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The theory and application of the matrix-shape (MS) approach is investigated forelastic
scattering. Various aspects of the method, such as the choice of appropriate variables, the
choice of basis-set functions as representations of the T matrix, and the use of a MS fit to the

potential matrix that allows VG'OT-type integrals to be performed analytically, are considered.
The method is applied to three-dimensional elastic scattering to ascertain if, on this widely
studied problem, the MS approach can in fact produce the essential physics. Numerical cal-
culations are presented to illustrate that reasonable results can be achieved. The numerical
results were obtained using two special cases of the method of weighted residuals, which can
be used with the MS approach to solve the Lippmann-Schwinger equation for T. The use of
the MS approach in conjunction with variational principles is also discussed.

I. INTRODUCTION

Many experimental data on scattering processes
involving large numbers of open channels have be-
come available in the last few years' and many ap-
proximate methods' are being studied for applica-
tion in this area. For most of these problems, the
coupling between channels is strong enough that
methods based on the Born approximation and modi-
fications thereto do not work. Close-coupling
methods have been developed' but they remain ex-
pensive and limited to the order of 100 open chan-
nels. Yet even in simple scattering problems,
large numbers of coupled channels can be involved.
It is also true that the experimental results gen-
erally involve averages over the many states in-
volved and the need for exact state-to-state transi-
tion probabilities is perhaps questionable in very
large problems. Approximate nonperturbative
solutions to scattering problems of this type, based
upon the construction of approximate transition
matrices that follow the essential functional and
variable dependence of the exact transition matrix,
would be very useful for analysis in this area. In a
recent paper, ' such a nonperturbative approximate
approach (the matrix-shape or MS approach) to
scattering problems was suggested and based upon
the general variable dependence or "shape" of the
matrices that contain the scattering information.
The applicability of this approach was indicated in
a quantitative way by examination of the collinear
atom-diatomic vibrationally inelastic-scattering
problem.

In this paper, we expand and further develop
these ideas and, as well, examine more quantita-
tively the viability and sensitivities of this approach.

Our goal is to gain a deeper understanding of the
underlying ideas and to examine the method to de-
termine if quantitative, and physically reasonable,
results can be obtained. As such, this paper deals
with the use of the MS approach in three-dimension-
al elastic-scattering problems. We will deal fur-
ther with inelastic scattering in future publications
since the method, as we will develop it in Sec. II,
can be extended to more difficult problems where
approximate answers for transition probabilities
would be highly desirable. We want here to deter-
mine if, on well-known elastic-scattering problems,
the method can extract the relevant physics con-
tained in quantities such as the total cross section
and its variation with energy. Further, it will be
possible to develop some experience with regard to
the number of terms required in a basis-set ex-
pansion, the appropriate variables that are most
important in a description of the T matrix, and
whether such expansions can yield, within a few
percent, the relevant scattering information. It is
in this context that we shall discuss the numerical
results presented in Sec. V.

II. THEORY

A. General Equations

The physical information in quantum- mechanical
scattering is contained in the T matrix. The tran-
sition probabilities and scattering cross sections
can be found directly once T is known. One can, of
course, work in coordinate space to generate ap-
proximate wave functions and then form the matrix
elements from which the physical information can
be obtained. However, it is perhaps more appro-
priate to work directly in quantum-number space
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since T is directly related to quantities of physical
interest. The T matrix, with matrix elements
(n 'I Tl n&, satisfies the integral equation7

&n'iTin&=&n'i Vin&

+ f&n'I V
I
n "&Go'(n", E)&n" I Tin&,

where V is the interaction potential operator;
G,'(n", E) is

and ] n& is an eigenstate of the unperturbed Hamil-
tonian Ho,

a, in&=E„in),

with E the total energy in the center-of-mass sys-
tem. Equation (1) is the well-known Lippmann-
Schwinger (LS) equation for the transition matrix
T. For elastic scattering, the LS equation for the
T matrix is Eq. (1), identifying n with the wave
vector k and 0.' with k'.

For future reference, the differential-scattering
cross section is related to the T matrix via

where p, is the reduced mass. The total cross
section o'r" is obtained by integrating da/dA. Addi-

tionally, one can use the optical theorem' to obtain
the total cross section o.

& from the imaginary part
of the on-shell T matrix in the forward direction:

o'g= —(16m'p/8'k) Im(&k'i Tik ))f, „-.

This is just a statement of unitarity and, for the
exact T matrix, o~"'=o&. However, approximate
T matrices will not automatically yield unitary re-
sults, and a comparison of 0&' and crz' can provide
a measure of the accuracy of T.

B. Characteristic Variables and Expansion of T Matrix

The approximate nonperturbative method we are
developing is based on the idea of expanding the
relevant matrices in functions that follow the main
variable dependencies of these matrices. To see
more clearly the ideas involved, consider elastic
scattering from a three-dimensional spherically
symmetric potential. In this case, the V matrix
elements &k'l Vlk& depend upon (k' —k)' and not,
for example, on k' and k separately or in other
forms such as k'+k. It is clear then that an ex-
pansion of V in functions dependent upon (k '- k)
can most readily follow the main variable depen-
dence of V. It would in general be considerably
more difficult to represent the V matrix by using an
expansion in a sum of products of functions9 depend-
ing separately on k ' and k, such as

&k'i Vik& Q f, (k')g, (k).

v = (k' —k) Ao,
ua = (k+ k ') Ao,

gg =u'v

(S)

(9)

(1O)

where the factor Q in Eqs. (8) and (9) is the charac-
teristic length in the problem (such as the range of
the potential).

The choice of variables such as v and u to de-
scribe the main variable dependence of the T ma-
trix has been noted several times in the litera-
ture~'3'~ and they have been widely used in disper-
sion theory to extract information on the behavior
of the T matrix. ' The MS approach is based on a
direct use of these variables. Also, we note that
our choice of variables (and the expansion functions
to be discussed) is not based upon a unitary trans-
formation on T. The efforts made to choose char-
acteristic variables are physically motivated and
are analogous to looking for the normal coordinates
of the problem which, unfortunately, remain un-
known.

C. Scattering Potential: MS Fit

In this paper we examine potential, s of the general
form'

V(~)=- V, t dxX(x)e (11)

Many of the standard potentials; such as the Gaus-
sian, Yukawa, and exponential, are of this form. '6

A primary reason for using the form in Eq. (11) is
that we have been able to carry out the integrals
over the intermediate states in the LS equation (1)
analytically. With Eq. (11), the V matrix becomes

It has been shown' ' that in the high-energy
limit the major variable dependence of T is also
on (k —k ') . Thus, one major variable dependence
of T in three-dimensional elastic scattering should
be on the difference variable

~'= (k'- k)'.

However, it is clear that away from the high-energy
limit, v' cannot be the sole variable dependence of
T The. sum variable s = (k+ k ')' [s = (k+k ')j is
conjugate to v, and each will dominant in a separate
hemisphere corresponding to the forward and back-
ward directions, on shell. A third variable is re-
quired for a complete description of T off shell,
and a natural choice in light of the above discussion
is the dot-product variable ~ ~ s. We expect, how-

ever, that the on-shell range of T is most impor-
tant physically and, since ic s = 0 on s hell, this
variable is likely to be less important than a and
s . In summary, the "characteristic variable"
choices are



660 R. CONN AND H. RABIT Z

k

FIG. 1. Schematic diagram illustrating the shape of
the V matrix. The diagonal elements (k =k') dominate
and the elements decay in magnitude as {k—k ') increases.
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In the numerical computations to be presented, we
have given particular attention to the Yukawa po-
tential

(12)

v(r) = (- v, x,jr) e"'"o,
since it has been widely studied in the litera-
ture. ' For this potential the function A(x) is

A(x) = [I/(px)' '] e ' (14)

Equation (12) yields the well-known result

—VA
(k'~ v~k) = (Is)

In general the integral in Eq. (12) would be per-
formed numerically,

-VA(k'i vik)-
Ng

g ue t)v-2

/=1
(i6)

Two general expansions of T have been investi-
gated, one based on expansions in Hermite poly-
nomials and another based upon expansions in trig-
onometric functions. The choice of expansion func-
tions in the MS method is based on several guiding
principles. First, the T matrix is expected, as
with the V matrix, to depend upon the variables
we have al; eady discussed and in a manner anal-

using Gauss- Laguerre weights and abscissa. '
Equation (16) can be viewed as a MS fit to the po-
tential matrix. It exhibits the general characteris-
tic that it decays away for sufficiently large v.
This is illustrated in Fig. 1, where scalar k and
k ' are used for simplicity.

III. CHOICES OF BASIS-SET EXPANSION FUNCTIONS

Ng

y. (v) — Q g e t"
E=1

=e "" a„(v'),
y, (u)=e " a„,(u'),

i=0

(16)

and H;(x) are the Hermite polynomials. This
structure requires some further explanation. The
leading term in v, Pp(v), is the potential matrix in
Eq. (16) except for numerical constants. The ex-
pansion involves even-order Hermite polynomials
in v and odd-order Hermites in u . Since both
variables range only over [0, ~], both expressions
are separately complete. 3 The reason for this
choice is to ensure linear independence on shell
because on shell, v and u are not independent but

- are related by

v'+u' = 4A (on shell), (20)
2

where A —= k Ao. The Gaussian terms e "" and
2

e " are included to guarantee convergence of all
integrals in the problem and to provide an over-all
matrix shape.

Another expansion that is really a subset of
choice H-1 is an expansion in Hermites dependent
solely on v . This set is

ogous to that illustrated for V in Fig. 1. Second,
the functions must be linearly independent and
hopefully complete. A third guiding idea is to
choose functions with which analytical evaluations
can be carried as far as possible. For example,
Gaussian functions, such as e '~", e ~", etc. ,
have the appropriate functional behavior and allow
one to proceed in terms of analytical evaluations
of integrals in the LS equation. However, expan-
sion in Gaussian functions can lead to serious nu-
merical difficulties because such functions are
only weakly linear independent. ~

The first general expansion used is an expansion
of T in Hermite polynomials in v and u, multiplied
by Gaussian weight factors. These functions will
retain the basic MS approximation to T while
adding to the numerical stability of the problem.
Furthermore, as we will show, the integrals in the
LS equation can be worked analytically.

We have expanded using only u and v for reasons
previously discussed, namely, that the on-shell
range of T is the most important for the solution of
the LS equation in many scattering problems. ' '"
This approach therefore amounts to an effort to
synthesize T from functions of v and u by finding
appropriate expansion coefficients. The expansion
itself, labeled H-1, is

%'IT'I" &=.(~ "rrl,.(v) ~ r y, y, (u))( ', '),
Csv)

where
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N

(k'llo'll2)=(& xo(o(v) ~(-
' '),

where, now, P((v) is defined by

N~

g (v)= Qae t i=0

=e "" H((v2), i ~1.

(21)

(22)

main, as with the He"mites, linearly independent
on shell. An additional advantage to using sines
and cosines is that they lead to relatively simple
expressions for the intermediate-state integral in
the VGoT term of the LS equation (1) (see Appendix
a).

IV. APPROXIMATE NONPERTURBATIVE SOLUTION OF
LS EQUATION

(0( = (i/7(fo)(0o (25)

(do = 7(/2 A (26)

where [0, 4A ] is the on-shell range of u and v,
separately. Choosing different values of M0 implies
using a fundamental frequency related to a multiple
of the on-shell range. We have found M0=2 to give
satisfactory results. The expansion functions re-

Since only v enters as a variable, all the Hermites
in v can be used. This choice, labeled H-2, al-
lows us to examine the behavior of the results on
the variable dependence.

At this point, a disclaimer is in order regarding
the completeness of the expansion functions in the
space of T. While it is true that the functions in
(18) and (19) are separately complete on [0, ~],
these expansions do not span the complete (u2, v,
(v) apace of T. We hrgue simply that the functions
span v and u individually and, based on the pre-
vious discussion, they are expected to span that
part of the space of T most important for thephysics
of the problem. Certainly, they span the on-shell
range and to the extent that this range is most im-
portant, our expansion will give adequate results.
The reasonableness of the numerical results bears
out this point.

The second general basis set examined is an ex-
pansion of T in sines and cosines complete over a
multiple of the on-shell range. Unlike the Hermites,
which are complete on the semi-infinite interval
[0, ~] (and therefore can perhaps better represent
T off shell), the sine-cosine expansion set will be
complete in u and v only over a finite interval.
Again, the motivation for examining this choice is
the many indications that the on-shell range is
physically most important. (Certainly, to the ex-
tent that classical mechanics is correct, this is
true. ) Thus, the expansion in sines and cosines,
labeled SC-1, is of the same form as Eq. (17) but
with g((v) and g((u) now defined as

Ng

g((v)= Z a, e ", i=0
1=1

Fv=e "" cos(ur(v ), i&1 (23)

g((u) = e '" sin((o(u'), i ~ 1. (24)

As before, go(v) is given by Eq. (16). The fre-
quencies +& are defined by

Nv Nfi

—v~ do" ('o(vo)l 5 xo(o(vo)o Z yo(o(xo))/
k &=0 $~1

(27)

where c=- (Vo/E)(A2/2(( ), Q" =k "Ao, and the
variables v1, u1, and vg are

v, = (k"—k) A,
u —(k "+k) A.

v2 (k
r k tt) 2A2

(23)

(29)

(30)

The N (= N„+ N„+ 1) simultaneous linear equations
for x& andy& are

f d'ud'vR(u, v)A'„(u,
' v)=0, (31

where

An 4(n-(&/2(v)e

=(f„/2(u)e ""; (32)

+ implies n=1, 3, . .. , 2N„+1, —implies n=2,
4, ... , 2N„, and the exponential functions are in-
cluded as convergence factors for the integrals.
Explicitly, the equations for x, and y& are
N Nv8 y ( W ((n, i ) + Z x(W2 (n, i ) —W2 (n, 0)
)=1 )=0

—c Z a, Z y, W2(n, i; l)+ Z x,W4(n, i; l) ~=0,
l -"1 f-"1 i"-0 )

(33)

In this section, we sketch the derivation of the
equations to be solved for the expansion coefficients
in the basis-set expansions of T. Some of the ex-
pressions are referred to in Appendixes A and B.

A. Galerkin Method and Hermite-Polynomial-Expansion Set

The Galerkin method ' ' has been used to obtain
a set of algebraic equations to solve for the complex
expansion coefficients x, and y( in Eq. (1'7). Since
Eq. (1'7) gives an approximation to 7, when it is
substituted into Eq. (1), the difference between the
left- and right-hand sides defines a residual func-
tion,

Nv

R(u, v ) = Z x(g((v)+ Z y (P((u)- go(v)
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with the functions W' defined by

W', (n, i)= jd'ud'vA'„(u, v)y, (u),

W,'(n, i)= Jd'ud'v li'„(u, v)P, (v),

(34)

!

W, (n, —,
' j), j even; n even

W~(n, 2(j —1)), j odd; n even
Sny =

W', (, —,'j),
Wz(n, ~(j —1)), j odd n odd

and a matrix

j even; n odd

C={C„~].,

with matrix elements

(39)

(40)

!

!iW3(n, —,'j; l), j even; n even

); l), j odd; n even
(41)

j even; n odd

W4(n, ,(g —1

C„,=c Za, x
'W3(m, —,j; lj,

W'(n i l)=l d'ud'vd'Q"
+1&

(36)
-v t

W'(n i l ) = d'u d'v d3Q"4n, l'
~ =! u v

Qf /

(37)

All these functions have been evaluated analytically
and the derivation and final expressions are given
in Appendix A. We now define a matrix

S = {S„)f
with matrix elements

B. Collocation Method and Sine-Cosine Basis Set

The collocation method' has been used to obtain

the expansion coefficients in the sine-cosine basis
set. The equations for these coefficients are ob-

tained by considering the residual function R(u, v),
as defined by Eq. (27), using Eqs. (23) and (24) as
the definitions of g&(v) and P&(u), respectively.

To employ collocation, one must set the residual
equal to zero at N„+N„+1=-N collocation points to

obtain the required number of equations. Since the

on-shell range is most important, the collocation
points will be chosen within this range. Further-
more, since u =4A —v on shell, one in practice
chooses N collocation values of v2. In addition,

the values of the collocation points on shell are
chosen to be the zeros of the shifted Chebychev

polynomials 6 of order ¹ The reason for this
choice is that T„*(x), the shifted Chebychev poly-
nomial on [0, 1] of order N, has equal magnitude

extrema. 2~ If T„*(x) is considered the error curve
resulting from an attempt to obtain a best fit to
x" on [0, 1] using a polynomial of order N 1, then-
this error curve will exhibit "equal ripples"" (it
is a "normal" error curve). We would like to
choose the collocation points v& such that the resi-
dual function R(v2) on shell has equal magnitude
extreme deviations from zero and that these devia-
tions are as small as possible. Of course, when

R(v ) is computed, it may not have the "equal-rip-
ple" property, but the choice of collocation points
as zeros of the shifted Chebychev polynomial never-
theless represents a most reasonable first guess.
Therefore, the collocation points are

W;(n, —,'(j —1); l), j odd; n odd .

Defining a solution vector of length N as

p q 2j —1
vj=4Q cos m (45)

and the vector a as

(42)

It is interesting to note that for N= 1 the value
of v& corresponds to 8= ,' w (8 is the ce-nter-of-mass
scattering angle). One can readily show that in

this case xo is

xo = fi(~2 &)/ [ fi(~2 v) fg(k v)], -
where f„(8)denotes the nth term in the Born expan-
sion for the scattering amplitude. Thus, the scat-
tering amplitude itself becomes

f(8) = f (l ~)f (8)/[f (-'v) - f (-' v)], (47)

(43) which closely resembles the value for f(8) found

using the Schwinger variational principle with
plane-wave trial functions, namely,

the matrix equation to be solved for b is
f ~(8)= f (8)'/ [f (8)-f (8) ] . (4S)

(S- C)b=S , a (44)

where S and C are (N„+ N„+ 1)x (N„+ N„+ 1) complex
matrices.

Thus, even at lowest order, the results via colloca-
tion should be reasonable.

The linear equations that must be solved for x,
andy, using collocation points v& are
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Nv Nu

Jt(vt) = 0= Q xt)jJ((vt)+ Z $t(t) t(vt) ()o(vtj)
f"-0 5~1

( Ny Nf8

—v( v~Vv(v&)v Z v, C, (v )+ Z V,B,(vi) ),
&~1 1~1

j=1, 2, . . . , N (49)

where To(v), C, (v), and S((v) are defined by
j((a t(a t vi tt ~ vl

T,(v)= Z Z a,at, j
d'Q"„o tto . ~ (50)

l=1 t v=1 W -Q" +fs '

(tlv(vl)(I
to(vo)

~

~

&o(v~)

implies Eqs. (56) become

Db=s (60)

(52)

Fto qo(vt) —cT—o(vt),

G„=e ""tcos((otvt) —cC((vt),

H„=—[e'"t~'o sin((dtv', )+ cS( (v, )] )

so that Eq. (49) becomes
N Ns

xo Fto+ ~ xt Gu + ~ y t Ht t = )I)o(v&),

(58)

(54)

(55)

Defining the matrices

j=l, 2, ~. .. ¹ (56)

10 G11 G12 ' ' ' 1Nv +11 +12 ' ' ' +1N+

E20 G21 G22 ~ ~ ~

NO N 1 N2 ~ o ~ NN+ N1 N2 ' ~ ~ NNN

(5V)

'0

The variables v2, e'„and ui are, as before, de-
fined by Eqs. (28)-(80), respectively. The inte-
grals in these functions have been evaluated ana-
lytically and the final expressions for To(v), C, (v),
and St(v) are given in Appendix B.

To obtain the equations in the matrix form, it is
convenient to define the functions

to be solved for the solution vector b.
For both matrix equations, (44) for the Hermite

case and (60) for the sine-cosine expansion set,
the conjugate gradient method was used to obtain
a solution vector and the largest matrix set con-
sidered was a 25x25 complex D matrix.

V. NUMERICAL RESULTS

The numerical calculations were performed using
a five-term fit to the potential matrix representing
a Yukawa potential in Eq. (16). Exact numerical
results with the parameters Tt'o = - 53 MeV and Q
= 1.35 fm for neutron-proton scattering are avail-
able in the literature. '~ 20 However, these param-
eters can be scaled to atomic units and the results
are therefore presented in reduced units, namely,
the scattering amplitude f(8) in units of Ao, the dif-
ferential cross section d(r/dg in units of A.„and
the total cross section o& in units of 7tA0. The ap-
proximate nonperturbative T matrices obtained by
solving Eqs. (44) or (60) were used to generate
f(8), do(8)/dA, and (&r as a function of the number
of ternis retained in the basis set, To obtain
smooth results as a function of the number of terms
retained, the solution vectors, at a given order N,
were averaged as follows: The jth coefficient,
e. g. , xt("&, in an expansion of order N(j ~ N) ls
linearly averaged with all values of x&~' obtained
previously in expansions of order I&

¹ Thus,
x&' is defined as

x"= (x,'"+xt"'+ ~ ~ ~ +x,'"')/N. (61)

Of course, for j &M the expansion coefficient is
identically zero, The simplest example is N= 2
for which

Xav t (X(l & X(O) )

Xav t
(

(l) X(2) )2 ~ 2 2

(62)

(68)

(58)
where xz" =0. The T matrix converges to the same
result with averaged and unaveraged expansion
coefficients, but the trends are more readily dis-
covered using the averaging procedure.

Figures 2 and 3 illustrate typical results for the
differential cross section using the SC-1 expansion
in sines and cosines and illustrate that the basic
properties of the differential cross section are re-
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EXPANSION SET, SC-I
I EXACT

A * .663

FIG. 2. Differential cross section
using SC-1 basis-set expansion for T;
A = 0.663.
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produced. These results were obtained using n
and y equal to zero. Similar results were found
for e=y=0. 01, but for larger values of n and y,
such as 0. 1 or larger, the results were less ac-
curate. This sensitivity is most likely related to
the fact that for large values of o. and y, the linear
independence of the expansion functions, in par-
ticular over the on-shell range, is masked by the
strongly decaying Gaussians. The phase informa-
tion obtained is illustrated in Fig. 4, where the
real and imaginary parts of the scattering amplitude
at 8= 0 are shown along with the exact value. 8 Qf
course, there is no phase information of f(8) in the
Born approximation. This phase information leads
to an optical theorem value of cr&', which is com-
pared with or", obtained by integration of do/dA,
in Fig. 5. The results both converge to within 10/g

or less of the exact results indicating approximate
unitarity is preserved. The wide variations in the
low-N results are most likely due to the solution
scheme since only N collocation points are required
to obtain the expansion coefficients, yet with only
a few collocation yoints one can expect wide varia-
tions in the residual function from zero. The
values of g~" and o&' do not converge to each other
or to the exact answer because the expansion func-
tions themselves are not complete in the space of
T. That the results are yhysically reasonable sup-
ports the choice of I and v and the neglect of the
u ~ v variable, which is zero on shell.

Typical results for the differential cross sections
obtained using the Hermite expansion H-1 for T are
shown in Figs. 6 and V. Again, the basic physical
features of the cross section are adequately repro-

I I I
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A * I.BI
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L 4

3 FIG. 3. Differential cross section
using SC-1 basis-set expansion for T;
4 =1.81.
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FIG. 4. Real and imaginary parts of the scattering

amplitude f(e) obtained using the SC-1 expansion set in the
forward direction when A =0.663. The first Born ap-
proximation gives f~m(0) =0.

I/N
FIG. 5. or and ap', obtained using the SC-1 expansion

set, vs 1/N, where N is the number of terms retained in
the basis set.

duced in both the forward and backward hemispheres
and, as well, phase information on f(8) is ob-
tained, as shown in Fig. 8. The results were ob-
tained using n = y = 0.01. As discussed above,
values of 0. and y greater than 0. 1 led to poorer
results because the linear independence of the ex-
pansion functions, in particular over the on-shell
range, becomes masked by the strong damping of
the Gaussian. On the other hand, a and y cannot
be zero because finite values are required to obtain
convergent integrals using the Galerkin method. A

typical convergence plot for the expansion set H-1
is shown in Fig. 9, and the smoothness, in contrast
to Fig. 5 for the SC-1 expansion, is due to the use

of the Galerkin method, which sets a weighted in-
tegral of the residual equal to zero. Therefore,
comparable accuracy can be obtained using fewer
terms in the expansion H-1 as compared to SC-1.
As before, however, the values of o~&" and g&' do
not converge to each other but both are close to the
exact result. This again results from the incom-
pleteness of the expansion set in the space of T,
but the adequacy of the results indicates the expan-
sion set spans the most important part of T space.
This is more clearly seen by comparison with ex-
pansion set H-2 [Eil. (21)j which is an expansion in
functions that depend only on e . The results for
da/dn are shown in Fig. V together with the results

5l
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FIG. 6. Differential cross section
using the Hermite polynomial basis set
H-a A=1.41.
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EXPANSION SET, H-I
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~~L
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FIG. 7. Differential cross sections
obtained using the H-1 and H-2 basis-
set expansions of T; A = 1.81. The H-
2 basis set uses only the v2 variable.
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using expansion set H-l (with v' and u variables).
It is clear both in Fig. 7 and in the convergence
plot Fig. 10 that the use of u' variables is quite
important and its absence leads to converged re-
sults that are not as good as those obtained using

and u . Also, the variables u and v seem
adequate to reproduce the essential physics even
in energy ranges far from the Born limit, such as
A = 0. 663 and 1.41, and they are clearly superior
to the use of e alone. The use of the u" v variable
would probably improve results even more, but
this effort does not seem warranted within the con-
text of what we are looking for.

It is also interesting that the number of terms in
the basis sets required to achieve similar accura-
cies in o~ remained essentially independent of en-
ergy over the energy range studied. This is in
contrast to solution methods, such as partial

waves, which require an ever-increasing number
of terms as the energy increases. The expansion
sets SC-1 and H-l have also been able to reproduce
reasonably well the variation of cr& with energy.
This is shown in Table I, where 0~ is given as a
function of A (= kAo) and Vo/E

VI. CONCLUSIONS

The results presented indicate that reasonable
approximate results can be achieved on three-
dimensional scattering problems when a suitable
choice of "characteristic variables" is made and a
nonperturbative basis-set expansion that fits the
shape of the T matrix is chosen. The results are
sensitive to the choice of variables, as indicated
by the results using only v variables rather than
both v and N . The results have provided some
insight into the method for choosing such variables;

O
~g

O
M

2—

H-I~e~ sc
EXACT

A & I. BI

cu &

M

2 ~

—EXACT
I-

EXPANSION SET, H-I

A = I.8I

0',
0

I

2

f, (UNITS OF I/a)

FIG. 8. Real and imaginary part of f(6), the 0=0,
obtained using the H-1 and SC-1 expansion sets; A, =1.81.
The Born approximation gives f~m(0) =0.

I

~ 25 I.O
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0 ~ 5
)

.75
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FIG. 9. 0& and a&~ from the H-1 expansion set.
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E XPANSION SET H -2
A = l.81

04 0
0

1.5—
EXACT

1.0—

0
0

I

.2

FIG. 10. oz and Oz from the H-2 expansion set vs
1/N, where N is the number of terms in the expansion.

in particular, the characteristic variables of the
V matrix seem to remain important variables for
T. Also, variables dominant near the on-shell
range are especially important. This is illustrated
by our ability to achieve reasonable results using
only v and u variables (neglecting co =u v) and by
the effort to synthesize T from expansions that did
not involve products of functions of v and functions
of u . Certainly, the results can be improved by
including the m variable and including product func-
tions, but our results indicate the improvement
will not exceed 10%%uo or so. Further, we clearly
have not expanded in basis sets that are complete
in the space of T, but again the adequacy of the re-
sults indicates one can, by choosing appropriate
variables, apparently span the most important part
of that space. We have also noted that the number
of terms required in the basis set after which one
can safely extrapolate to the converged result
seems relatively insensitive to the energy. This
reflects the nonperturbative nature of the approach.
All this information, together with the knowledge
gained in the previous paper, will be important
when, as is now being done, the approach is ex-
tended to three-dimensional problems with in-
elasticity and many open channels.

As a final point, we should like to place these
results in a different perspective than the one used
heretofore. In the current context, this paper is
aimed at examining whether adequate approxima-
tions to the T matrix could be obtained in a three-
dimensional problem by fitting the shape of T. The
expansion coefficients for 7 were found by some

X. ,(P) =X,.(P) (AS)

Using (Al) and (A2), it is possible to evaluate all
the X functions if one knows X, ,(P) for all b

TABLE I. Total cross section-variation with energy.

A V0/E
0g't

expansion SC-1
int

(Tz

expansion H-1

0'g

first Born
approx. o2 (exact)

0.663 5.38
1.406 1.19
1.816 0.716
3.0 0.262

9.40
2.79
1.80
0.562

9.25
2. 55
1.45
0. 635

8.12
2.51
1.58
0.601

10.09
2. 639
1.628
0.59

varient of the weighted-residuals method and the
physical information, namely, cross sections,
were directly derived. However, it is also possi-
ble to consider the MS approach as a scheme for
generating approximate nonperturbative T matrices
which can be used as trial functions in a stationary
principle for T to derive even more adequate values
for the transition matrix. This is in contrast to
the more standard variational approaches which
generally involve the evaluation of trial wave func-
tions for use in stationary expressions for T. The
Schwinger principle is an example of this ap-
proach. In fact, two such stationary expressions
for T in the form we require are available. We
are currently extending the variational approach to
couple it with the MS method for both elastic and
inelastic problems so that the entire method can
be placed on a firmer mathematical foundation. To
this date, we have investigated elastic scattering
using the variational approach and the results are
very promising.

Note added in manuscriPt. The authors recently
received a preprint entitled "Scattering Amplitude
Calculated with Continuous Space-filling Curves, "
by C. M. Rosenthal and D. J. Kouri, which is
closely related to the material in this paper.

APPENDIX A

The functions W,
' (f = 1, 2, S, and 4) are required

in order to solve for the expansion coefficients in
the Hermite polynomial basis-set expansion of T.
The elements S„& of Eq. (S9) are defined in terms
of the functions W;(n, —,'j) and Wz(n, —,'(j —1))
which, in turn, can all be expressed in terms of a
function X„,(P), defined as

X,, &(P)= f 4' dye "H, ,(y )H~, (y ), (Al)

where a and b are int(. «ers. Using the recursion
relation for Hermite 1.- lynomials, one can show
that the X functions satisfy the recursion formula

X, ,(P) =X, , „,(P)- 2(a- 2)X. ..(P)

+ 2(b —1)X. .. ,(P) . (A2)

Further, X, I, is symmetric, i. e. ,
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Ng

W', (n, —,
' j)= Z a, X, („„&/2(t,)X, //2(2a), (A6)

Wl(n, zj )=X...(1)X„/2 &/2(2(2), (A7)

The functions X, 2(P) can be evaluated by first
making the variable change x = Py, so that Eq. (Al)
becomes, for X, 2(P),

X, ,(P)=(2v/P'") f x'"dxe-"H„,(x/P) . (A4)

Carrying out the integral gives

X,„(P)
(1/2(2 1) & s( (5 1) l 1h(5 5 2m)Pzsh-2-5/2( 1)sh-1

(m —1)!((&&+ 1, —2m) !22~ 2

(A5)

where [z] stands for "greatest integer less than or
equal to z, " and I is the gamma function. In
terms of the X function, the W; functions for i = 1
and 2 become

W:(n, —.'(j-1))

Ng

=X&,l((z) Z Z a&a&.X(„,»/2, (/.1&/2(t&+ t&.), (A8)
l =1 l s-"1

Wz(n 2(j 1))= ~ a&X /2, 1((2)X&,(/ 1&/-z(1+ t&) (A8)
lz:1

The matrix elements C„&, defined in terms of
functions Wz(n, —,'j; l) and W4(n, —,'(j —1); l), can
also be evaluated analytically but the derivation is
extremely tedious and we spare the reader the de-
tails. In short, the functions W3 and W4 can be
expressed in terms of a function E(2(f, l; A), where
A =kAO as before, and g will be defined. The in-
tegrations were performed by interchanging orders
of integration, performing the d'u d'e integrals
first, and then carrying out the integral over d'Q".
The final expression for the function F{2(f, l; A) is

64» f' ~ S&2(1/4f, h) ml (2f+h)24f "
~ (- 1)"[2(m-r)]l (4f+g)(4fc —hz)

(2fd+ gh)(4 fc —hz) -„2 fs 4fc hz „() -(m —r) l (2fd+gh)(2 f+ 5)

hf . , "'~"' (hf+(()(hfc —h')+(hf h)(hfd ~ Sh) )"'
(2f+h)[4f(4fc -h )] /

A (- 1) (sl+j—2) l
(( 1)1/2 (~1/2A))slhl-/(2d")'1' '(s -j)l(j-1)l

where

, ((2fd+ gh)(—2f+h)/[(4f+g)(4fc —h )+(2f+h)(2fd+ gh)])2
22p l (2s, —1 —p) l (2m '+ 1 —p)l(p+ m- sl- r- m') l

x H(2m '+1 j&)H(2-m —2r+2s, +p+1), (A10)

S„(a, n)=
nl (+/& (-1)'(2n —4t+1)!(za)" 'H(n- m —2t)

2(2m+ 1)I, (&
t l (n —2t) l (n —m —2 t) l (A11)

H stands for the Heaviside function and 3()(z) is a
standard function ' related to the error function
and defined, for complex z, by

5{)(z)=—
'~ dt = e erfc( —iz), Im(z) & 0.iI e

r-.z-g
(A12)

fn terms of F,/(g, l; (h&), the functions W', and W4
become

~N

Z Zi a&„a„, E(„„)/2,(/ 1)/2(&4, l; A), (A15)

W4(n, 2(j —1); l)= Z a, "E„/2 (/ )/ (f14 2l; A),

(A16)
where the arguments g, and f4 are defined as

l;„=g„-—g + 2, m=1, 4 . (A17)
1 2 (2fd+ gh)

Ng

Wz(n 2j; l) = ~ a& F( 1)/2 //2(lhl l; A),
g

~ s

Wz(n, zj; l) =E„/2 //2(f&, l; A),

(A18)

(A14)

The factors c, d, f, g, and h are given in Table
II for each function. The constants o, to a5 in the
table are

W4(n, 2(j —1) l)

os=tr+ a

(rz = —4'(5{2+t, ),
(A18a)

(A18b)
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TABLE II. Arguments in 8'&. A
y +r &

4Sr VS &&& & 8~3/4(&+&~o' sg=
I

p

40'4+ 'Y

go'4+ 0!1

—0')

0'3 @0)+f

go'4+ 0',

40'4+'Y

—0'3

0(
—0'4

A x+s '~ Isg'+rq L

2 rs + 2trs(r+s)]'~

A r+s ' (sq'+rq (
'

2 xs 2 [rs(r+ s)] '

os= a- t

oa=tr+ti" y

Og = t) —t)8. ~

(A18c)

where ao(z) is defined by (A12) and where, for r
and s complex, we define

I
sj'+ rq I = (s q' + r q

+2rsj' j)'@. In terms of I'(r, s), the three func-'
tions of interest are

Using (A10) together with (A1V), (A18), and Table
II, the functions 5"s and W'4 are evaluated.

APPENDIX B

When sine-cosine expansion set and collocation
are used, the functions 72(v&), C (vi), and 8 (v&),
with v& on shell, must be evaluated. Each function
can be expressed in terms of a function I'(r, s) of
two complex variables (r and s), defined by the
integral

&-t(c '-q ")!4r) -((~e-q ")~/4i ~

where q = kAO and A = I q I. Such integrals have been
considered previously' for real arguments r and s.
The evaluation for complex r and s can be carried
through in a similar way to yield, for Re(1/r+ 1/s)
&0,

' a, , 1 1c„(v)=Z —' I'
~

.
~)

1 1
4t'4(a+itd, „)I

where, on shell, Iql =
I j'I, v =22 (1 —cos8), and

n =24 (1+cos8) for 8 the scattering angle in the
center- of- mass system.
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