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NMR Measurements of Self-Diffusion in Lithium-Ammonia and Sodium-Ammonia Solutions*
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Self-diffusion coefficients of 'Li, "Na, and 'H have been measured in 1-20-MpM (100Xmoles metal/total

of moles metal and moles ammonia) solutions of lithium ammonia at 223 and 233 K and in 2-15.5-MpM

solutions of sodium ammonia at 233 K by the NMR spin-echo pulsed-magnetic-field-gradient technique. In

addition, the temperature dependences of the self-diffusion coefficients were measured for seven

representative concentrations of lithium ammonia below 240 K, The data indicate that the lithium and

sodium ions are solvated by four ammonia molecules over the time scale of molecular diffusion. The

concentration dependence of the self-diffusion coefficients of the metal-ion complexes and of the

free-ammonia molecules is found to be consistent, evaluated by the Stokes-Einstein relation, with the

available viscosity data. The melting-point self-diffusion coefficient and the temperature dependence of 20-

MPM lithium ammonia are fitted to the Ascarelli —Paskin and Cohen-Turnbull diffusion models for a

reasonable choice of packing fraction.

I. INTRODUCTION

Metal-ammonia solutions exhibit a wide range
of physical behavior': As the metal concentration
is increased, they pass from an ideal electrolyte
through a nonmetal-metal transition and finally be-
come a rather good metal at the highest concentra-
tion. Schematic phase diagrams of lithium-am-
monia and sodium-ammonia solutions, two of the
more thoroughly studied systems, are shown in

Fig. 1. The lithium-ammonia solution saturates
at approximately 20 MPM, while the saturation
concentration for sodium-ammonia solution is
about 15. 5 MPM near 240 K. [All concentrations
will be expressed as MPM= 100%xmoles metal j
(moles metal+ moles ammonia). ]

In the metallic regime (above 8 MPM) one of the

most striking characteristics of metal-ammonia
solutions is the rapid increase of electrical con-
ductivity4' with increasing metal concentration.
On increasing from 8 to 20 MPM, the electrical
conductivity of the lithium-ammonia solution in™
creases by a factor of 10 and reaches a value of
15x 10' (Q cm) ', a value comparable to that of

liquid mercury.
Ashcroft and Russakoffe have successfully ex-

plained this concentration dependence by employing
a model in which the lithium ions are solvated by
X-ammonia molecules; they chose X = 4. They con-
cluded that the Li(NH, )4' complex is a rather weak
scatterer of electrons, whereas the free-ammonia
molecules are strong scatterers. As the lithium
concentration is increased above 8 MPM, the
number of free-ammonia molecules is rapidly de-
creased, and it is primarily this depletion which
accounts for the strong concentration dependence.
This solvation model has also been appliedv' to
the analysis of the concentration dependence of the
compressibility of lithium-, sodium-, potassium-,

cesium-, and calcium-ammonia solutions.
There is as yet no direct evidence for the existence

of the Li(NHS)4' complex in the liquid phase. How-

ever, the compound lithium tetramine does exist
below 89 K and such solvation might be expected
to persist at higher temperatures and perhaps at
lower concentrations. If the lithium ion were in-
deed solvated by four ammonia molecules and if
the complex Li(NH~)4' diffuses as an entity, then
in the saturated solution (20 MPM) the self-dif-
fusion coefficients of the lithium and ammonia
should be equal. Furthermore, if this solvation
persists in concentrations below 20 MPM, then it
would be expected that the larger, more massive
Li(NH, )4' species should diffuse more slowly than

the free-ammonia molecules. Conversely, if the
lithium ion were not solvated, then the lithium ion
should be more mobile than the ammonia molecules.
The self-diffusion coefficients of the ~Li hand of the
ammonia protons may be measured independently
in the lithium-ammonia solution by the nuclear-
magnetic-resonance (NMR) spin-echo pulsed-field-
gradient technique as a test of the solvation hy-
pothesis.

Although the sodium-ammonia solution is quite
similar to lithium ammonia, no compound of so-
dium ammonia is known to exist. Measurements
of the self-diffusion coefficients of the 23Na and
the ammonia protons in sodium ammonia also
provide a test of the solvation hypothesis and al-
low comparison with the behavior of lithium am-
monia.

Diffusion measurements in metal-ammonia so-
lutions are of interest for other reasons. Not
only is the conductivity of the saturated lithium-
ammonia solution comparable to the conductivity of
other liquid metals, but the Hall coefficient, ther-
mopower, and Knight shifts are characteristic' of
liquid metals. If the concentrated lithium-am-
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monia solution behaves as a simple metal, then
it may provide a test of molecular transport theo-
ries in a significantly lower-temperature regime
than more common liquid metals: In 20-MPM
lithium ammonia diffusion may be studied over a
factor of 3 in absolute temperature at pressures
well below 1 atm. Second, the mechanical proper-
ties of the metal-ammonia solutions change mark-
edly with concentration. On going from pure am-
monia to saturated lithium- ammonia the density of
the solution decreases by 30%%uo. The viscosity'o de-
creases by almost 50% from its value for pure am-
monia on the addition of 15.4 MPM of lithium. Al-
so, the compressibility" of 20-MPM lithium am-
monia is about twice as large as in pure ammonia.
It would then be expected that the self-diffusion
coefficients should show a strong concentration de-
pendence and might corroborate explanations which
have evolved for the density, viscosity, and com-
pressibility results.

For these motivations diffusion measurements
were performed in 1-20-MPM lithium-ammonia
and 2-15. 5-MPM sodium-ammonia solutions.
(Signal-to-noise problems precluded diffusion
measurements on the metal nuclei at concentra-
tions much below I MPM. )
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fusion coefficient, and g the background gradient
of the laboratory magnet.

For the large pulsed gradients used in these
measurements, the background term (ing2) and
the cross term (in G' g) are small compared to
the first term and may be ignored. To avoid mea-

II. EXPERIMENTAL TECHNIQUE

Pulsed-Field-Gradient Spin-Echo Method

In its simplest form the NMR spin-echo method
for measuring self-diffusion coefficients employs
a —,

' p rf pulse followed after a time 7 by a g pulse.
A spin echo appears at 2v provided that 2y is not
much longer than the homogeneous T2 of the nuclear
system. If a magnetic gradient is applied after
the ~~ g and g yulses, then a particular syin will
constructively interfere with the echo at 27 pro-
vided that the phase gained by precession in the
local static magnetic field seen by the spin is equal
in the intervals (0, y) and (v, 2v). If the magnetic
histories are unequal for many spins, owing to
diffusion along the magnetic gradient, then the
echo amylitude will be reduced from its value in
the absence of diffusion. While diffusion may be
measured in a steady (dc) gradient, it may be ad-
vantageous to apply a pulsed gradient after the
—,
' g pulse and then an identical pulsed gradient after
the p yulse. For a —,'g —y —z sequence the attenu-
ation of the spin echo for pulsed gradients of am-
plitude G and duration 6, separated by a time z
and delayed from the —,

' z pulse by t» is
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FIG. 1. Phase diagram of (a) lithium ammonia and
{b) sodium ammonia adapted from Ref. 2.
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suring T~, all data were taken for a fixed 7. Cor-
rected's for the finite rise (f„) and fall (f&) times
of the gradient pulses, Eq. (1) becomes

M(2r) = Mo exp[ -y2DG~5~['7 s 5+4(2v/5 —I)]],
(2)

where A= t„-t& and MO=Moe ' ~. The echo sig-
nal was recorded for 8-15 values of (G, 5) and the
echo-amplitude data, weighted by the signal-to-
noise ratio of the averaged signal, were then
computer fit via a least-squares routine to deter-
mine the self-diffusion coefficient D.

Sample Geomeirii

In the concentrated (above 8 MPM) metal-am-
monia solutions, an applied rf field induces eddy
currents which attenuate and phase shift the ap-
plied fields over a distance of the skin depth. For
the 20-MPM lithium-ammonia solution this skin
depth is about 95 p, at 18. 5 MHz, the nuclear Lar-
mor frequency selected for the lithium-ammonia
diffusion measurements. Thus for a cylindrical
sample of radius much greater than 95 p, , the mag-
netic resonance is restricted to a thin annulus at
the surface of the liquid and the effective NMR fill-
ing factor is significantly reduced, lowering the
signal-to-noise ratio from its value in an insulat-
ing sample.

Unfortunately, the usual technique of preparing
an electrically isolated dispersion of particles
smaller than the skin depth is inapplicable for
metal-ammonia solutions because of the chemical
instability of these solutions in the presence of
foreign material. All experiments were therefore
performed in bulk" cylindrical samples, 6-mm-
o. d. Pyrex tubes of 1-mm wall thickness filled
about 2. 5 cm with solution. The problem of mea-
suring self-diffusion coefficients in conducting
liquids is treated in the Appendix, which indicates
that the analysis [Eg. (2)] of the pulsed-field-
gradient spin-echo technique may be applied direct-
ly to conducting liquids.

Sample Preparation

Matheson (UHP) ammonia, scrubbed of water in
a sodium-ammonia solution, was distilled onto the
alkali metals which had been cut and weighed in a
helium-filled dry box. The gaseous ammonia was
metered out by a mercury manometer and a cali-
brated volume. The Beatty-Bridgeman' equation
was used to determine the appropriate pressure of
ammonia. The stated compositions of the prepared
solutions are accurate to about 1. B%%uo, e.g. , 20. 0
~0. 3 MPM.

None of the samples prepared for diffusion mea-
surements showed visible signs of deterioration;
these had been stored at VV K for months and
warmed to 90-240 K for hours during measure-
ment. The sodium ammonia used to dry the am-

monia showed little evolution of hydrogen gas over
periods of weeks even though it remained at dry-
ice-alcohol bath temperature. As a check on
reproducibility, the self-diffusion coefficients of
a 15.1-MPM lithium-ammonia solution were re-
measured after six months storage and the data
agree to within statistical uncertainty. Fifteen
samples were destructively analyzed for degrada-
tion by measuring the quantity of hydrogen liber-
ated on breaking the sample tubes under vacuum
at VV K. The degradation observed, expressed
as the fraction of metal which had been converted
into metal amide, ranged from 10 4 to 2&&10, with
most samples showing deterioration of about
5x10 . The few samples older than one year ex-
hibited the greatest degradation.

There is no evidence that the level of sample
deterioration affected the diffusion measurement.
Certainly the actual metal concentration of the
solution was slightly reduced by the deterioration;
however, this reduction was always less than or,
at worst, equal to the precision to which the sam-
ples were originally prepared.

Spectrometer and Gradient Pulser

A medium-power phase-sensitive pulsed NMR
spectrometer was used. The spectrometer was
modified for use at 18. 5 MHz (for lithium ammonia)
and 12. 5 MHz (sodium ammonia). A slightly un-
orthodox coil geometry was employed. Since only
the tangential component of a time-varying mag-
netic field penetrates a good electrical conductor,
a coaxial geometry allows more field penetration
than the standard crossed-coil configuration. A
Fabri-Tek model No. 10V2 signal averager was
used to enhance the signal-to-noise ratio of the
detected echo. Extremely-low-level signals were
averaged over 64-512 repetitions.

The home-built gradient pulser'3 produced a
maximum gradient of approximately 200 G/cm.
The pulsed currents and gradient coil constant
were measured independently. As a test of the
calibration, the self-diffusion coefficient of par-
tially degassed distilled water was measured to be
(1.90+0. 12)x10 ~ cm2/sec at (17.7+0. 1) 'C. Using
the measuring temperature dependence" of 0.063
x 10 ' cm~/sec K, this corresponds to (2. 38+0. 12)
x10 ' cm~/sec at 25'C and compares favorably
with other values in the literature. '

III. RESULTS

Before presenting the diffusion results, it must
be established that the self-diffusion coefficient
measured for the ammonia protons is actually the
self-diffusion coefficient for the ammonia mole-
cules. That is, the distance moved by a proton
via interammonia exchange must be small com-
pared to the distance traversed by an ammonia



638 A. N. GARROWAY AND R. M. C OTTS

molecule during its lifetime against intermolecular
proton exchange.

In liquid ammonia the scalar coupling of the '4N

and proton nuclear spins (I~ and IJ,) produces an
additional mechanism for longitudinal (T,) and
transverse (T2) relaxation of the proton'7:

perature for the 2. 01-, 5.41-, 10.8-, 15.1-,
19.7-, and 20. 0-MPM lithium-ammonia samples;
the self-diffusion coefficient in pure ammonia was

(T 1') = (T1')DD+ (Tl )SR

+ -', (2« )'Ig(IN '+1)v~/(1+(u'r~),

+s (2«) 6(IN+1)[~z+~z&(1+&'&z)j ~
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where is the proton Larmor angular frequency.
For liquid ammonia the spin-rotation interactions
(Tg )ea and (T2 )sa are relatively weak" below
250 K and the dipole-dipole rates, (T, )» and (T2 )»
are equal. The magnitude' of the spin-spin coupling
J is 46Hz, and the correlation time of the interac-
tion is q.~. Mechanisms which modulate the spin-
spin interaction are the T, relaxation of the '

N

spins and intermolecular proton exchange. By Eq.
(3), a lower bound of 4x 10 4 sec for the intermolec-
ular-exchange correlation time is obtained from
the proton relaxation times observed in these
diffusion measurements-and by the assumption that
the intermolecular exchange mechanismpredomi-
nates in the modulation of the spin-spin interaction.
Since this correlation time is many orders of magni-
tude greater than molecular-ammonia jump times,
the self-diffusion coefficient measured for the am-
monia protons is equal to the coefficient for the
ammonia molecules.

Figure 2 shows echo-amplitude data, used in
Eq. (2) for the calculation of the self-diffusion co-
efficients, under the most favorable (2-MPM lith-
ium ammonia) and least favorable (20-MPM lithi-
um ammonia) conditions of the experiment. In
the concentrated solution the high electrical con-
ductivity has limited the resonance to a thin an-
nulus at the sample's surface, and the low static
susceptibility at this relatively high temperature
has further reduced the magnetization available
for echo formation. As shown in Fig. 2(a), suffi-
cient signal was available to reduce the echo am-
plitude by almost 1000 from its value in the ab-
sence of a pulsed field gradient; the linearity of
the curve shows that the pulsed currents have
been measured consistently. Data for the lithium
and sodium resonances are similar although the
resonances are somewhat weaker than for the
protons.

The self-diffusion coefficients of the lithium
and ammonia were measured as a function of tem-
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FIG. 2. Proton echo-amplitude data for (a) 2-MPM and
(b) 20-MPM lithium ammonia.
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also measured. These results are shown in Figs.
3 and 4. Reference to the phase diagrams (Fig.
1) shows that the solutions begin to concentrate
by freezing out excess ammonia as the tempera-
ture is lowered below the phase boundary. Fig-
ures 3(b)-3(e) indicate the change in the self-

diffusion coefficients near the phase boundaries.
In particular, below about 160 K in the 15.1-MPM
solution, the self-diffusion coefficients of the lith-
ium and ammonia are essentially equal, just as
in the 20-MPM sample.

Diffusion measurements were performed for
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FIG. 3. Self-diffusion coefficients in lithium-ammonia solutions as a function of tempera-
ture. The solid curves are drawn for comparison only and have no theoretical significance.
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other concentrations at the isotherms 223 and 233
K, and the data are shown in Fig. 5. Also shown
are the results of Figs. 3 and 4 which have been
interpolated to 223 and 233 K by an Arrhenius fit;
data below the phase boundary were, of course,
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FIG. 4. Self-diffusion coefficients in a 20. 0-MPM
lithium-ammonia solution as a function of temperature.

excluded from the fit. The results for the 19.7-
MPM solution are similar to those for the 20-
MPM sample and are omitted from Fig. 5 for
clarity. The error bars indicate only the statis-
tical uncertainty of the least-squares fit. All
measurements may be systematically in error by
4. 5%, since the gradient-coil constant and pulsed
currents were measured to 2. 1 and 0. 15%%u~, re-
spectively.

Figure 5 shows that both the lithium and am-
monia self-diffusion coefficients increase with
concentration to about 12 MPM. Above 12 MPM
the lithium self-diffusion coefficient then levels
off or perhaps decreases slightly, while the am-
monia coefficient decreases by a factor of 2 until
it is essentially equal to the lithium self-diffusion
coefficient at 20 MPM. The ammonia self-dif-
fusion coefficient for a 22-MPM sample is plotted
at the 22-MPM abscissa. However, since lithium
ammonia saturates at about 20 MPM, this sample
consists of a saturated lithium-ammonia solution
and a small amount of lithium metal, and the mea-
sured self-diffusion coefficient is consistent with
the result for the 20-MPM solution.

For the sodium-ammonia solution, diffusion
data were taken only at 233 K for 2. 0-, 5. 0-, 8.0-,
12. 5-, 14.0-, and 15.5-MPM samples and are
displayed in Fig. 6. Comparing Figs. 5 and 6 the
concentration dependence and indeed the actual
values of the metal and ammonia self-diffusion
coefficients are seen to be very similar for both
lithium and sodium systems. The equality of the
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sodium self-diffusion coefficients in the 15.5- and
1V. 0-MPM solutions suggests that saturation has
occurred at approximately 15.5 MPM at 233 K.
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FIG. 6. Self-diffusion coefficients in sodium ammonia
as a function of concentration.
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The elementary Stokes-Einstein theory of dif-
fusion in liquids, while a macroscopic theory, has
been applied with some success to molecular fluids
and may be used to decide if the metal-ammonia
diffusion results are consistent with a solvation
model. In the Stokes-Einstein theory particles
of radius a are considered to diffuse in a homo-
geneous fluid of viscosity p. The self-diffusion
coefficient is"
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FIG. 5. Self-diffusion coefficients in lithium ammonia
as a function of concentration. This figure includes the
data of Figs. 3 and 4 as vill as data for additional sam-
ples.

D = (l/6go) (kT/p),

where k is Boltzmann's constant and T is the ab-
solute tempe rature.

Since the ionic radius~' of 7Li (0.60 g) is much
smaller than the ammonia van der Vials radiusa'
(l. 54 A), Eq. (4) predicts that the observed self-
diffusion coefficient of the lithium should be much
greater than for ammonia. Furthermore, since
the viscosities of lithium-ammonia and sodium-
ammonia solutions are approximately equal at
equivalent concentrations, the expected self-dif-
fusion coefficient of lithium should be greater
than that of sodium (ionic radius~' 0.95 A). The
diffusion results (Figs. 5 and 6) show that for all
concentrations except 20 MPM the ammonia self-
diffusion coefficient exceeds that of lithium and
further that the sodium and lithium self-diffusion
coefficients are essentially equal at equivalent
concentrations. Hence the diffusing species do
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not appear to be free-metal ions and free-ammonia
molecules: The smaller lithium self-diffusion co-
efficient indicates that the lithium is impeded in
its motion.

The lithium-ammonia results may be understood
by considering the fluid to be a homogeneous mix-
ture of lithium ions solvated by four ammonia mol-
ecules and free-ammonia molecules. The lithium

ion is assumed to be solvated during a diffusive

step; that is, the cage of four ammonia molecules
is dragged along as the lithium changes position.
(If the time scale of solvation were shorter, then

the lithium ion would appear unsolvated in its dif-
fusional motion, in contradiction to the dataof Fig.
5. ) For a concentration x, expressed in MPM,
the fraction of free-ammonia molecules E& and the
fraction of bound-ammonia I'~ molecules is

Ey = (100 —5x)/(100 —x),
Z, =C /(100-&) .

If the exchange between the free and bound

species were slow compared to the time of the
diffusion measurement (7 msec), then two separate
diffusion coefficients should be observed and the
proton echo should be given by the superposition

Mo(F& exp] yD~G 5-[v ——,
' 5+A(2r/5 —1)D

+S',exp(-y'D, G'5'[w ——.
' 5+A(2~/5 —I)]]), (6)

where Db and D& represent the bound and free self-
diffusion coefficients. The Stokes- Einstein rela-
tion would predict that D&= 2Db. At 10.8 MPM,
52//p of the ammonia is free and the remainder is
bound. However, for the 10.8-MPM sample there
is no evidence from the echo-amplitude data for
the superposition of two exponential functions as-
sociated with two values of D. Therefore the ex-
change of free- and bound-ammonia molecules is
rapid on the millisecond time scale, and over this
interval a particular ammonia molecule will spend
a fraction of time Il, attached to lithium ions and
a fraction I'& as a free entity. The measured self-
diffusion coefficient then represents the following
average:

(D) =EgD~+FyDy .
Under this four-to-one solvation model, at 20

MPM all the ammonia molecules are associated
with lithium complexes and thus the lithium and
(averaged) ammonia self-diffusion coefficients
should be equal. Figure 4 shows that the coeffi-
cients are essentially equal from 90 to 240 K.
The slight discrepancy is not understood. If the
solvation involves exactly a four-to-one ratio,
then the data are consistent with a, 19.7-MPM so-
lution. In fact, since the samples were prepared
to only 1. 5% of their stated composition, the
stoichiometry of the 20-MPM sample is 20. 0+0.3

MPM. (The fraction of lithium metal which had

degraded into lithium amide, measured by the
technique outlined in Sec. II, was 3x10, too
small to account completely for the observed dis-
crepancy. ) On the other hand, if the composition
were exactly 20. 0 MPM, then the effective solva-
tion number is 3.8-3.9. It is possible that the
solvation number is temperature dependent. Un-

fortunately, the scatter of the diffusion data pre-
cludes a check for such temperature dependence.

The equality of the self-diffusion coefficients at
saturation (20 MPM) is the strongest indication
that the lithium ions are solvated by four ammonia
molecules. At lower concentrations the solvation
number cannot be unambiguously determined, al-
though the ratio of the metal-to-ammonia self-
diffusion coefficients definitely implies some sol-
vation.

The sodium-ammonia solution does not reach a
concentration at which the sodium and ammonia
self-diffusion coefficients are equal and the solva-
tion number cannot be exactly prescribed. Since
at 233 K in the 15. 5-MPM solution the sodium
self-diffusion coefficient is smaller than that of
ammonia, the solvation number must be less than
(100 —15.5)/15. 5= 5. 45. The reassuring similarity
of the lithium-ammonia and sodium-ammonia dif-
fusion data suggests that the sodium ion is also
solvated by four ammonia molecules.

By assuming that the solvation number is con-
centration independent, the self -diffusion coeffi-
cient of the free-ammonia rnolecules may be un-
folded from the experimental data by Eq. (7); the
free-ammonia results so derived are shown in

Fig. 7 for lithium ammonia at 223 K and for both
lithium ammonia and sodium ammonia at 233 K.
Again, the similarity of the data indicates that the
solvationnumbers are not very differentfor the two

systems.
For both the lithium- and sodium-ammonia solu-

tions, the Stokes-Einstein radii (a=AT/6wDp) may
be calculated from the measured self-diffusion co-
efficients and the viscosity information. Viscosity
data are availabl' for lithium- ammonia at 233 K
and higher temperatures and were extrapolated to
223 K. Sodium-ammonia viscosity data are avail-
able32 at 233 K. The calculated radii of the metal
complexes and of the free-ammonia molecules a,re
displayed in Fig. 8; error bars represent only
the statistical uncertainty in D and do not reflect
systematic errors in D or uncertainties in the vis-
cosity data. The calculated radii for the Li(NH3)4'
and Na(NH~)4' complexes are essentially equal and

approximately twice as large as the free-ammonia,
radius. The 20% decrease at about 4 MPM is not
understood. McCall and Douglass have noted a
similar but not universal decrease for aqueous so-
lutions of electrolytes at molarities of about 2 M.
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stein relation is obeyed, then EI,=E„. From Fig.
9 the concentration dependences of E„and ED for
both free ammonia and the metal complex are sim-
ilar and numerical agreement is fair.

Unfortunately, viscosity data are not available
beyond 15 MPM, where the lithium self-diffusion
coefficient shows a leveling off or even a decrease
with increasing concentration (Fig. 5). It may be
speculated that the viscosity data would also. mirror
this behavior.
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FIG. 7. Self-diffusion coefficients of the free-ammonia
molecules in lithium ammonia and sodium ammonia as a
function of concentration. A solvation number of four has
been assumed for both systems.
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To stress the simple Stokes-Einstein relation
even further, the temperature dependence of the
self-diffusion coefficients and viscosity may be
compared provided the characteristic radii are
temperature independent. For the limited subset
of samples for which temperature dependences
were measured, the self-diffusion coefficients of
the metal complexes and the free-ammonia mole-
cules were fit to the Arrhenius relation D = Doe ~&

The results, shown in Fig. 9, are somewhat im-
precise owing to the paucity of data. Viscosity
activation energies, derived from a fit to p/T
= (p/T)oe "~, are also shown. If the Stokes-Ein-
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FIG. 9. Activation energies of the self-diffusion coeffi-
cients and of viscosity in lithium ammonia.
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Saturated Lithium-Ammc. ..ia Solution

The equality of the lithium and (averaged) am-
monia self-diffusion coefficients suggests the 20-
MPM solution may be treated as a single-com-
ponent fluid. It is therefore appealing to treat the
solution in the context of a simple hard-sphere
model and to predict the self-diffusion coefficient
at melting and its temperature dependence by dif-
fusion models which have been successful for other
liquid metals.

The Ascarelli-Paskin model for diffusion in a
dense gas of hard spheres predicts~'

2 m z T~ Tp —1'
where q is the packing fraction, vis the hard-
sphere radius, m is the mass of the diffusing species,
and z is the hard-sphere compressibility. The
subscript m denotes the melting-point value. The
packing fraction is given by

'g = 3 g t' p q (8)
where p is the number density of hard spheres.
Vadovic and Colver ~ recommend using the Car-
nahan-Starling expression for z

v~ (1 —9)
yT (1+2'])' '

where v& is the volume per molecule. While this
model ignores the electronic contribution to the

(12)

~ = (1+n+ n'- n')/(1 n)'- (10)

Ashcroft and Lekner~ have found that the structure
factor of liquid metals may be well approximated
by taking p = 0.45 at melting. The temperature
dependence (logarithmic derivative) at melting of
the self-diffusion coefficient is calculated to be,
for g =0.45,

=1.86+1.70(y T (11)
m

where ~ is the thermal-volume-expansion coeffi-
cient at melting and T is the melting temperature,
89 K in the case of 20-MPM lithium ammonia.
Since ~„T «1 for normal metals, Eq. (11)pre-
dicts that the temperature dependence of the self-
diffusion coefficient is essentially equal for all
metals, within the confines of this model.

For the 20-MPM solution, extrapolating Lo's
density data'o for p„and o, „, Eqs. (8) and (11)pre-
dict D = 2. 2x 10 ' cm~/sec and (T/D) (dD/d T)„
= 1.92. The experimentally determined values are
D = (0. 59y0. 5) x10 ~ cm2/sec and (T/D) (dD/dT)
= 1.9V + 0.05. Agreement between the experimental
values and the predictions of the Ascarelli-Paskin
model (for t) =0.45) js poor for D and perhaps
fortuitous for the temperature dependence.

A value of p may be calculated from the hard-
sphere model for the isothermal compressibility
E.

compressibility, it has been employedv' with some
success for concentrated metal-ammonia solutions.
Since the isothermal compressibility is approxi-
mately equal to the adiabatic compressibility for
metals, fitting the adiabatic compressibility ob-
tained from sound-velocity measurement3~ near
melting to Eq. (12) yields q„=0.61. Using this
value of g in the Ascarelli-Paskin model, D
= 0. V3x 10 ~ cm2/sec and (T/D) (dD/dT)„= 1.V2.
Thus a somewhat better fit occurs for g =0.61,
a large but not unphysical value.

The diffusion model of Cohen and Turnbull may
also be applied. Hard spheres of radius z are
considered to move into holes whose size must
exceed some critical volume g~. Fluctuations in
the free volume g& available to each sphere open
up holes for a diffusive step. The Cohen-Turnbull
result is

(2+) (yT/~)1/2 s rv lu~

where 1 is a correction factor of the order of uni-
ty for the overlap of the free volume. The tem-
perature dependence is then

T dD 1 T A ~v T d~v

DdT 2 x dT ey e& dT

Parious forms are available '3 for the function-
al relation of p& upon vz, the mean volume per
molecule. In particular, v& may be related to v„
by the hard-sphere compressibility

~5 dvg (i5)
vy dvy

Using Eqs. (14), (15), and (10) and setting g
= 0.45, the temperature dependence is

T dD =0.332+9.385 +0. 215~ T
(i6)

The measured value of D may be used to deter-
mine (I"v~/v&) = 2. 8 by Eq. (13) and hence Eq. (16)
predicts that (T/D) (dD/dT)„= i.37, a value lower
than the experimental value of 1.9V+0. 05. By
varying p and hence z, a fit to both D and
(T/D) (dD/dT) may be forced; the Cohen-Turnbull
predictions agree with experiment if g is selected
to be 0. 52.

Both the Ascarelli-Paskin and Cohen-Turnbull
models require melting-point packing fractions
greater than 0.45 to agree with the experimental
results. This may indicate that the rather knobby
structure of the tetrahedral array of ammonia
molecules about the lithium ion impedes diffusion,
and hence the effective radius and therefore the
packing fraction of the Li(NHS)4' complex are in-
creased over the value expected for a more spher-
ical species.

Saxton and Sherby" have noted that the measured
self-diffusion coefficients of pure metals may be
fit to the relation D =Doe ~ ~, where X ranges
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from 2. 5 to 4.0 for different metals. The 20-
MPM lithium-ammonia diffusion data give N
=2.75+0.05, where T is taken to be 89 K. Thus
the temperature dependence of D for the Li(NH, )4'
complex in 20-MPM lithium ammonia is consistent
with those of other liquid metals.

V. CONCLUSIONS

The self-diffusion coefficients of ~Li and H in
lithium ammonia and of Na and 'H in sodium am-
monia have been measured in the liquid phase over
the range of (1MPM) —saturation for lithium am-
monia and (2MPM) —saturation for sodium ammonia.
In the liquid the lifetime of an ammonia molecule
against intermolecular proton exchange is long on
the time scale of molecular collisions and the mea-
sured self-diffusion coefficient of the proton is
equal to that of the ammonia molecule. The ob-
servation that the measured ammonia self-diffu-
sion coefficient is greater than the lithium self-
diifusion coefficient, except at 20 MPM where they
are essentially equal, suggests strongly that the
lithium ion is solvated by four ammonia molecules.
The similarity of the sodium-ammonia and lithium-
ammonia diffusion data indicates that the solvation
number is also four in the case of sodium ammonia.
Since exchange among free- and bound-ammonia
molecules is rapid on the time scale of the experi-
ment, the self-diffusion coefficient represents an
average over the two states, and the self-diffusion
coefficient of the free-ammonia molecules was
unfolded from the experimental diffusion data on
the assumption that the solvation number is con-
centration independent. The Stokes- Einstein radii
calculated for the metal complexes and for the
free-ammonia molecules from the available vis-
cosity information are essentially concentration
independent in both lithium ammonia and sodium
ammonia, indicating that the solvation number is
not strongly concentration dependent. Fair agree-
ment is obtained for lithium ammonia on comparing
the activation energies of the self-diffusion coeffi-
cients with those of the Arrhenius fit to T/v.

Two models of diffusion, the Cohen-Turnbull
and Ascarelli-Paskin models, were applied to the
20-MPM lithium-ammonia solution since it may
be regarded as a single-component system. Agree-
ment with model predictions is achieved for melt-
ing-point packing fractions greater than 0.45.

This work has also demonstrated that NMR spin
echoes may be observed in bulk liquid conductors
and further that the self-diffusion coefficients may
be measured providing the effects of restricted
diffusion are not severe.
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ir~= 7 e (8-r&(he "~&B-r&IL (17)

To consider the formation of a spin echo within
a "differential" annulus of radius z and width dx,
it is convenient to introduce a doubly primed frame
which again rotates with frequency ~ but is rotated
about the z axis by the angle tan [(R —x)/6] with
respect to the primed reference frame. The re-
lation among these reference frames is shown in
Fig. 10. If the resonant rf field nutates the nuclear
spins at the surface by an angle 00, then for a
eo-7-28O pulse sequence the amplitude of the echo
formed in the annulus is36

(a) Laboratory Frame xyz
z

&L

Hp

y

2H) sin QJpz

Ho

Sample Axis

Transmit ter
Coils

(b) Rotating Frame x'y'z (c) Rotating Frame x y z

/H,
x'

H exp-{R-r)/6p~()
ylll

x'

FIG. 10. (a) Laboratory reference frame defined by
the orientation of Ho and the transmitter coil; (b) grimed
rotating frame; and (c) doubly primed rotating frame.

APPENDIX: DIFFUSION MEASUREMENTS IN
CONDUCTING LIQUID

As an rf field penetrates a good electrical con-
ductor, it is attenuated and phase shifted relative
to the surface over a characteristic skin depth h.
For the most conducting solution studied, 20-MPM
lithium ammonia, this skin depth is 95 p, at 18.5
MHz and in a cylindrical sample the magnetic reso-
nance is essentially restricted to a thin annulus at
the surface. This appendix discusses diffusion
measurements under these conditions. The for-
mation of a spin echo in a conducting liquid will be
first outlined and then the effects of restricted
diffusion will be considered.

For a cylindrical sample of radius 8 with cylin-
der axis aligned coaxial to a transmitter coil pro-
ducing a field of 2H, si~t at the sample's surface,
the field at radius z inside the conductor, in the
primed ref erenc e frame rotating at the Lar mor
angular frequency &, is



646 A. N. GARROWA Y AND R. M. COTTS

Ho

FIG. 11. Diff erential
annul. us.

2R J

dm(r) =dmp(r) sin8sinp8e p" r&, (18)

xcos'[(R —r)/b] e-'s-"" (19)

where R is assumed much greater than h.
Now Muller and Bloom have shown that the

attenuation of an echo due to diffusion in a steady-
field magnetic field gradient is independent of the
particular choice of tipping pulse (8). Hence in
each differential annulus Eq. (2) may be applied:

dm(r) =dmp(r) sin8si 8ne '" p

x exp{-y2G2D5p[r ——, 5+A(2r/5 —1)]) (20)

and the induced signal is, by Eq. (19),

v(2r) ~ M(2r) exp( y'G'D5'[r -,' 5+A(2r/-5 --1)]j,
(»)

where M(2r) represents a complex geometrical
integral which is independent of G and g and in-
cludes the $ dependence. Thus the functional de-
pendence of the measured echo amplitude on pulsed
gradient is exactly the same as in the case of an
insulating sample.

Restricted-Medium Correction

The previous section had assumed that in the
time over which diffusion is measured (v), the
spins translate over a distance much smaller than
the skin depth. This assumption is partially vio-
lated for the concentrated lithium-ammonia solu-

where dmp(r) represents the equilibrium magnetiza-
tion in the annulus, and 8=808 '" "' . The echo
formed in the annulus appears along the -y" axis
at the time 2y, that is, the echo is phase shifted
by tan '[(R —r)/6] relative to the echo formed at
the surface. For 8o= —,

'
p, the echo formed near

the surface is largest; the attenuation of II, makes
echo formation more inefficient further into the
sample.

The signal induced in the receiver coil by the
echo formed in each differential annulus is further
phase shifted and attenuated by eddy currents pro-
duced by the echo. McI,achlan37 has calculated the
signal induced by the precession of spins subjected
to a 8 pulse. Applying his results to the case of
the spin echo,

v(2v)~ (e p' r&) f, dm(r) sin8sin 8

tions. For the TLi resonance (7 =25 msec) in 20-
MPM lithium ammonia at 240 K, the spins trans-
late an rms distance of 0. 156 along the z axis in
25 msec. Certainly some fraction of the spins
will translate out of the skin depth into the interior
of the sample in y and will not contribute to the
echo. However, since y is held constant during a
measurement, this reduction in echo amplitude
may be absorbed into the definition of Mp(2r) in
Eq. (21).

A more serious complication is that the spins
near the sample wall have a high probability of
striking the wall in the time y. If a large fraction
of the spins were to collide with the wall, then the
measured self-diffusion coefficient will be reduced
from the "unrestricted" coefficient. Although re-
stricted-medium corrections are known' ' for
simple geometries for insulating samples, no ex-
act treatment of the corresponding problem in con-
ductors is known. The magnitude of the restricted-
medium correction for a cylindrical conductor may
be estimated by treating the simpler case of an
insulating liquid bounded by an annulus of radii R
and (R —6), where R» h. Since the pulsed gradi-
ents are applied in the g direction, only diffusion
along z will reduce the echo amplitude. In Fig. 11
spins near y = 0 can move only 6 before striking
xwall, whereas spins neary = +R are less hindered.
If the separation distance between walls measured
along z is L(y), then by weighting LQ) by the spin
density, the average spacing is

(L) = (2/m) [1—E(k) + (1 —k )K(k)], (22)

where k —= 1 —6/R and K(k) and E(k) are complete
elliptic integrals of the first and second kind, re-
spectively. For r=2 mm and 6=95 p, then (L(y))
—24.

The effect of restricted diffusion for the annulus

may then be further approximated by considering
a planar geometry of spacing 2h. Robertson's ex-
pression for the ratio of the restricted self-dif-
fusion coefficient (D) to the unrestricted one (D„)
for the ease of a planar geometry of spacing l and
a steady field gradient may be modified for the
pulsed-gradient case to yield

f -=—=, , Z , (2np [—2+e-—f D SP 1 g (q fg )D„n (1 —s n) ~.p P~

+e p~'" ' —2(e p~" +e pm)]], (23)

where P =Dr/lP, P =(2m+1)2v P, and n=5/r Here.
the pulses are assumed perfectly rectangular and
background gradient effects are ignored. Figure
12 shows f' on calculating the first 50 terms in
Eq. (23) for two representative values of n. Using
Fig. 12 the correction term (1-f') is less than
8%%up for ~Li in 20-MPM lithium ammonia at 240 K
and less than 4% for the protons In other sam. ples
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FIG. 12. Correction for restricted diffusion obtained
from Eq. (23).

the corrections are correspondingly less.
As an actual test of the magnitude of the restricted-,

medium correction in a bulk-liquid conductor, the
self-diffusion coefficient of VLi in molten lithium
metal of natural isotopic abundance was measured
at 189+1.5'C and 18. 5 MHz for v=25 msec. The
result is D=( 6. 1 7+0. 17)x1 0' cm~/sec, where
the quoted error represents only the statistical
scatter. Murday' ' ' has measured the self-dif-
fusion coefficient of 'Li in a dispersion of small

I

metal particles of natural isotopic abundance at
melting. Extrapolating to 189'C, his result is
(6.4+0. 8) x10 ' cm~/sec. The error estimate
excludes possible systematic error in the gradient-
coil calibration since the same coil was used in his
work and the present. His result includes a cor-
rection for the effects of a restricted medium in
spherical conductors. Hence the measured self-
diffusion coefficient in the bulk conductor is (19
+1.3)% lower than Murday's value. The correction
for restricted diffusion in the bulk conductor is
estimated to be 13%%up by Fig. 12. Thus agreement
is fair: The crude model employed in the deriva-
tion of Eq. (23) seems to be applicable. Since for
the metal-ammonia solutions the effects of re-
stricted diffusion are estimated to be not large
and since diffusion data in the high-concentration
regime are rather imprecise, no corrections for
restricted diffusion were made to the metal-am-
monia data.

It should be noted that the restricted-medium
corrections in a bulk conductor may be reduced
significantly by selecting a small value of z; e.g. ,
for 7 =7 msec, the correction for metallic lithium
at melting is only 7%. Hence if one can tolerate a
significant reduction in the signal-to-noise ratio,
diffusion may be measured in bulk liquid metals
by the pulsed-gradient spin-echo method, obviating
the need to prepare dispersions of small particles.
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Uniform WKB Theory of Inelastic Collisions: Application to He+-Ne Inelastic Collisions
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The uniform WEB theory of inelastic collisions is discussed further and applied to a semi-
classical analysis of the He'-Ne inelastic collisions [He'+Ne(2p ) -He++Ne (2p 3s}] at E=70.9
eV. The uniform WKB differential cross section of the inelastic scattering is compared with
that of the Landau-Zener-Stuckelburg theory of inelastic collisions. The result of compar-
isons indicates that the uniform WEB theory is more reliable than the Landau-Zener-
Stuckelberg theory and the distorted-wave-Born-approximation theory.

I. INTRODUCTION

There has been an enormous amount of experi-
mental data accumulated on inelastic scattering of
atomic and molecular systems which await theo-
retical analysis. Occasionally it is possible in
practice to attempt a completely numerical analysis
for some systems, but such an attempt is imprac-
tical and costly for most cases experimentally in-
vestigated so far. We are therefore compelled to
resort to approximate theories like the distorted-
wave Born approximation' (DWBA), the Landau-
Zener-Stuckelberg (LZS) theory, and other semi-
classical theories, ' "'" to cite a few. The LZS
theory has been very useful for some inelastic-
scattering problems like electronic excitations of
atomic systems, molecular internal excitations,
and molecular dissociations, when such processes
involve a potential curve crossing. However, the
LZS theory has a bmited capability, since it can-
not predict correct transition probabilities as the
coupling between two different channels increases, 6

and is not applicable at all if there is no curve-
crossing point: The theory simply predicts zero
transition probabilities, for example, if the two po-
tential curves are parallel. This is in contrast
with what we find from the numerical solution of
the same problem.

Olson and Smith' compared the LZS theory with
the DWBA in their recent paper on the analysis of
He'-Ne inelastic collision processes and found that
the former was not comparable to the latter as far
as the angular distribution of the inelastic scatter-
ing was concerned.

Recently, one of us has developed a semiclassi-
cal (uniform WKB) theory' of inelastic scattering
that has no defects of the LZS theory and, thus, can

deal with the cases of a large coupling parameter
both with and without a curve crossing. The theory
has been shown"" to reduce essentially to the
Landau-Zener theory as the coupling constant de-
creases to zero. It is one of the purposes of the
present paper to apply the uniform WKB (UWKB)
theory to a practical problem to show the utility of
the theory. In this paper we also wish to clarify
further some of the details which have not been
discussed yet, but are necessary for practical ap-
plication of the theory. We choose as an example
He'-Ne inelastic scattering ' which may be ade-
quately described by a two-channel approximation.
In order to exhibit the capability of the theory, we
also compare the differential cross section of the
UWKB theory with those of the LZS theory. and the
DWBA.

In Sec. II we briefly review the QWKB theory to
define notations and to make feasible a discussion
on the practical use of the theory and some of the
details which have not been discussed before. In

Sec. III we apply the theory to an analysis of the
He'-Ne system and compare it with the LZS the-
ory and the DWBA. The result of calculations
shows that the UWKB theory is more reliable. In
Sec. IV we discuss the LZS theory further and
discuss the necessity of retaining more channels
than two for a more realistic and accurate analysis
of the He'-Ne inelastic process. Some differences
between the present theory and the Thorson-
Delos-Boorstein theory '" are also discussed.

II. UWKB THEORY

In this section we shall first briefly review the
UWKB theory '"" ' and then discuss computations
of the approximate $-matrix elements. In the
UWKB theory the solution of coupled radial Schro-


