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gg'xp g'(x'+ 1)

1x, &—,(B21)

and the normalization condition

1 Q(xp)dxp = 1 .

That is,

W'= xo exp p —, dxo.
0 g 1+xp
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We study the thermodynamics of a one-dimensional system of noninteracting bosons in the
presence of random fixed finite-range repulsive potentials. It is shown that a Hose-Einstein
condensation into the lowest state occurs. The critical temperature increases with the num-
ber of impurities. The specific heat exhibits a discontinuity and is infinitely differentiable
from both sides of the critical point. For a suitably defined pressure the isothermals ex-
hibit a flat portion below the "transition length. "

I. INTRODUCTION

In this paper we shall study a one-dimensional
gas of independent spinless bosons in the presence
of random impurities. These impurities are repre-
sented by fixed finite-range repulsive potentials.
The model is identical to the one studied in the
preceding paper, ' where the structure of the low-
lying states and the density of states was investi-
gated. There we found it possible to obtain these
levels for an arbitrary finite-range impurity po-
tential. Now we imagine independent bosons oc-
cupying these states. In the interest of simplicity
the calculations are only carried out for the case
where the impurity potential is represented by a 5
function of infinite strength. Considerations of the
same nature may be made for the general case
(because the structure of the low-lying levels is
very similar), but we do not go into these here, as
the details prove to be quite complicated.

In Sec. II we show that the Bose-Einstein transi-

II. EXISTENCE OF BOSE-EINSTEIN TRANSITION

For the case of impurity potentials represented
by 5 functions of infinite strength, the energy levels
can be given explicitly. ' Let L& represent the jth-
largest distance between 5 functions (i. e. , the
length of the jth-largest "cell" ). For v —1 impuri-
ties, L~ L2 —L3' ' ' L„.

The levels are

Eg ~ = c s /L)q s = 1~ 2,
2 2 2

c' -=I'p'/2m .
(2. 1)

tion occurs in the thermodynamical limit. In Sec.
III the transition temperature and detailed nature
of the transition are investigated. Finally, in
Sec. IV, it is shown that our result is not in con-
tradiction with the well-known Bogoliubov inequal-
ity, which has been used by Hohenberg to show
that there is no condensation into the lowest-mo-
mentum state in one-dimensional systems of bosons.
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The number of bosons is given by

1
exp [P(E,„-p)] —1 ' (2. 2)

1
np ——N= g(@ ~)e o —1' (2. 3)

Let us define a quantity

-8(E0-V)g=e (2. 4)

so that f (1+1/N) as P- ~ and is (in this limit
clearly) independent of the distribution of impuri-
ties. The chemical potential, on the other hand,
approaches Eo, which (through I,,) does depend on
the impurity distribution. For finite temperatures

where P =1/kT and p, is the chemical potential of
the system. Consider the situation at the absolute
zero temperature. Clearly all particles are in the
lowest state E(, =E»--c /L, :

1
0

g
1 1

(2. 6)

since 0&n N-and 0&/ N/N+1&1.
In terms of t;, the expression for N becomes

1N= N(-f) = Z
~

~ e()(ss ~ (( so-)
gyS

(2. 6)

By direct differentiation we see that SN(f)/sf is
non-negative, so that N(f) is a monotonically in-
creasing function of f varying from 0(/=0) to
~ (f = 1). Therefore, for any given N, there ts a
uni(lue f solving (2. 6).

Now we assert that N(f) in (2. 6), for given t;, is
a "self-averaging" function. That is, we shall
show that for the right-hand side of (2. 6) the fluc-
tuation is negligible compared to its mean, the
average being over the ensemble of different possi-
ble arrangements of the impurities.

We saw in (I) that the ensemble average of a
(Iuantity A(L„L2, . . . ) may be calculated from

(&) = f A(L(, L2, . . . , L„)P(L„L2, . . . , L„)dL,dLs ~ ~ ~ dL„,

P= vip"e" " a' ~'8(L, —L2)8(Lz —L~) 8(L„,—L„),

8(x)=0, x&0; 8(x)=1, x&0; p=-v/I, .

(2. V)

(For more on this distribution function, see the
Appendix. )

I et us first compute (N(f)):

(N(f))= +~ ) ()( ) o) 1/+ - sy - )

=S, +S2, (2. 6)

1 "
1 1

) g-1 1
+ ~

g 1e()(s)g so) -1 g--1 1
+ ) t

(2. 9)

g-1 0(E 1-80) 1
— 0(81 "Zp

using the inequality e"- 1 ~x. Thus

I

(L, ) =vp f Ls)e '~&(1 —e '~()" 'dL, . (2. 12)

This integral is easily evaluated in terms of the
Euler I' function and its derivatives. For v»1,
the leading term is

(L', ) = (lnv)'/p'. (2. 13)

S, = I/(g-'-1).
For S2 we proceed as follows:

oO p

g s ( ' 'm('*0("/I ) —&/I ))I - & ) '

(2. 14)

Since we are only interested in terms of order N
(or v) in (2. 6), it follows (since g,".21/sa —1 is a
finite pure number) that S,' is negligible, and that

s)& a l~ a

1r"
C p k@2 S

It is easy to see (Appendix) that

( f(L, )) = f f(L, )vpe '~((1 —e '~))" 'dL, ,

(2. lo)

(2. 11)
I

This is the average of a quantity of the form

Z F(L), L, ).
g2

From the Appendix we have

or

~ OO gLi 1
Ss= Q dL, l dL, v(v —1)p e ' '(1 —e ' ()" e ' ~ ~-&e~[c'p(s /L —1/La)] —1 '

s~i „0 +0

~ OO h CO

!
S2 dL'

I

dI, ,pe P„(»~( p[ ' ('/L', —1/I, ',)]-1 '
s*i .() ~L2
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where

P„,(L, )= p(v —1)(l —e ' 1)" 'e 'E', (2. 17)
vpc

S dE g/3
s=l

(2. 20)
Now P„1(L,) is a normalized (to unity) probability
distribution, and has its most probable value at L

&

=ln(v —1)/p. lf we write I,, =ln(v —1)/p+L', then
(2. 17) becomes

4Q

1
dEg(E) -1 EE

( )
vpc PL/E /

(1 e pc/ -)-
2E (2. 21)P„,(L1)= p[(1 —e

This expression has for large v the limit

lim„„P„1(I,1)=pe exp(-e ~~
) .

(2. 16)

(2. 19)

That is, for large v, L, may be replaced by lnv/p
in the 1luantity we are averaging in (2. 16), which is
the same as replacing it by infinity. Therefore,
for large v, the leading term of Sz is

CO

1
8 =v~ ' dL e'~3-S2= v ~ dL2pe ~-1 ( Ep a/L2)gal +Q

(N(l-)) =, , +, dEg(E) —., „1 1

4

(2. 22)

Now let us calculate the fluctuation of N(f) from
its mean. Write

g(E) is just the ensemble-averaged density of states
for this model, as already discussed in l. [A more
complete derivation of (2. 20) may be found in Ref.
2. ] Finally, therefore,

N(r„) = f(I1)+ Z E(L1, L/),

N (0)= f (I,)+2f(L, ) Q E(L„L/)+ 2 F(L, I/)E(L„ I,, )

V V V

=- f (I1)+2f(L1)Z E(I1, L/)+ 2 E (L,L/)+ Z E(L„L/)F(L„L,).
&=3 &=2 J l =2;(g&l)

(2. 23)

Using the results of the Appendix once more, we have

(N (g)) = f f (L,)P„(L,)dL, + f dLEpve ' 3 f d,L„P,( L)[ f2( L) (E„L~L) +E(I,„LE)]+f dL2pve 'E2

x f dL, p(v —1)e 'E~ f & ) dI.,P„.,(L,)E(L„L,)E(I.„ I,, ) . (2. 24)

We wish to show that (N'(f)) —(N(f)) is of order
less than v, which means that the fluctuation is a
smaller order of magnitude than the mean. Let
us write

OO

dI &pve ~~g I, dl.&pve ~~&

4 Q

xE(~, L/)F(~, I,, )
1

f(L, ) = ~~, .f (L, ),

f (L1) —+ 1 51E1~ Eo) 1
~-

8-"2

{2.26)

/I 00 2

+ I dI, pve ' /E(~ I. )
g

1

= (N(~) )'. (2. 26)

We saw that

1 " 1
f(L1) --2 Z a 1 L1 ~c,-~ s —1

Since I, is of order ln(v/p) [by the same analysis
as in the discussion of (2. 16) with v —1 replaced
by v], it is 1luite easy to see that f(L, ) cannot con-
tribute to order v in (2. 24). Dropping f and using
(2. 19) for the other terms of (2. 24), we get for the
terms of order v

1 2 1(L"))'))=(, ~ 2:, dL&p e ' &E(, LI)

Therefore (N (f)) —(N(g)) is of smaller order than
v . [A more complete discussion of these terms
is found in Ref. 2, where it is shown that (N (f))
—(N(f)) is actually of order v /ln v. ] Thus we
have shown that, with negligible fluctuation,

N= N(f) =
1 + dEg(E) —

1 EE . (2. 27)
1

"
1

This equation always has a unique solution for P,
no matter what N, P, 1., and v are. However, the
integral is bounded, at large E because of e~

& and
-sealow E because of the exponential factor e "

Hence, as K is increased, a point will be reached
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'"g(E)dE
e~c 1 '

1
P' ar'

C

(2. 23)

T, is the critical temperature.

III. THERMODYNAMIC PROPERTIES OF SYSTEM

In this section we consider some of the thermo-
dynamic properties of the phase transition. We
will calculate the critical temperature, the specific
heat, and the pressure of the system.

A. Critical Temperature

The critical temperature T, = 1/kP, is given by

g(E) dE Lp2@g dE 1/(@)3/2 e Phe/(2mB&-

e2ce 1 2(2m)'
l

(e3ce 1)(1-e '3~-n2mz&l/2)2
~

0 + 0

(3. 1)

when

g(z)dz
e'e- 1

4p

is greater than zero, and of order N .(The
integral is greatest when f = l. ) This means that
the term 1/g ' —1 must be of order N. But n2
= 1/g '- 1 is the mean number of bosons in the low-
est-energy state; therefore Bose-Einstein conden-
sation into the lowest-energy state occurs. This
state is localized in the following sense: The
wave function is confined to a region of length I,
L„however, differs negligibly from lnv/p. There-
fore, although this goes to ~ as v-, the ratio
L,L (fraction of the line occupied) is lnv/v, which
approaches zero as v- . %e see from this dis-
cussion that the condensation is actually quite un-

physical, and will disappear if there is the small-
est (size-independent) repulsive interaction between
the bosons. The density of bosons in the ground
state will be n /2L, = ( &l2/L)( L/L). Below the tran-
sition temperature n2/L is of order unity, whereas
L/I. , = v/lnv approaches infinity. Clearly if there
is the slightest repulsion between the bosons this
(essentially infinite) density will be energetically
unfavorable and the bosons will "leak out" into the
smaller cells.

The condensation occurs when

(ii) When p «1,

or

3/2(1 l/gl/2)2 dX = Il 1

~/ Q

NS g
T =pC

—
JkmI

(3.3)

(3.4)

It can be shown that what we have neglected in
(3. 2) is small for small p.

(iii) p»1. We write (3. 2) as

2N ~~~ S,/„l/2 .2„„,
3/2 e e dx.

s t 0 +
(3. 5)

Put
2 ~ 00

0 exp[- (P,y)'"(s/y+&y')]dy.

For large p, (p,y)'/ is a large number, as we
will later see. Hence we use the saddle-point
method. Also, we need only retain the term s= t
= 1. Therefore,

00

xp[- (P.y)'"(1/y+y')) dy
Lp I y

or

:—2 x 2' ' (-' l/)' '(p y)' 'exp [- (3/2' ')(p y)' ']
(3. 6)i

1 phd 3 1
)'2 2m 2 [ln(I 2 /3/N) —,

'
&/]

(3.7)

l. e.
y

T, ~ p'/(lnp)'.

Notice that (p,y)~ (lnp)' is indeed large. The de-
pendence of T, on p is shown graphically in Fig. 1.

B. Specific Heat

The internal energy of the system is given by

U- — Exs~ &.-l e8(sg3-sll&
js

p hy=-, E =xy,
(3. 2)

p2

In p)~

-1/xl/2 f1 g/„1/2 ~2 1 3/2

2 l (e~" 1)
Equation (3. 2) cannot be solved exactly for P, (or
T,) in terms of p. However, the following conclu-
sions can be drawn:

(i) dp, /dp &0, or T„ increases monotonically
with p. The proof is straightforward differentia-
tion.

G

FIG. 1. Variation of critical temperature with density
of impurities p.
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I

I

I

PA, e/z 1/3
T'" (3. 12)

Therefore
e/~1/3ve

CL T3P (3. 13)

T
C

FIG. 2. Variation of g with respect to temperature.

Ep
&-1 e(~&,-~0& (s. s)

Taking the ensemble average, we can neglect the
first term, being of order 1/(1nv) . The second
term can be treated as in Sec. II, to give

1 E g(E)dEe c' a 7' (e"s-1)2 (3. 14)

It is also easy to show that all the derivatives of U

exist below the transition temperature:

dnU d" 1
dg" ' dg" e*-1)

"0

n!m I (- 1)"
3t~ ist ~ ~ ~ ~i (s"-1)""

The value of c~ just below the transition tempera-
ture is

( )
"" Eg(E)dE

(0 'e"-1) ' (s. 9) emeE

(lt)'(2~)' (s~)' ' 3. 15

op

Eg(E)dE
ee~-1

(s. lo)

d U 1 ""e6 E'g(E)dE
(82s-1)2

a p

dc&, 1 E g(E)e dE
[Ep(e6 1)—2e2s 2u2r' (c6s —1)'p

(3. 11)
The term in the brackets is always non-negative.
Therefore, dc'/dT&O, or c, increases monotoni-
cally with T below the transition temperature.

Near T=O, U can be evaluated by the saddle-
point method:

p CO

vcP (e@~p~/g&/
2E'/2 '

op

(2@11/2 23/2( c) 3/2 1/6
= pcp ', ' exp [—(pc) p' —' j

Again, the standard deviation is negligible.
We discuss the specific heat at constant length

(or one-dimensional volume) below and just above
the critical temperature.

(a) T&T„or p&p, :
1 g(E) dE

ee~- y
'

~/0

P is obtained by solving this equation. It is very
close to 1 (f '- l =1/N) (see Fig. 2). Therefore,

where the sum is over all solutions in positive
integers of the equations

i+j+A, "k=m,
i+ 2j+3h ~ ~ ~ lk = n.

Each term in (3. 15) is well defined. At low E,
e "/s from g(E) makes contributions small. At-cu/E1@

large E, ee from the denominator cuts off exponen-
tially. Hence, for T& T„all the derivatives of U

with respect to T exist. In particular, all the de-
rivatives of c~ exist as we approach from below
the critical point. No critical exponent exists.

(b) 7 &Z„p& p, .
'"Eg(E)dE

(g-lc2s 1)
v' p

f is now a function of P and

1 Eg(E) dE 1 6s 2 2s df
PZ' (g-'p6s 1)' ~ '

dPo p

(s. 15)
dg/dP can be determined from

g(E) dE
g-1 eel

~0

g(E)dE, 6~ 2 6sdg
(g-1 6Z 1 )2 ~

dp
a p

Therefore,

1
" f 'E e2sg(E)dE Eg(E)dE 2 2z f 'Eg(E)dEe2s g 2e2sg(E)dE

L yT2 (g-1 ebs 1 )2 (g-1 e2s 1)2 ~
~

(g lsM 1 )
2

(g le2E 1 )2-
~ Q ~/0 ~0 ~30
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As T-T'„f-1. Therefore

E e 99 g(E)dE Ee c g(E)dE g(E) e
kT~ (epics 1 )3 (s~c@ 1)~ (e~99@ 1 )~

C „p ~p 4 p

The first term in (3.18) is just cz, . Therefore, there is a discontinuity at T„of value

+ ~" Eg(E)e~~ dE, g(E)e~~ dE
I. I I, '~ (sf9qs 1 )

& (etc,s 1)&
0 ~ p

(3. 18)

(3. 19)

n=+ —Q ln(1 —e ~'s» "'),
P /.
&90

eL „~p

(3. 2O)

(3. 21)

Now, just as in Sec. II, it is not difficult to see
that Q is given by its ensemble average with negli-
gible fluctuation,

f Oo

Q= —
J ln(1 —fe ~

)g(E)dE, (3.22)
P

and [using (2. 21)f

Notice that the discontinuity is always negative.
Again, we can take higher derivatives c~ at 7.",.

They are all well defined, because the integral is
-pc/Z~/2

always limited by the factor e"" . Hence no
critical exponents exist for the specific heat just
above Tc.

The variation of cl, as a function of T is seen in
Fig. 3.

C. Pressure

We now study the isotherms of the system. The
"pressure" that we use is the formal pressure of
just the bosons. That is, we imagine squeezing
down on the system with a "piston" that is permeable
to the impurities, but not the bosons. This keeps
the density of imyurities (p) fixed, but increases
the density of bosons. If Q is the thermodynamic
potential of the grand partition function,

1 2 -99'/Sl/2

[—ln(1 —fe )] E3/2 9,z/sf/2)2 dE.gs pc e

(3.23)'
For a given temperature and p, define a critical
length L, by

P 0O 1 2 pc /gl/2

N= L, gs q9e 1 9~/st/2)2 dE. (3.24)
wp

For L & L, we have a normal boson gas; for L & L,
we are in the region of Bose-Einstein condensation.
For L&L„/=1, and it is clear that P is indepen-
dent of L and given by

1~ p'c e"
2E"' (1- "' '")'

L & L, . '(3. 25)

For L & L„we easily see that P is a monotonically
decreasing function of L (p, P fixed), so p is a
monotonically decreasing function of L. Using,
for L&L„

1
N= y gs g(E) dE

N p

1 p2c e-Pc/8

2ESP (1 e Pc/E /
P

dE 9

(3.26)
we can find (8$/8L)~, and therefore (8P/8L)/9, , ~

Using this we obtain the result that

is negative (nonvanishing). Therefore the variation
of this pressure with L has the form given in Fig.
4

C
L

P

FIG. 3. Specific heat at constant l.ength.

L
FIG. 4. Pressure at constant temperature.
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IV. CONNECTION WITH BOGOLIUBOV INEQUALITY A=a, , (4. 5)

Hohenberg has shown, using an inequality due to
Bogoliubov, ' that in a one-dimensional system
there can be no Bose- Einstein condensation into
the zero-momentum state. We now discuss this
inequality and show that it may be put into a form
that yields the Hohenberg result but gives no con-
tradiction when applied to our problem.

The Bogoliubov inequality reads

—.'&[[c, H], c']&&(A, At&&-'»l&[c, A]&l'~
(4, 1)

where [, ] means the commutator, (, j the anti-
commutator, (, ) the thermodynamic average with
the grand canonical distribution function, and

&(A, A ]& =n, +-,',

[[C, H ], C]= Nk //; /m + 2 o,n o
/

(4. 6)

~"fax
&[C, A] & =n,'~, /, e'g"y, (x)dx.

40
(4. 8)

We have made use of the fact that, in the presence
of the symmetry-breaking term,

where a, is the destruction operator for a plane
wave normalized to unity in I. of propagation vector
q. Straightforward calculation then gives

B=H- p, N, (4. 2) &a, ) =(at) =n,'/' (4. 9)

H being the Hamiltonian of the system and p the
chemical potential.

For the Hamiltonian we have

and 80 is the mean occupation number of the ground
state.

Using these results, (4. 1) becomes

2

H=P ' +Z V(x, )+H'.2' f
(4. s) (n, + —,')[(NI~/m) q'+ 2nno+ ]

V(x) is the potential energy of interaction with the
impurities; H' is a symmetry-breaking term added
as usual' for convenience. In second-quantized
notation,

H ' = —n (ao+ aot ), (4. 4)

where ap is the creation operator for the ground
state of P /2m+ V(x). Call this ground-state energy
Eo and wave function Po. Now choose

c=g, e'~ "g,

kTnp
Nh ~/m + 2 an'/ (4. 11)

The total mean number of particles with propaga-
tion vector less in magnitude than qp is

/. L
2

RkTn, —
~

e"" '"P, (x)dx . (4. 10)
OL I, 0

We consider two cases.
(i)i No impurities, V=O. Further, take a'=q in

(4. 10). Then Po = 1/L'/2 and

2 (NK /m)q'+ 2n(no)' '
&

2m' „, Nk q /m+ 2o. (no)'a 27/ o 2m

L kTm noL 1,/qo=-—qo+ 2
— —tan

2v 0 nk N

4 ~ap

clef

Nk'q'/m+ 2o. (n, )'/'

(4. 12)

where

2~(-)/ /

We choose, as is customary, ' 0. = aN', a inde-
pendent of N, and ultimately take the limit a=0.
Then

a2m 8 '/' '/'

N
(4. is)

The assumption that ip is of the order of N is the
same as 5 independent of N but approaching zero as
closely as we please. For fixed qo, qo/6 approach

es infinity and

L kTm n01
(q)~

~ 27/ 25 N 5
I a )&a0

(4. 14)

Since the left-hand side of (4. 14) cannot exceed
N= L(N/L), it is clear that by choosing a small
enough we have a contradiction. This is the usual
Hohenberg result.

(ii) Now with impurities

2 '
t/m

sinl —x (x inside largest cell)Ig. (I(
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=0 (otherwise). x exp[ —p(La+ I,a L„)]e 'z&

Choose a'= q again. Then (4. 10) becomes

(n, + —,')[(Ã!a'/m)tf'+2ta. (np)'~']

—kTsp L1cos gp 4, 151 8

1

where xp is the starting point of the largest cell.
Since cos'(exp/L, ) is & 1, the right-hand side of
(4. 15) is reduced from the corresponding result in
(4. 11) by a factor of order of magnitude I, /I.
However, L differs negligibly from ln(v/p)
= [ln(v/v)]I, „and therefore this factor is of order
ln(v/v). If we now carry out the same operations
as we did for the free-particle case, there is no
contradiction since the corresponding term inver se-
ly proportional to 5 in (4. 14) is only of order of
magnitude of lnv instead of v, and is negligible in
the thermodynamic limit. Therefore, the existence
of the Bose- Einstein transition is not in contradic- '

tion to the Bogoliubov inequality for our case.

APPENDIX

The probability distribution function for the cell
lengths to be L', L, . . . , L" is

P(L~ La, . . . L")=[(v—1)!/L" ]5(L +L + ~ ~ ~ +L')
(Al)

for a random system. For large v, this can be
replaced by

P(L', L', . . . , L")=p" exp[ —p(L'+L'+ ~ ~ ~ +L")]
(A2)

(see Paper I). The normalized probability distribu-
tion function for the largest cell to have length L„
the second largest cell to have length L2, etc. , is

pe zl(i e ~ 1)"

The average value of the largest cell length

(Li) = P„(L,)L,dLi
«p

=vp dL, L e ' i(l —e ' ')" '
„0

= —I—B(t. t)),8

M

where

B(v, , t) = dy e ~(1 —e~)"
«p

I'(v) I"(t )
I'(v+t )

is the P function. Therefore,

(L,) = —(L/v)I' '(1)+ (L/v)g(y+ 1),
where

d e 1

P(m)= lnI'(m)= —y+ Z k ',
dm k=1

I"(I)=0(i)=- y,
where y is the Euler number. Therefore

L "
1 I 1 1 1

(L,) =—Z k '= — 1+—+—+
vy1 v 2 3 v

—lnv for large v.L

(b) Consider next averages of the form

(A4)

(A5)

P(L„L„... , L„)= p" exp[- p(L, + L, + ~ ~ + L")a!

x e(I,, L, )e(L, L,,-) "e(I.„-,- L„). (AS)

%e will derive a few other distribution functions
from (AS).

(a) P„(L,), which is the probability distribution
function for the largest cell to have length I 1, is

P.(Li) = f '' f P ('4t Lat t L.) dLa' ' 'dL.

=v f dLa f dL, f 'dL, p"

(
~oo ~ L1 Lv-1

2 f(L„L,) = vip" dL,
l

dLa
~

dL„
y=2 «0 0 «0

v

x exp[ —p(I, , + I.,~ ~ ~ ~ + L„)] Q f(L„ I,, ) .
2

(A6)
Since

Z f(L„L,, )
g-"2

is a symmetric function of L2, I„.~ ~, I„, we

may write this as

tttt 00 RL1

~ ~ ~Z f(Li, L~) =v!P
l

dI, , 1, l

dLa
l

dLa ~ ~

„L1

«p
dL, exp[- p(La+ Ia+ + I„)]2 f(Iq, I&)

00 ~L1 L1

=vp" l dL, e ~

l

dLae ' '(v —1)f(I„La)
~

dI, , ~ ~ ~
ll dL„exp[ —p(L, L, L„)]

p «0 «Q «p

00 pL1

„( 1)pall dI, , e 'z&l dL e 'za(l —e '"&)" a f(L, I. )
«Q p

dL, l

l

dL, v pe ' aPp f (L,)f(L, t La) .
Q «L2
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(c) Finally consider averages of the form

f(L„J.„I,)).
fyl=2ygA l

Exactly the same method that worked in (b) works
again here:

~~p-1

~

~ ~ ~Z f(L„L„L,) = v t p" dL, dL~
~

dL„
o&=~el&& o o

x exp[ —(I,+ Lz+ ' ' '+ L„)]Zf(Lq, L~, L, ) (As)

Since gf(L„L„L,) is a symmetric function of
L2 ~ I„, we have

(Z f(L„L&, L, ) ) =vp" f dL, f dL2 f dL3 * f dL„exp[ —p(L& pL3+ ~ ~ ~ +L„)]Qf(L L L, )

=v(v- l)(v-2)p' f"dL, f 'dL, f 'dL, f(L„L„L,) f"dL, " dL„p" ~

xexp[- p(L, ,+I.,+ ~ ~ ~ +I,„)]

=v(v —l)(v-2)p' f dL, f dL2 f dL, e "~&'~2+~s' (l —e '~&)" Sf(L„"LR, L,)

= f dL2 fo dLBv(v —l)p e" ~' "f &
&dL, P„2(L,)f(L„L2, Ls). (A9)
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It is shown that the Frank elastic constants may be expressed in terms of even-order Legendre polyno-
mials averaged over the one-molecule orientational distribution function. In particular, it is found that

(El)-E)/E =C—3C'P4/p, + "') (E„-E)l/E=-2C-C'P4/p + ~ ~ ~, (E —g)/E=C+4C'p /p + ...
4 2

where E= (1/3)(Eli +E22 +E33), C and C' are constants, which depend on the details of the system, and

P is the weighted average of the mth Legendre polynomial. Higher-order terms in these series involve

P6, etc. The constants C and C' are calculated for the case of rodlike molecules interacting via a hard-core

repulsion. The results are in good agreement with experiments on the substance p-azoxyanisole.

I. INTRODUCTION

The Frank elastic constants are a measure of
the free energy associated with long-wavelength
distortions of the nematic state in which the local
preferred direction of molecular orientation varies
in space. If the local preferred direction at the
point r is parallel to the unit vector n(r), the free
energy associated with the distortion may be writ-
ten~

&E= p fd r[Kgy(V ' &) +K22(n V x~)

+ K»(n x V x n)'] . (l)

The vector pg is usually called the director. The
distortions corresponding to K», K», and K3~

are called splay, torsion, and bending, respec-
tively. These three types of distortion are illu-
strated in Fig. 1.

In the mean-field approximation the free. energy
of the nematic state can be written as a sum of
three terms2:

Here E is the internal energy, T is the tempera-
ture, S„ is the rotational entropy, and 9, is the
translational entropy. The translational entropy
includes all the entropy of the system not contained
in S„. For a uniaxial system S„ is given by

S„=—u, ~f a(Q) in'(fl) d& .


