals be expanded as

Z= Z dfl, dn, g'(ll'mm') r, ,„,(n, )
ll'm)ft' g „

x I; (Qi)f(eqa) . (A4)
X+= f, 2~ ,'(-'. x+--,'-)Z„„(e»)dx,

All of the explicit dependence on 0» is represented
by the functionj'. This integral may be reduced to
a. one-dimensional integral. The result is

X-=f, 2~-,'(--.'x+-,') Il„(e»)dx,

Y'- = 0, Z+ = —X+, Z- = —X-, (A6)

Xr= f 2m ,'Il„(e„-)dx, XZ=O, IZ=-XI",

C+= —X+, C-= —X- ) CC=XF .

For n=2, n'=2

X+=-2 f, --,'(-'.x'--,')~„.(e„)d,

X-=2p J —,'( ——,'x + ~)A„(e,a)dx,

TABLE UI. The coefficients g Qm) for the case n
n'=4.

a Y' Z" g"XY XZgFk gZR

4 2 0 0 0

TABLE IU. The coefficents g (lm) for the case n= 2,
n'= O. «80

m
20-5

VF

0

«ii 4
1078

Y Z YZ C&

«76

1617

0

114
1617

0

«25

w5
47

15
1078

0

4 01 1
mr m

0

.I
4

0 02 1 0

0

1 1 +1

0 01 5
4f

5
rr

«1

4
147

5

147

84

«2

747
2 2

0 00 0

0 —-h 2

0 —1

«2

1 0
«2

147

«2
7

10

1,47
2 0100 0

Z=-Zg'(llm —m)2~(- I) P, (cose„)pe„)de„.
(A5)

The coefficients g~(llm —m) will be shortened to
g~(lm). These coefficients depend on n and n', but
this will not be reflected in the notation in the in-
terest of avoiding cumbersome subscripting. The

g coefficients have been worked out for the cases
of n=-2 and n'=0, 2, 4. The case of n=Q gives no
contribution because bo is zero. Note that there
is no net contribution to the elastic constants from
the case n= 2, n'= 0 and that the contributions to
K» and K~3 are the same for the ease of n= 2, n'

=2. The contributions from the cases n=-2, n'
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r+ = 2w f $ (- -'. x'+ x+ -', ) R (8„)dx,

r-=2x J $(--.'x'-x+-.')R„(e»)dx,

Z+=» f $(-$x'-»+Q)R (8»)dx,

Z-=2m f ~ (-f x'+Sx+$)R~(e») dx,

Xr=2m f p (-~x'--.')R«(e»)dx,

XZ= 2~ f +(-px'+$)R„(eg2) dx,

rz= 2m f (--,' x'+-,')R„(e„)dx,

C+=2~ f $(--.'2--.'x+&)R„(e»)dx,

C-= 2m f ~(--,' x'+-', x+ &)R„(8~2)dx,

CC=2~ f —', (-', x' —1)R„(e„)dz.
For @=2, ~'=4

X+=2~ f, $(~x'+-,'x'-~x--', )R,„(e»)dx,

X-=2n f ~(-Qx'+-, x'+~ax--, )R (eg,)dx,

F+=p X+, F-=p X- ) Z+= —~X+,

z-+ —Qx-,

(AV)

(A8)

Xr=2~ f -p(-px'+-'. )R„(e„)dx,

xz = —Qxr, rz = —Qxr,
c+=~X+, c-=II-X-, cc= --,'xr .

The one-dimensional integrals which appear in

these expressions are easy to evaluate. The re-
sults are

1

J, R„(e„)dx=fR„(e„)dx

=*mal +3xa l +3wa l + 2na l—+@ma,

fR„„(e»)xdx = —fR~(e»)x dx

=~mal +~ma l +P~ma~l +pea l, (A9)

1

f, R„„(e,)x' d = fR„(eg )x' d

=/mal'+g'-xa'l'+Qua'l'

+ —,'xa'l+ /ma',

fR„„(e„)x'dx=-f R„,( 8„)/dx

=@mal +~@a is+I nasl +~ma l,

fR„(e»)dx= 3ma l + ma i+pm,

fR„(8„)x'dx=hma'l'+ ,' wa'l+—$m
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