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The energy spectrum of a particle in the presence of random fixed finite-ranged repulsive
potentials is investigated at low energy. The resulting asymptotically exact density of states
is derived. It exhibits an exponential dependence on energy. This result is shown to be equi-
valent, for the case of p-function po.entials, to that of Frisch and Lloyd (1960) in the limit of
low energy.

I. INTRODUCTION

In this paper, we study the one-dimensional sys-
tem of noninteracting particles in the presence of
random fixed finite- ranged repulsive potentials.
The low-lying spectrum is investigated. This re-
gion is interesting not only in its own right, but
because knowledge of it is essential in the study of
Bose-Einstein condensation in the one-dimensional
system (see following paper).

Section II treats the case of 5-function repulsive
potentials of strength V„ in the limit where Vo is
infinitely large. The wave functions are then sim-
ply localized in the respective cells between two
potentials. The cumulative density of states can
then be derived, by considering the probability dis-
tribution functions of the cell lengths.

In Sec. III, we consider 6-function potentials of
arbitrary strength. In the region of small energy,
we use the assumption that the system is equi. valent
to that of independent "big" cells in the middle of
only "small" cells. The wave functions are then
localized near the big cells. The reason for this
assumption will be discussed.

In Sec. IV, the resulting low-lying density of
states for arbitrary Vo is shown to be exponentially
decreasing for small energy, with the coefficient
determined by a set of integral equations.

Section V shows that the rigorous results of
Frisch and Lloyd~ yield identical energy dependence
at low energy, whereas Sec. VI shows that the
coefficient from Frisch and Lloyd is the same as
what we obtain in Sec. IV. This gives an indirect
justification for our assumption.

Appendix A discusses the probability distribution
function of the cell lengths. Appendix 8 general-
izes the result to arbitrary finite-ranged potentials.

II. ENERGY SPECTRUM FOR 5 FUNCTION VOTH STRENGTH
P'o moo

For most of this paper, we restrict ourselves to
6-function potentials, i. e. ,

V =- Z Vos(x —x)) . (2. 2)

lf „-=ms/L', (2. 5)

with corresponding eigenfunctions

(e(x) = (2/I ')'~asinK), (x —x)„,), x,„,&x &x)

x &x» or x& x]„g.
(2 s)

LR L L

(See Appendix B for the generalization to any finite-
ranged repulsive potentials. ) There are v —I po-
tentials at fixed but random positions x& . Unless
otherwise stated, we use fixed boundary conditions
throughout, i. e. ,

() (x) = 0 at x = 0 and x = I .
Because of the v —I potentials, the total length L,

will be divided into v one-dimensional cells, the
ith from the left having length L' (see Fig. I). The
essential task is then to solve the Schrodinger
equation, subject to the above conditions.

We start from the case where Vo ~. The en-
ergy levels are simply

i~ m~~ ~2&]~s

2m (L ) 2m

i=i, . . . , v, &=I, 2, . . . (2 &)

where

We consider a system of independent particles,
each of which satisfies a Schrodinger equation on
an interval of length L, ,

, g(x)+ V)))(x) =E()(x) . (2 I)
X X, X, X,

i-1 I v- I

FIG. 1. Labeling of intervals between potentials.
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The cumulative density of states N(E), defined
as the number of energy levels below E, is given
by

X(E) = Z Ze(E-E„)
1=1 s=1

(2. V)

e(x)=1, x&O

=0, x&0

is the step function. Equation (2. 7) gives the cu-
mulative density of states for a particular distri-
bution of lengths {L). To find the density of states
for a random system, we have to know the proba-
bility distribution function of the lengths. This is

P(L L L")

—= (Probability distribution function of
specific cell lengths being I,', L2, . . ., L")

= [(v —1)!/L" 'f)(L'+ I.'+ -+L' L)] . (2. 8)

Since the distribution is random, all positions are
equally probable. The constant in front of the 5
function comes from the normalization condition

f'" f'P(L', L', . . . , L")dL'dL'" dI,"=i.
p 0

In the limit where v-~, (2. 8) is equivalent to

P(L, L, . . . , L") = p"
&-"1

(2 9)

xP(L, L, . . . , L ) dL . . .dL

ref e=(Z- ',',
) pe "'de'-

S

where

vQ e-pzz/&@

S

= v/(e "i —1)= vn(E), (2. 10)

c -=hf)/(2)n)'

and n(E) =- average cumulative density of states
per unit cell. The standard deviation

where p =- v/I is the number of potentials (impuri-
ties) per unit length. v, L ~, but p is finite. [For
a more detailed discussion of P(L, I, , . . . , L"),
see Appendix A. ]

The density of states of a random system is given
by its ensemble average, because, as we show, the
standard deviation is negligible:

(z(z)) ZZf=e(z- "' *, ,
)

(~II)'= (X'(E))—P (E))'

=Qggg ff6 (E —E„)8(E —E&,) pe '~ dI. 'pe ' dI

ZZ f e(Z —Z„)pe'e de ZZ f e(Z —Z„)pe' dL')
s

v(2e" s —1)
(

pele'E 1)2
= vn(E) (2. 11)

Hence

v u(E) fi2 1

(N(E)) v'n'(E) Wv

(2. 12)

Therefore the density of states is given by the en-
semble-average value (2. 10). This result has been
derived earlier by Bychkov and Dykhne. ~ Notice
that for E pe) (2. 10) reduces to

(II(E)) - (I/her) (2)nE)fi2, (2. iS)

III. ENERGY STATES FOR GENERAL Vo

In this section we study the energy states of the
system for 5-function potentials of arbitrary
strength Fp. First notice that the wave function
is that of a free particle between potentials (see
Fig. 2):

f), (x) =A, cosff(x —x, Lf)+B,(ep/z) sine(x —x, f),

g) 1&+ &X)

1f)f)(x)=d4f„cosx(x —x, )+Bf f(Kp/x)sinx(x —xf),

which is the same as the case with no potentials.
For E 0, where

X]& X &X(4,1 (3. 1)

(N(E))- vexp[- puff/(2IE)fi2],

or (N(E)) is exponentially small.

(2. 14) A, = ()), (xf f), Bf -= (1/vo) pf(x'f f)-
xo —= 2)nVo/If

(3. 2)
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~A. = y. ( x. 1)

+
y'. ( . , )~B.=

I K
0

X,
I-I

X X X
I I I

FIG. 2. Definitions of A;, B&, g&, ~;.

A&+1 A4 + B)(KOL ) )

B& &= A& +B&(1+KOL ), it j. (3. 10)

We can also define A ~ B~ from the right-hand side
of the system (Fig. 3):

(wave function) = (,(y) =A,' cosK, (y -y~)

+Bf (Ko/K) sinK(y -y, ),
(3. 11)

where y is the distance measured from the right-
hand boundary of the system,

and

y =L-x,
(3. 12)

& =- O'K'/2m (3. 3)

(8~.i).=q
—((s).=;- = o .

Integrating the Schrodinger equation across x&

yields

(3.4)

h2 d2
, y(x)+ Vq(x) =Zq(x),

1 d( 1' 2mV,
dx„f ( dx„-

Substituting (3. 1) in (3. 4) and (3. 5), we get

A ~„=Aq cosKL' + B~ (Ko/K) sinKL',

(3. 5)

(3.6)

is the energy of the system. The wave function
must be continuous:

Af=ff yi) . B» = (I/Ko)H(yi) (3. 13)

Relations equivalent to (3. 10) can be obtained:

A) q
= A) + Bf (KOL ),

Bf, = A', + B', (K,L'+ 1), i Xj
(S. 14)

A2 = B (KpL ) Bg= B (1+KOL ) (S. 15)

We can continue the process, finding all the A.&,
B~ by iteration. Since (3. 10) is linear,

Using (3. 10) and (3. 14), we will now show that the
wave function is localized near the big cell j. Let
us now start from the left-hand boundary of the
system. Fixed boundary condition gives A, = 0 and

B,=B (so far an undetermined constant). Using
(3. 10), we obtain

B),q
——A) [cosKL —(K/Ko) slnKL ]

+ B([cosKL + (Ko/z) sinK L'] . (S.7)

A) = B+g) (L ~ ~ ~ ~ L~ ~)

B& —B h& (L ~ ~ ~ L' '), i = 1, 2, . . . ,j
(3. 16)

These relations are well known (see, e. g. , Bor-
land3 and Hori4).

We now study the low-lying states of the system.
From Sec. II, (Vo-~), we know that the lowest
states are localized in the big cells. Hence we use
the assumption that in the low-energy region, the
system is equivalent to that of independent big cells
in the middle of only small cells. This is possible
because, as we shall show, the wave functions stay
localized near the big cells. Further justification
comes from the fact that the resulting density of
states agrees with that of Frisch and Lloyd. ' We
have not, however, rigorously proved that this
assumption is correct.

Suppose j is the big cell under consideration.
Assume that all the other cells are small, such
that

A. f(x )
i J-I

BJ~-f(xJ I)

A f(y)
J J

eJ y(yJ)-
0

B
J+I

where a& and bq are functions of I L ~ ~ ~ L "'
only.

We want to prove now the following theorem.

Theorem (L):

(1) IB~.il&IB~I (I+ "L');
(ii) B~„has the same sign as B,

zL' «1, (3. 8)

Since we are interested in small energy, we shall
also use the condition

K/Ko « .1.

(2. 6) and (2. 7) can then be simplified:

(3. 9) FIG. 3. Schematic of localized wave function. y =L -x,
g(y) =gb).
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Pp oof. First eliminate 8, or Ar from (3. 10):

Br„(2+rrpL"') —Br, (3. 1V)

(1+L'"/L'+ rr L" )r-A L'"/L'

i = 1, 2, . . . , j —2 . (3. 18)

We will prove Theorem (I ) by mathematical induc-
tion. Since

Bp = 8 (1+rrpL'),

8) ——A~r (rr/Kp) slurb~ —8& cosrrL~ (3. 19)

Since A& and B& are multiples of B, AJ and B& are
multiples of 8" (.3. 19) allows the ratio B~/8" to
be determined. By dividing the two equations in
(3. 19), an ecluation for rr can be found;

(rrlrrp) (A~/8~)+ (rrlrrp) (Al/Bl)
1 —[(rr/rrp) (A) /Bg) (rr/rr p) (Ag/8~)]

'

(3. 20)
A&/8& and A&/8& are always positive; rr/rrp is small.
Hence, we can solve for zL~:

the theorem is certainly true for i = 1. Suppose
it is true for all i & i'; then

Bra, p
= Br.,r(1+rrpL ' )+(8, g

—8; )

A.JKL = sg ——
Ko B) wo

The wave function is

s = 1, 2, . . .

(3. 21)

Since B~. and Bq.,j have the same sign as B, and
)Bq.+, l & !Beer I, B&;~ has the same sign as B, and

IBr:l&IBr «r I(1+~pL'"r) .
Therefore, Theorem (I ) is proved.

Similarly, using (3. 18), we can prove the follow-
ing theorem.

Theorem (I ')

(i) IA„, I
& IA, I

(1+ K I ');
(ii) Ar„has the same sign as 8,

Hence, from (3. 1) we see that the amplitude of the
wave function increases exponentially from the
left-hand boundary to cell j.

By the same reasoning, we can show, using
(3. 14), the following theorem

Theorem (R):

(1) IA'4-r
I

& IA'r
I
(1+"L*»

(ri) IBr-r I
& IBr I(1."L');

(iii) A', , and Brr, have the same sign as

B„' = B"and A„' = 0 for i=j+1, j+2, . . . , p.

Therefore, the amplitude of the wave function in-
creases exponentially from the right-hand bound-
ary to the cell j.

Let us now write the wave function in the cell j
(Fig. 3):

$&(x) =A& cosK(x —x& r)+8& (rr p/rr) sinrr(x —x& r) .
But the wave function can also be written

tIr&(y) = A~& cosrr(y -y&)+8~& (rrp/rr) sinrr(y -y&)

= A', cos~(L'- x+x, ,)

+Bq (rr p/rr) sinrr(LJ —x+x) r) .

Comparing the coefficients of the above equations,
we obtain

A& = A& cosrrL~ + 8& (rrp/rr) sinrrL~,

IJ)(x) =Ar cosK(x —xr) + Br (Kp/K) slnK(x —xr ),

B~ 1=1+
Ag rrpL +A( r/8) r

(3. 22)

We can iterate the process, giving the continued
fraction~

B~ 1 1
+

&oL' '+ 1+

Similarly,

1 1
tcoL~ + 1+ ' ' ~

1

oL
(3. 23)

B~I 1 1 1 1

A. '; zoL~+ + 1+ tcoL~' + ~ - ~

(3. 24)

(3. 23) and (3. 24) are both positive continued frac-
tions. Both are convergent.

P4 oof. The positive continued fraction

1 1 1 1F — p+ fr+ fp + fp + f4 + ~ ~

is convergent if, and only if, at least one of the
series is divergent~:

fr+fp+fp+''', fp+f4+fp+''' ~

For (3. 23), the second series is 1+ 1+ 1+
which is divergent. Hence (3. 23) is convergent.
Similarly, (3. 24) is convergent.

In conclusion, if j is the only big cell, in the
presence of only small ones, the low-lying state
is localized in the neighbor of the cell j, with cor-

X$ —X $$+g

No new wave functions are obtained by replacing
s by —s. Also, the solutions=0 gives /=0, which
is physically uninteresting.

We still have one degree of freedom, viz. , B
or B . It can be determined by normalization,

J r)t (x) r) (x) dx = 1 .
We can find an expression for A&/8& and A&/8~& .
Using (3. 10), we obtain
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responding energy level [see (3. 21)] IV. DENSITY OF STATES FOR ARBITRARY Vo

where

SZ
(L' + a~~ + a,") ' (3. 25)

1 Ag R8) and Qy
Kp Bg Kp

are positive continued fractions and

Kg /Ko « 1 and Kl I « 1,

(3. 26)

where I is the average cell length.
In reality, the system consists of many big cells.

We will, however, treat them independently. This
is possible because, as we have shown, the low-

lying states are localized near the respective
cells. More detailed analysis shows that the over-
lap between states localized near different cells
is indeed small. We have, hence, a tight-binding
picture for disordered systems.

Arguments for localization of all states have
been given by Borland and Halperin. v We have
illustrated this for low-lying states.

The cumulative density of states of a particle
in repulsive 6-function potentials of arbitrary
strength Vp is, by definition,

N(E) = Z„e(E-E„(Z,}),
where E/LE} are the various energy levels as a
function of the distribution of cells (I q}. For a
random system, the cumulative density of states
is given by its ensemble average

&N(E)& = f~.e(E E-.(L'})

x P(L L, L') dI, dL"

because, just as in the discussion of the Vp

limit, the standard deviation is negligible. For
small E (the region in which we are interested),
only small E„(L} contribute to &N(E)). Three
levels can be described by the large interval j and
the neighboring intervals as in (3. 25). If we use
(3. 25) for all levels, the higher ones will be treated
incorrectly, but do not contribute in any case.
Hence

&N(E)) = vZ ~ ~ ~ [ e(E —c s /(L~+al + al") )e ' pdL~
S

0 p

x pe ' pe ' dL~ '" ~ dL'pe ' ~ pe ' dL "~dI." . (4. 1)-pL& 1 ~, pL $ 1 pL) 1 pL& )+1

The factor v enters because all the cells are equiv-
alent after ensemble averaging.

The integration over L~ can be easily done:

&N(E)&= v~ e ' '"&e"l& &e"~&
s~1

= &N (E))W (4. 2)

al = 1/Kong

where, using (3. 22),

(4. 5)

is independent of i.
We now proceed to calculate 5'. First, we ob-

tain

where (N (E))= cumulative density of states when

Vp 0,

&e l ) = f exp [pa (I, ', I, , L ')] Define

L
B~ t~ 1

A 1 (z L~')t (4. 6)

and

xP(L ~ ~ L~ ) dL dL ' ' ' dL~ (4 3) x&
—

t& —1, ~ &x& &0L (4. 7)

&e "l") = f exp[pa,"(L",L", . . . , L")j

xP(LJ' l
~ ~ ~ I. ) dL" ~ ~ ~ dL" . (4. 4)

Qf course, &e~~)= &e~s&= W by symmetry, and W

+ J 1 =x(LJ 1LP 2 Ll)
1+ (1+x, ,) ~,L'-'

(4. 8)
Let Q(x&) be the probability distribution function
for x&, then

00 x 1
—x pe" ~ ~ ~ p8 dL ~ dL

1+ (1+x).,) KoL

o ogl x' 1x +1 „pL~-15, ~, —x2 pe '~ dLl 'Q(x')dx',
1+ 1+x' xpL

0

Q(x)= f f, 5(x(L'', . . . , I.') —x )pe '~' ' . pe '~ dL' ' . .dL'.
dx'5 x

0

(4. 9)

(4. 10)
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where we have interchanged the order of integrations and used the fact that

Q(x')= f5(x/, -x') pe ' . . dL . .dL'.

The distribution function for x&„~ must have the same form as that for x&. After integrating over L~ ' in

(4. 10), we obtain

Q(xQ)= Q(x')dx'exp ————.
.

. , 0&xQ& 1p 1 1 p
Kp Xp X'+ 1,'

KOXO
'

0

(4. 11)

Q(x'}dx' exp 1 & Xo&
KP Xo X +1 KOXO

0

(4. 12)

Define

/ "0
Q(xQ) =

g R(xQ)
XO

(4. 13)

J(y) = 1 —Sy+ O(yQlny), y «1
(& Q. )1/2 1/4 e (((xy ))

(4. 19)

(4. 20)

where y —=p//(:Q. The equations (4. 11) and (4. 12)
may be written

1
n =1+—

2

1+ (1+u) e
(()Q/2 8 u

R(xQ) = y
R (x') exp[- y/x'+ y/(x'+ 1)j

12 dx

= 1. 257. . . (4. 21)

V. RESULTS OF FRISCH AND LLOYD AT LOW ENERGY

0& xo&1 (4. 14)

R(x') exp[- y/x'+ y/(x'+ 1)j
Y XP2

dx',
x0~1

1 & x, & ~ . (4. 15)

Equations (4. 14) and (4. 15) and the normalization
condition

The density of states of this model has been dis-
cussed previously by many authors using the meth-
od of node counting. '3 ' In Frisch and Lloyd, '
the cumulative density of states N(h'/(. '/2m) is
given by solving the following integral equations:

T(f) = u'(z) e" ~/— (N(ha/(2/2m))- Q d$,
v u($)

f y/x
Q(x)dx= 3 B(x)dx= 1

0 0

determine R(x). Thus we find

gr (e Pc ) (e P /((Q (14'x/ ))

(4. 16)
u($) = exp —tan —,—~ & z & ~ .

K K
(5. 1)

This is Eq. (18) of Frisch and Lloyd. Equation
(16) of Frisch and Lloyd is

(1/v) (N(h'/('/2m)) = (1/p) limQ, „s'T( y),
-=j e"'"'*~'q(x, )dx,

00 y/x
e" ' '"', R(x) dx .

0

(4. 17)

W' is independent of E and is a function of y only.
From (4. 2), the cumulative density of states has

the same exponential dependence on energy as the
Vp= ~ case. Only the multiplying constant is
altered. That is, for small E we may write

N(E) = [1/d(y)] (4. 18)

where

J'(y) = 1/W

We have not obtained a closed expression for J
from the integral equations (4. 14) and (4. 15).
However, it is possible to obtain solutions for
small y ("low density of impurities") and large y
("high density of impurities"). We only present
the results of these calculations. They are

and Eq. (13) of Frisch and Lloyd is

f T(f )d3= 1.

(5. 2)

(5. 3)

We have used our notation. We want to simplify
(5. 1)-(5. 3) at low energy. Put

T(f() -=—(N(h'/('/2m)) e "/'"u'(s) E(s ).1
(5. 4)

Then (5. 1) becomes

E(b) = 1 E(g —v )d$
u(()

(5. 5)

(1/v) (N(h2/( /2m)) = limQ. ,„(1/v) (N(h z'/2m))

E(8) &0 since T($) &0 (see Frisch and Lloyd).
Equation (5. 3) becomes

1= (1/v) (N(h'K'/2m)) e"/Q" f u'(s) E(s)de
(5 6)

and (5. 2) becomes
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since

X e~/
2 2 ezp —tan ' — E(a) e+K K K

(5. 7)

u (f) =, , exp —tang P P
+K K K

Therefore

e w/2(( e ((P/2(( E(
(((('/2(( t((/2(( E(

E( e(() —1 E(+eo)=e P /"

Equation (5. 6) can be further simplified:

(1/v) (N(/2 K /2 m)) = e ~/" (1/J'), (5. 8)

J= J d& (p/(22) e '/2E(a) .

Equation (5. 5) can be further simplified in the
lament K' 0.

(5. 9)

1—(N(f2~K'/2m)) e" '" da —e ' 'E(a) e " '"
V

+ db, e '~~I' b e"i'"
8'

0

as K-0. The first term in the large parentheses
is zero because of e "'/'" if E(S) exists as K-O.
Therefore

u'($ —K,) p p
3 exp — tan" —tan

u($) ($ —Ko)+ K2 Kp

lim . — tan — -- —tan"P -1 ~ Ko
P

K K K
Ko&$ &0

)&0 or

p 1 1E(t() = 1 — dg 2 exp p —— E(g —Ko),
($ —Ko) $ 5 —Ko

woO

("(e) = ( — d(, exp e ——
) E(( —ee),

p 1 1

(g —Ko) $ $ —Ko
woo

8&0

0& P«p

(5. 10)

(5. 11)

E(a) = E(Ko) — d$ 2 exP P —— E(g —Ko), Ko& S .
Ko Ko J

kp

Introduce the notation

a =Kot and E(S.) =E(Kot)=f(t),

and y= p/Ko, as before. Equations (5. 10)-(5. 12) and (5. 9) become

(5. 12)

(5. 13)

f(t) =1— 1 1
d~

( ), exp y ——
i

f(7 —1), t&0 (5. 14)

y / 1-
dv

( 1), exp yi — f(7 —1), (5. 15)

, exp y —— f(~ —1), 1 & t & ~y 1 1
(7 —1)2 7 7 —1

(5. 16)

and

Z= y J dt(e ""/t')f(t) .
p

(5. 1/)

VI. EQUiVALENCE OF OUR RESULT AND THAT
OBTAINABLE FROM FRISCH AND LLOYD

Vfe want to prove
Equations (5. 14)-(5. 16) determine f(t), and (5. 17)
and (5. 8) give the cumulative density of states.

Notice that (5. 8) has the same exponential form
as (4. 2). 8 is a function of y only.

W = 1/J

from (4. 17) and (5. 17). First write (5. 16) as
follows:

(6. 1)
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f(t) = If(() —y
~et 0

dv ~exp y —— r-1y 1 1
(~ —1)'

d7, exp y —— 7 —1, 1 & t & ~ .y 1 1
(v —1) 7' r —1 (6. 2)

The term in the large brace is equal to

f(~) = lim„., e "" = 0,

t
f(t)= 1+ Z (-y)' drgQ(~g)

5=1

(NT1Ni

d~, P(v. ,)

from (5. 7). Therefore,

1 1
f()!)= y d7 z exp y —— f(7 —1), )

"t
1«&" ((6. 3)

Similarly, (5. 15) becomes
Then

d~, (j (~,), n+1&t&n,

n = 1, 2, 3, . (6. 12)

exp (y[1/r —1/(v —1)]].
(~ —1)'

f(i) =w dt
( (, ettp y —— t} f(y —t),y 1 1

J=ZQ
m=0

(6. 14)

f(t) =BR(t) . (6. 5)

Now, using (4. 16) we obtain
« y/t y/t

d = y dt t f(t)=dyf dt d(t)=Ay
0 0

Therefore, using (4. 15) we find

0 & t & 1 . (6. 4)

Equations (6. 3) and (6. 4) are just Eqs. (5. 15) and
(5. 14) with the trivial notation change x' = T —1, ,
Therefore, f(t) and R(f) can at most differ by a
constant

0= I.
m = 1, 2, . . .

By integrating over f, in (6. 15), we get

q-q„, q, m

where

(6. 16)

y/t
= X(- X)" dt, 2 d~g4(~g)

m m

t1 1 m-1
&('N)d'N y (6 15)

m~j, 1

R(1) f(1) f(1)W=

Equation (6. 1) becomes

f (1) 1 J'

f(1)
= f(o),

(6.6)

(6. 7)

& =(-r)" f d 0( )f d, P(,}

1, Q(& )dv„. (6. 1V)

Let us now find f(0) from (5. 14) by iteration:

where we note that f(1)=f(0) from (5. 15). Define
(6. 18)

f(i)=f(t)/f(1), t & 0.
Then

(6. 8)

Q. = (-y)" j dx, P(x,) f"''dx, y(x, )

f(i)= 1, 0& I'& 1 (6. 9)
x f" dx3$(x~). . . f " ' dx Q(x ). . .

f(o) =d=~f «(e ""it')f(t) .
0

(6. 11)

First calculate J' by iterating (6. 9) and (6. 10):

1 1
xexp y —— f(7' 1), i &1

7' v' —1
(6. 10)

and (6. 7) becomes

m=1, 2, . . . . (6 19)

Now change variables &~ = 1 —~ „„&. Equation
(6. 19) becomes

Q = (-y)" f dw, g(r,)f, d~, P(~, )

. f "
dr p(7„), (6. 20)
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where

Notice

exp (y [1/7' —1/(r —1)]}
2

7

exp(y[1/~, —t/(~, —t)])
1 y 1 3 =@i ~

~1

(6. at)
For m &2, integrate dv& in (6. 20) by parts:

O —() i=q =(-y) ("m "m-i "m-2
«|e(~i) «8 4(r2) ' «84(~s)

X ~ ~ ~
( [1/, -1/(, -2)]}

y.

X '

Tg-2

«s 4(&3) "."~m-1-~

We have to prove q„=q„ for m & 2. First integrate dv2 in the first integral of (6. 22) by parts. This gives
three terms, one of which cancels with the second term in (6. 22), to give

q„= (- y)" d, y(~, )
"m "m-1

d~, Q(r, )
"m-1

d~, q(~, ) ~ ~ ~

d, em[r/~&-y/(~, -2)] ""'
8 ( 1)E

dv'4 ((ri) ~ ~ ), (8. 23)

We can now integrate over d7'3 by parts in the first integral, and so on. Eventually, we obtain

q„= (- r)" d~, 4(~,) ~ ~ ~

"~m-g -1 " 'm-C -&

dv q(7 „)

)m
+ d7, (()) (v, ) ~ ~ ~

«m-a-~
exp b[1/7 g t/(T g 2)]} (6 24)d~m-1 (7„,—1)'

Integrating over dv„by parts now, we find

q. =(- »" f.
"

d~i «~i) f.", '«ac(~~)

f ))I 1 y(+ )d+

(6. 25)'ffI & 2,
Since Q(, =QO, Q, =-Q, . Using (6. 16), (6. 22), and

mathematical inductions, we conclude that

Q„= Q, m=0, 1, 2, . . . .
Hence Z=f(0) or W = 1/Z.

Therefore the result of Frisch and Lloyd (for
small E) and ours give the same exponential de-
pendence on E, with the same coefficient.

VII. CONCLUSIONS

We have used the assumption of independent big
cells in the presence of only small cells in study-
ing the low-lying spectrum of a particle in one-
dimensional random repulsive 5 potentials. The
resulting density of states agrees with that of
Frisch and Lloyd at small energy. The same

method can be used for any nonoverlapping finite-
ranged repulsive potentials (see Appendix 8).

P(L', L2, . . . , L") = „, 6(L'+La+. . . +L"—L).
(At)

This is the microcanonical distribution in lengths.
For a large system, it can be replaced by the
canonical distribution

A.' = p' from normalization.
(A2)

The total length

L =EL

now can take on values from 0 to . However, we
show that the fluctuation of I around its average
value is negligible for the distribution (A2).

APPENDIX A: PROBABILITY DISTRIBUTION FUNCTION

The probability distribution function of specific
cell lengths being L', L, . . . , I" is from (S.8)
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A ~f(X
I

«9.~-$(x )
I te I-I

0
f(X ) ~ A~

I
' P'(X) ~ S-

is the spacing between two potentials. The wave
function between the two potentials is still given. by
that of a free particle:

)))&(x) =Aq cosz(x —x).,) + B)()(0/a') sinz(x —xt, ),

x;,&x &x, (H5)

X
I-I

I
~ ~ ~ ~ ~ ~ L ~ ~ ~ ~ ~ ~ ~

+
X,

i-I

k'
X

I

vi. v(z )
I

where

A, = g(x;,) and B, = (1/zo) g'(xJ, ) (B6)

z0 is a positive number of the dimension of z, to be
chosen later. It is convenient to define also

FIG. 4. Potentials for finite-ranged case. The potential
is only nonzero between x~ and x'&.

A( = ((x))=A~ coszL'+B) (zo/z) sinxL
(»)

8) = (1/Ko))I) (x))= A)(K/Ko) sinzL +B)cos)"L

Proof.
-(z, '+' "(L) f Lp+ e Pu +L + +I )dL) dLv

0

= v/p .
The mean-square fluctuation

(«)'= «')- «)',

(g&) —J gy, )& "p
0

= f"(z(r.')'. 5;);r. '1.~)
0 g

(A3)

We again use the assumption of independent big
cells, and consider only low-lying energy levels.
Call the big cell under consideration j, i.e. ,

~I.'«1, iv j
K/Ko « 1,

Equation (B7) reduces to

Ag --A) + B)(zoL'), B( = B) .
The relationship between A.&, B&, and A.&+„B,+,
can be found by considering the wave function Q in

V, (Fig. 4). Since E-O, this is given by

p - p(I +L +~ ~ ~ +I, )d f ~ p
2 ~ , , v I

Q (z ) + V(z) Q (z) = 0 (B10)

= 2v/p + v(v —1)/p

Therefore

(~L') = v/p',

or

dz

d, 2 4(z)=u(z)4(z),

or

(AL) Wv/p

(L) v/p v v

where

u(z, ) =- 2m V(z)/I

Q(z)) = g(z), x) & x & x)
Hence (A2) is equivalent to (Al).

APPENDIX B: GENERALIZATION TO ANY
NONOVERLAPPING FINITE-RANGED POTENTIALS

In this appendix, we generalize our result to any
nonoverlapping finite- ranged repulsive potentials.

Let the potentials be all the same, and nonzero
only inside a range b (Fig. 4):

g(0) = 1, h(0) = 0,

g'(0) = 0, h'(0) = 1.

g(z) and h(z) are related by the Wronskian

(B11)

Letg(z) and h(z) be the two independent solutions
satisfying the boundary conditions.

v 1 g(z) h'(z) -g'(z) h(z) = 1.
Define

(B12)

=0, otherwise
L *g] =X —Xg) 0=+)

V) = V(z)) & 0, b &z) &0

(»)
(H3)

(H4)

h(z) —= Q(z)g(z),

g' = 0'g+g'0,

1 dg'0 =~ or f1= 2 pg, g z')'
l. e. ,

(B13)
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dzl
h(z) = » g(z) .

g Z
0

(814)

The solution in the potential V&, satisfying boundary
conditions at x~, is thus

y(z) =A, g(z) + B,«oh(z) . (815)

Therefore, the amplitude of the wave function
grows exponentially from the left-hand boundary
to cell j.

Similarly, we can show that the amplitude grows
exponentially from the right-hand boundary to the
cell j. The solution localized in big cell j is thus

Continuity at point x~ thus gives

A»„= g(b)A, , + B» «oh(b),

B»,»
= [g'(b)/«o]A»+ B»h'(b) .

Using (89), we get finally

(816)

A~ & A. ~~

zL = sm—
B, ~o B', '

Define

B» g'/«o+ (g'L» '+ h') t»»
g+ «,(gI, '-'+h) t', ,

(822)

and (818)

A», »
= g(b) A» + B» [«oL g(b)+ «oh(b)],

B. = [g'(b)/"]A B [g'(b)L"h'(b)],

i »» j (817)

where

dz' dz'
h(b) = g(b)

0 0

t»» B»»IAJ» etc.

Equation (823) simplifies if we choose

«o —= g /g&0,

g+ (g'L» h') t
g ~ (glL»» ~ hgl/g) tL

=1+ 1g
(g»L $» +gI 5) + g/t»»

(823)

(824)

1 ' dg' 1
h'(b) = +g'(b), = —+g'5, (819)g(b), g'(z') g

in which we do not indicate the dependence on b of
h(b), h'(b), g(b), and g'(b) where no confusion may
occur. Equation (817) replaces (3. 10) for the 5-
function case. Either A~ or B~ can be eliminated
from (817):

B»,o = B»„(g+g' I "+h') —B»,

Lk+1
A), 2

—Ag, ( g +, g'L~+g'
L +5

(N(E)) = (N„(E))W

v t' g 1
N„(E) = p„~z w= expI p —,

1
&

g 1+ +&

(826)

1/g g 1/g
(g'L 'ig'5) y 1+ (g'L +g'5)+ ~

(825)

By the same proof as given in Sec. III, the positive
continued fraction in (825) is convergent. Identi-
cal proofs hold for t&.

Similar density of states can be obtained:

i=1, 2, . . . , j-2. (820)

where
V

L —vb '

(827)

(828)

Notice from Eqs. (810)-(814) that g & 1, h' & 1,
g' &0, and h &0.

We briefly summarize the proof for localization
near cell j. Choose A, =O, and B,=B~; then

Bo = B (h'+g'L'), Ao = B «o(gL +h). (821)

Therefore, (820) and mathematical induction give
the following theorem.

Theorem (L):

(x»., + 1)
g[g+ (x», + 1)g'(I, ' '+ 5)] ' (829)

and the equations satisfied by the distribution func-
tion Q(x») of x» are

" Q(x')
Q(xo) = „o&ogg

0

(i) B»„and A„, have the same sign as B;
(ii) IB».»l &IB» I

(g+g'L»)

o»») l&i.il»l&il (a+ ~ -»„,z'I"),
i=1, 2 j-1 ~

gg'xo g'(x'+ 1)

1
g(g+g'5)

Q(x')
Q(xo) =

2ggi P
xp gg

g/t;gap) & g'63 1

(830)
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gg'xp g'(x'+ 1)

1x, &—,(B21)

and the normalization condition

1 Q(xp)dxp = 1 .

That is,

W'= xo exp p —, dxo.
0 g 1+xp

(832)
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We study the thermodynamics of a one-dimensional system of noninteracting bosons in the
presence of random fixed finite-range repulsive potentials. It is shown that a Hose-Einstein
condensation into the lowest state occurs. The critical temperature increases with the num-
ber of impurities. The specific heat exhibits a discontinuity and is infinitely differentiable
from both sides of the critical point. For a suitably defined pressure the isothermals ex-
hibit a flat portion below the "transition length. "

I. INTRODUCTION

In this paper we shall study a one-dimensional
gas of independent spinless bosons in the presence
of random impurities. These impurities are repre-
sented by fixed finite-range repulsive potentials.
The model is identical to the one studied in the
preceding paper, ' where the structure of the low-
lying states and the density of states was investi-
gated. There we found it possible to obtain these
levels for an arbitrary finite-range impurity po-
tential. Now we imagine independent bosons oc-
cupying these states. In the interest of simplicity
the calculations are only carried out for the case
where the impurity potential is represented by a 5
function of infinite strength. Considerations of the
same nature may be made for the general case
(because the structure of the low-lying levels is
very similar), but we do not go into these here, as
the details prove to be quite complicated.

In Sec. II we show that the Bose-Einstein transi-

II. EXISTENCE OF BOSE-EINSTEIN TRANSITION

For the case of impurity potentials represented
by 5 functions of infinite strength, the energy levels
can be given explicitly. ' Let L& represent the jth-
largest distance between 5 functions (i. e. , the
length of the jth-largest "cell" ). For v —1 impuri-
ties, L~ L2 —L3' ' ' L„.

The levels are

Eg ~ = c s /L)q s = 1~ 2,
2 2 2

c' -=I'p'/2m .
(2. 1)

tion occurs in the thermodynamical limit. In Sec.
III the transition temperature and detailed nature
of the transition are investigated. Finally, in
Sec. IV, it is shown that our result is not in con-
tradiction with the well-known Bogoliubov inequal-
ity, which has been used by Hohenberg to show
that there is no condensation into the lowest-mo-
mentum state in one-dimensional systems of bosons.


