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Optical Absorption by Dilute Solutions of H2 in Liquid Argon
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It has been proposed that the infrared absorption spectra of diatomic molecules in simple
liquids should exhibit effects of the collective excitations of liquid. On the other hand, it
was suggested that the absorption line shapes for the H2-Ar system are essentially deter-
mined by the diffusive motion of the hydrogen impurity. We have made a detailed study of
the H2-Ar system and find that both effects must be included to accurately describe the Sl(1)
vibrational absorption line shape. Numerical calculations based on a model that does not
include diffusive effects yield a line of the right qualitative shape, but that is narrower than
the observed line. Extension of the model to include these diffusive effects leads to a line
shape in good agreement with experiment.

I. INTRODUCTION

Qur primary motivation in undertaking this study
was the hope that it might lead to a new tool with
which the collective effects in liquids could be
studied. Light-scattering experiments have enabled
the study of small-wave-vector (i. e. , long-wave-
length) collective excitations of liquids, but the
conservation of momentum laws make it unfea. sible
to study excitations with smaller wavelengths. The
absorption process for an impurity coupled to the
collective excitations of the host liquid does not
suffer from this restriction since the impurity
breaks the translational invariance. Thus the ab-
sorption process is sensitive to excitations of all
wavelengths, but with unequal weighting which is
determined by the coupling. One might hope that
the situation would be similar to the case in some
solids where the absorption spectrum has a central
line accompanied by distinct sidebands. The side-
bands correspond to an absorption process accom-
panied by creation or absorption of a phonon and
give information on the density of states of these
phonons.

A previous theoretical study' indicated that the
H~ in the liquid-argon system was likely to exhibit
collective effects in the absorption spectrum. This
theory predicts a line shape based only on the inter-
action of the impurity with the collective motions
of the host liquid, neglecting the diffusive motion
of the impurity. Qn the other hand, experiments
by De Remigis et al. report an inverse density de-
pendence of the linewidth of the S,(1) absorption line
which Zaidi and Van Kranendonk attributed to the
diffusive motion of the impurity. The experiments
do not show distinct sidebands on the S, absorption
line. In this paper we have studied the model of
Ref. 1 and extended it to include diffusive effects.
Vile will show that both the diffusive and collective
effects are of importance in determining the line
shape of the S, line of H~ in Ar. We also find a de-

tailed explanation for the absence of sidebands in
the experiments. We note that the S, absorption
line of H~ is particularly convenient since it arises
predominantly from the well-understood quadru-
pole-dipole interaction between the H~ impurity and
the argon host. Thus, we avoid the difficulties
arising from lack of detailed knowledge of other
contributions to the H~-Ar interaction.

In Sec. II we extend the model of Ref. 1 to in-
clude diffusive effects, discussing briefly the ap-
proximations involved. In Sec. III we present the
results of numerical calculation of the absorption
line shape (for the S, line) with and without inclu-
sion of effects of diffusion of the impurity and dis-
cuss the physical significance of these results. In
Sec. IV we briefly summarize our findings.

II. FORM OF ABSORPTION COEFFICIENT AND
METHOD OF CALCULATION

We present here a derivation of an approximate
expression for the absorption coefficient of a di-
atomic molecule in a simple liquid. This deriva-
tion essentially parallels that of Ref. 1, but is
more general in the sense that it takes into account
diffusive motions of the impurity.

If the H~-Ar solution is sufficiently dilute that
interactions between impurities are small, then it
is sufficient to consider only the effects of a single
impurity. The absorption coefficient is given by

A((u) = (1 —e '"")J((u),

where Z(&u) is the Fourier transform of the dipole-
moment autocorrelation function C (f) of the system.
For the portion of the spectrum near an energy
corresponding to a vibrational plus rotational tran-
sition of the free molecule, 4 is given by'

C, (f) ffe f(DO+By Zg&)g/h

x Z dFdr' dr& drr' T"(r —rz) T'"(r'- ri)
frv

x L(r, r', r„r,', t), (2)
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where Qo is the vibrational energy, E~ and E~, are
the rotational energies of the molecule character-
ized by rotational quantum numbers J and J', T'"
is the tensor describing the quadrupole-dipole in-
teraction between impurity and host, L is a four-
point correlation function defined below, and K is
a constant. In deriving Eq. (2) it was assumed
that exchange contributions to the impurity-host
interaction are spherical and that ~J40. In par-
ticular, we have in mind the S,(1) line for which
4J= 2. For this line and in the above approxima-
tion, only the quadrupole-dipole interaction con-
tributes, and difficulties associated with lack of
detailed information about the other interactions
are avoided. Hereafter, we shall take (Do+ Ez

E~.)/h as the zero of our frequency (energy)
scale.

We proceed to discuss the correlation function
L, which is defined as

I.(r, r', F„r&, t) =(pg(Fz, t) p*(r, t), pz(Fz, 0) p*(r', 0)),

where pI and p* describe the densities of the im-
purity and the host, respectively, and the angular
brackets represent a statistical average. L is ap-
proximated here in the following way: We assume
the center of mass of the impurity to be perform-
ing oscillatory motion in a cavity formed by the
host liquid. The density fluctuations of the host
and the motion of the impurity are assumed to be
coupled only in the sense that the volume of the
cavity is excluded to the host and that the impurity
is constrained to be in the cavity. The motion of
the cavity is supposed to be described independent-
ly of the density fluctuations of the host. Mathe-
matically these assumptions take the form

L(r, F,'rr rs t)

= 1dRdR'(p, (F, R, t), p, (r,'—- R', 0))

xg(F- R)g(r' —R') G(r —r', t)S,(R- R', t), (3)

where g(r) describes the exclusion of the host from
a cavity centered at the origin. pI describes the
density of the impurity with respect to the center
of the cavity. S, describes the motion of the cavity:

S,(R —K', t)=(p, (R, t), p, (R', 0)),
and finally G describes the dynamic pair correla-
tion for the pure liquid:

G(r-r', t)=&p(r t), «F', 0)),-. li id.
We note here that the function

& p, (X, t), p,I(~, 0))

is the same as function Lz(X, Y, t) of Ref. 1. Fur-
therrnore, if we think of the cavity as being fixed,
that is

S,= o,b(R- R'), (o, independent of R, R' and t)

then Eq. (3) reduces to the form found in Ref. l.
We consider the time Fourier transform of LI

which we will denote here by Lz(~) for simplicity.
If the wave functions describing the center-of-mass
motion of the impurity in the cavity corresponded
to truly stationary states, then Lz(&o) would be a
sum of 5 functions at the frequencies n&uz' (n= 0,
+ 1, +2, . . . ), where &o~ is the characteristic fre-
quency of the center-of-mass oscillation of the im-
purity. In reality, one expects a series of peaks
of finite width near these frequencies. The con-
tributions to the absorption spectrum for nWO cor-
respond to absorption accompanied by a change in
the state of motion of the impurity. Since ~1 is
much greater than the characteristic collective
frequencies of the host liquid, these contributions
will give rise to distinct peaks in the absorption
spectrum. Rather than trying to form a detailed
model for the motion of the impurity. and hence for
the shape of the peaks in Lz(~), we shall not con-
sider absorption accompanied by a change in the
state of impurity center-of-mass motion. We
will keep only the 5(&o) contribution from Lz..

(LI/2w) 5((o),

where

L~=lim(pz(Fz, t), p, (r,', 0))

gl(rI) g-r(rz) .

We are then assuming that the contributions in the
absorption spectrum arising from the finite width
of the peak at ~=0 in L,(ur) are negligible. This
will be a limiting factor in our calculation. Con-
sidering a peak of finite width would have the effect
of adding a second frequency convolution in Eq. (5)
and hence broadening the line further. The peaks
in Lz(&u) at null, nt 0 are much broader than the
zero-frequency peak. 6 Thus, the details of S(q, e)
will be further masked in the portion of the spec-
trum corresponding to absorption accompanied by
a change in the center-of-mass motion. Since our
interest is in S(q, ~), this provides further motiva-
tion for studying only the frequency region & «&I.'

Equation (2) now becomes

C (t) =XX drdr'drIdFIdRdR'
pv

x T""(F rz) T ""(r'—rI—)g(r )g(r')gl(rz)gl(rI)

x S(r —r ' —(R —R ), t) S,(R —R', t),
where S(r, t) = G(r, t) —po is the Van Hove correla-
tion function.

We define a quantity t~" as

t "(r)= g(r) f drzgz(xz)T "(r rI). —

Using this in Eq. (4) and introducing the Fourier
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FIG, 1. C alcu1ated li.ne shapes without diffu ' ff t
for various values of the cavity radius R:
R =.2. 9A , curve (8) R0=3. 7 A, curve (C) Ro =-4. 7 A,
curve (D) experimenta1 points.

tran sfor ms of the various q ua t t- n l les we can write

J(ur) =If ' f dqd(o'Ir(q) I' S(q, (u')

x Sc(—qz (d —M )

where v has been defined by

f ~"
(q) = 2~ (12p, v

I
3m) I" (q) 7.(q) .

rn

Equation (5) is the basic form we shall use in cal-
culating the absorption spectrum.

It is shown in the Appendix that

I
r(q) I

=
I
(a'/2v') gf, «j, (q~)i(~)~ 'I (6)

where j„is the spherical Bessel function. f '
d

n. We further simplify by choos' th ~ l t
possible form for the function p which describes
the exclusion of the host from the ca 't . Th, e cavl y. That is,
we take g to be a step function

9

g(~) =1, r ~R0
=0, x~RO .

We sha. ll thinka. l think of Bo as a parameter of the cal-
culation. With this form for g Etl. (6) becomes

I
~(q) I

= (o'I»') 8(qR'0) '
li~(qRO) I

.

I'he integral in Etl. (5) was done numericall
using various functional forms for th 'te cavl y cor-

ic ls lscussed in Sec.relation function S,(q v) which i d'

III9 and an approximate form for the Van Hove
correlation function worked out b Chun

Vi '" Theip. ' The moments required in this expression
were computed numerically "' thu~lng e pa, ir- correla-
tion function of Verlet

the ir
he agreement found by Chung»d Y' b tlP e ween

expression and neutron scattering data and
ls quite

good. The accuracy of the calculation presented
here is probably more limited by the other approx-
imations involved than by the accuracy of the Van
Hove correlation function we use.

III. RESULTS

We first consider the case where the cavity is
fixed during the absorption process. This does not
correspond to the impurity being motionless, but

requires that the center of its center-of-mass mo-
tion be fixed, In this case

S,(q, ~) f df e' ' f dR e ' '" 6(R)

f df e""'

= &(~),

and hence Eq. (5) becomes

J(~)=&' f dtII&(q)I's(q, ~)

as in Ref. 1.
Some curves for the absorption coefficient com-

puted from this expression for typical values of
the parameter Ro are shown in Fig. 1. The asym-
metry of this line is due to the Boltzmann factor
e "" of the correlation function. In Fi . 2 th
is a p ot of the half-width of the symmetric line,
that is without this Boltzmann factor, obtained from
Eq. (7) versus the cavity radius Ro. In all cases

e ine ls narrowerconsidered here the width of the li
than the experimental width, even though the shape
of. the calculated line seems in qualitative agree-
ment.

We can make an estimate of Ro as follows: We
consider a hard sphere with the mass of hydrogen
molecule and of diameter -3 A (h d.— "ar .-sphere radius

eing ln a spher-of H, . We think of this sphere as bein
ical well and m'inimize its kinetic energy plus the
cavity energy (I'V) with respect to the radius of
the well. Here the radius of the cavity is equal to
the radius of the well plus the h d- h

of the H

e ar -sphere radius
The value Ao ls equal to this cavity ra-

dius plus the hard-sphere radius of an argon atom.
e note hereThis leads to a value R -3.7 A. W t

that this value is relatively insensitive to pressure
ug o orce the atomssince it is already large enough t f

down to their hard-sphere separation. This value
o Ro corresponds to a (symmetrized) width in this
diffusionless model of g. 8 x10"sec compared with
an experimental width of -3 9x1O'2 sec . The
maximum width in Fig. 2 is still about three times
too small and corresponds to a value of R (2. 9 A)
tha

0 ~

=3. 5 A
at seems physically too small, since A &since o ~ pAr

= 3. , whereas one expects the zero- ' t-poln mo ions
o ea to cavity that has more volume than that

occupied by a host atom.
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culated line versus the cavity radius
Rp, The half-width is that of the symme-
trical line, that is, of the line calculated
excluding the Boltzmann asymmetry of
S(q, co).
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The structure in the curve in Fig. 2 can be un-

derstood as follows: The function q'I r(q) I deter-
mines the relative size of the contributions of
S(q, &o) to the integral in Eq. 7. We recall that

q'Ir(q) I'- (~o')[~2(q~.)]'.
There is a large peak in S(q, ~) at about q = 2 A ',
+=0 with frequency width 1.0x10' sec '. We note
that this peak just corresponds to the largest peak
in the static structure factor, that is, to nearest-
neighbor correlation. This peak tends to give the
largest contribution to the integral (peak marked
C in Fig. 3). This peak is narrower (in {o) than
the central (&o = 0) peak of S({l,&o) for neighboring

q values. Thus, when a maximum of I r(q) I falls
exactly on this peak (B in Fig. 3), the integral
J(&o) tends to be narrower, whereas, when a zero
of I &(q) I falls on this peak (A in Fig. 3), J(u)

tends to be wider.
We make the following other observations about

the contributions to J'(ur): The largest contributions
tend to come from q values corresponding to 2w/

(nearest-neighbor distance). This is just the lo-
cation of the largest peak in the static structure
factor S(q) = f dv S({l,v). Significant but smaller
contributions do occur for smaller q, the contribu-
tion coming from the peak which for fixed q is cen-
tered at &=0. The "rotonlike" dynamic modes are
not giving a significant contribution. This last ef-
fect was what we hoped to find, as pointed out
earlier.

The fact that distinct sidebands can be seen in
some solids but not here can be understood by con-
sidering the difference between S({l,ur) for solids
and liquids. There are three important differences
here. First, in the solid all modes are propagating

3.0
I I

q Ir{q)I
2B: q Ir{q)I

Ro =2.9 A

Ro 37 A

B A
C: S(q)

I.O
C0
CF

FIG. 8. Curves (A) and (8) are plots
of q2 I ( r)qI2 for R0 ——2. 9 A. and 3.7 A,
respectively (in arbitrary units), Curve
(C) is the static structure factor S(q)
=fdco S(q, cu).
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FIG. 4. Calculated curve including diffusive effects.
(A) Rp=2 9 A D=10 cm /sec, (8) Rp=3 7 A, D =10
crrP/sec.

and are well defined out to the zone boundary.
That is, for fixed q there are sharp peaks (away
from sp =0). In the liquid there is a peak near +
= 0 for all q corresponding to a nonpropagating
mode. The peaks, for fixed q, in the liquid cor-
relation function corresponding to propagating
modes are less sharp than in the solid and tend to
be comparable or smaller than co —= 0 peaks in in-
tensity. Second, in the solid there may be optical
modes giving a relatively large contribution to the
absorption spectrum in a narrow band of frequen-
cies. Third, in the liquid there is a large peak at
q-2n/(nearest-neighbor distance) which is large
and relatively wide as a function of co. The con-
tribution of this peak to the absorption'spectrum
masks the contributions from smaller q's where
the collective modes are wel/. defined. In the solid
the corresponding peak is very narrow both as a
function of q and of co, and does not lead to this
masking effeet.

In order to understand the discrepancy between
calculated and experimental absorption lines, we
next remove the restriction that the cavity be fixed.
We then calculate the line shape using Eq. 6. We
use the same functions w(q) and S(q, v), and for the
cavity correlation function we use

S.(q, ~) = ~ 'q'D/(~'+ (q'D)')

which is the correct form for diffusive motion (at
small q) with D being the diffusion constant. We
shall treat D as a parameter of the calculation. In
Figs. 4 and 5 are a few curves calculated in this
manner. In Fig. 4, curve A, tne value of Rp is that

The first point to be learned from this study is
that the dynamic collective modes of the host liquid
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FIG. 5. Calculated curve including diffusive effects.
Rp=6 A, D=4x10 cm~/sec.

estimated earlier. The value of D is chosen to
achieve approximate agreement with experiment.
Curve B uses the same value of D but different Rp.
The value of D obtained in this way is smaller by
a factor of about & than estimates made from
kinetic-type theories. Such estimates give values
4-5x10 cm /sec. Figure 5 shows a curve with
such a value for D and an R, chosen to bring ap-
proximate agreement with experiments. The shape
here does not seem to agree quite as well as with
the curves in Fig. 4. The estimate of Rp is prob-
ably more dependable than the kinetic-theory esti-
mate of D, as this estimate does not properly take
into account interactions other than the hard cores.
In a dense system, especially a liquid, these are
important, and one expects they tend to lower D. '
In no cases has an attempt to do a detailed fitting
to the experimental curve been made, as the theory
here is not sufficiently accurate for such a fitting
to be meaningful.

In Fig. 6 we have plotted the linewidth of the
curves not containing the Boltzmann factor versus
D for several values of Rp. We noted earlier that
the value of Rp tends to vary little with pressure.
We see here that the linewidth depends linearly on
D (Do 1x10 ' cma/sec) for fixed R, , Since we
expect D to vary approximately as the inverse of
the density, we expect that same behavior for the
linewidth will occur, in agreement with experi-
ment.

IV. CONCLUDING REMARKS
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FIG. 6. Dependence of linewidth (symmetrical line) on
the diffusion constant D for fixed cavity radius Ro.

do not give a significant contribution to the absorp-
tion line shape. It is interesting to note that even
in our model calculation, which excluded diffusive
motion of the impurity, no sidebands can be seen.
In terms of the formalism used in the calculation,
this occurs because the portion of S(q, ~) corre-
sponding to dynamic modes is small relative to the

& = 0 nonproyagating modes and because the peak
corresponding to nearest neighbors is large and
wide as a function of +. The differences between
this case and that of a solid are that in the solid
(a) the nearest-neighbor peak is very narrow, (b)
all modes propagate and remain well defined to
large q, and (c) there may be optical modes.

The second main point is that the density depen-
dence of the linewidth does in fact come from the
diffusive motion of the impurity which broadens the
basic line discussed above. This is in agreement
with the work of Zaidi and Van Kranendonk. The
inverse-density dependence arises as follows: The
function (7(q) 1' selects a few values of the wave
vector q which give dominant contributions to the
integral in Eq. (5). The one or two of these values
near the nearest-neighbor value (q-2 A '), that is,
the main peak in S(q), give by far the largest con-
tribution. At each of these wave vectors the fre-
quency convolution has the approximate effect of
adding the frequency widths of S and S,. For fixed
q the frequency width of S, depends linearly on the
diffusion constant D. Hence the line shape tends to
have a width approximately linear in D, and we ex-
pect D to be inversely proportional to density.
Here we have assumed that the effects of the den-
sity dependence of quantities, other than the D

which are involved, are small. Thus, we find
qualitative agreement with experiment. We note
that although this density dependence arises through
the dependence on a diffusion constant, as does the
proposed explanation of Zaidi and Van Kranendonk,
our picture of the motions involved is considerably
different in that we envision the impurity oscillating
within a cavity formed by the host liquid. This
motion is present even in that form of our model
that we describe as not including diffusion. When

we speak of diffusion we are referring to the cav-
ity as a whole and are assuming that the motion of
the impurity within the cavity is faster than the
motion of the cavity itself. (The characteristic
frequency of oscillation of the impurity within the
cavity is about five times the half-width of the ob-
served absorption line. )

Finally, we consider the relationship between
the absorption process studied in this. paper and
the two-roton Raman scattering process in liquid
helium. In the latter, incident light polarizes a
helium atom. The field of this atom polarizes an-
other atom. The field of the second atom gives
rise to the observed scattered light. The spectrum
of the scattered light can then be written as'

a((u)~(o' J dqd(o'S(-q, n (o') S-(q, (u')g'(q),

where Q is the frequency shift of the scattered
light, S(q, co) is the Van Hove correlation function
for liquid helium, and g(q) is a cutoff function that
arises because an atom does not polarize itself.
This description is basically the same as for the
H~-liquid argon absorption process, but here the
incident light must polarize an argon atom, and
the oscillating dipolar field of this atom excites
the quadrupole moment of the H~ impurity. The
function v is analogous to g.

The spectrum for the two processes is different
because the correlation functions are different:
In liquid helium the correlation function S(q, &u) has
peaks for fixed wave vector q centered at the fre-
quencies + &o(q), where ur(q) is the angular frequen-
cy of the phonon roton at wave vector q in liquid
helium. Unlike argon, these peaks are distinct
even for large values of q. In argon, both for
large and small q, there is a nonproyagating mode
giving rise to a wide peak centered at (d = 0 for
fixed q. It is this peak around + = 0 with q = 2w/

(nearest-neighbor distance) which dominates the
absorption spectrum that we have found. In helium,
on the other hand, the peak centered at w = 0 gives
rise only to a smooth background at large q since
the width of this peak is much greater than the
frequencies of the collective modes. Thus, the
absorption spectrum in Ar-Hz is dominated by the
peak around co = 0 at large q, while the Raman
scattering spectrum in helium is dominated by the
peaks in S(q, ur) at the collective mode frequencies
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(d(q) at large q. The physical reason for the dif-
ference is that the effective thermal conductivity
in liquid helium is very large and makes the width
of the Raleigh peak about co = 0 enormous. We can
expect on the basis of these results that the Raman
scattering in argon probably will not show effects
of propagating collective modes either.

APPENDIX

The quadrupole-dipole interaction is

T' (F) 'a"(-')=J'—, Z((auv/3m)rs(t)
m

We have an integral of the form

I= f dr, dr z e '~' ~ g(r, )gz(rz) I r, —rz
I

z Yz (q ),

where

e '~'"'= Q 4m(- i)'j, (qs, ) Y', (g)
lmm 8

with
&& &~* ((z, P, y) Yr*(S,),(

j'=(s, —s, )/ls, —s, l

f dPdydo(sinPDr', *,(n, P, y)D„' (o(, P, y)

dr, drz- S,sz sinPsin8ds, dszd8dndPdy,

where the D's are the usual rotation matrices.
Using the orthogonality

we have
= [6z /(2l + 1)]6... 6 6„„,,

Define two vectors S, and S& such that S, lies along
the x axis and fz is in the first or second quadrant
of the x-y plane with

Isil = lril; lszl = lrzl; s, s, =r, r, .
Further, let n, P, and y be the Eulerion angles of
the rotation that carry S, and S~ into r, and r, and
let 8 be the angle between S, and fz (or r, and rz).
We change variables

r„rz-S„Sz, 8, &, P, y

We have

I= Y~ (q)67)' i f ds, dSzd(cos8) jz(qs&)

Xg(sl)gl(sz) Is, —sz I S, Sz Pz(cosl ),
where p, is the angle between S, and S, —S~. Doing
the remaining integration we find

I= Yz(q)1 6z'i f ds, f dS,

x(SPS )j (S q)g(S )g (S )

= Y„(q)16m i f ds, jz(qs, )g(s))(1/Sz~) .
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