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A semiclassical limit, defined in terms of large mass and energy at fixed arbitrary col-
lision velocity, is shown to be a simple formal prescription for obtaining a quantum treat-
ment of the impact-parameter method and the eikonal approximation. In particular, for atom-
atom collisions, the resultant approximation is emphasized to be a proper strong-coupling
equation for inelastic processes, as opposed to the adiabatic result of a large-mass limit at

fixed energy.

I. INTRODUCTION

Semiclassical analysis and perturbation theory
are two systematic means of obtaining approximate
solutions in quantum mechanics to complex prob-
lems. This paper presents an argument for the
recognition of a semiclassical limit distinct from
the usual large-mass limit'; the new limit is
called isovelocity for it is taken at large mass with
fixed velocity rather than fixed energy. The usual
semiclassical limit involves the construction of an
asymptotic solution? of an ordinary differential
equation,

(aa gzwz(v)) ¥(r, @)=0,
o8
K¥v)=Q2u/n¥[E-V(»)],

as the dimensionless parameter o becomes small.
«a is sometimes associated with the physical con-
stant 7, but an association with the mass pu, de-
fined by replacing p by u/a?in the Schrédinger
equation, is advantageous because it immediately
shows that the asymptotic solutions are better for
a proton than for a positron with the same energy
in a given potential field. This paper will concern
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scattering states, so the energy is a physical pa-
rameter, not a discrete eigenvalue of the Hamilto-
nian operator. The asymptotic solution of Eq. (1)
greatly simplifies two-body elastic scattering
since the differential cross section can be ex-
pressed as a series of spherical harmonics using
the JWKB phase shifts from the radial Schrddinger
equation, 3 which is of the ordinary type. The ra-
dial equation could have more than one transition
point [where K()=0], but a uniform asymptotic
solution is only known in simple form for one,*
Uniform means®

2
( 2 6%5 +K2(1f)) P°NF (7, @)= a*R(7) , (2)
where the residual o?R(7) is of the order of &? and
bounded for all . This implies ¥ - ' = 0(a) by
a direct distorted wave correction.® The nonuni-
form JWKB solutions have a residual of the order
of @ but it is unbounded at the transition (turn-
ing) point and not integrable on the real axis. The
knowledge of a uniform solution properly deter-
mines all connection formulas for the one-dimen-
sional problem,

A generalization of the usual large-mass limit
defined through Eq. (1) is the o~ 0 limit of

[a?V4+K2R)]¥(R, @) =0, @3)

where V3 is the Laplacian in the coordinate space
ﬁ, which might have any dimension. For two-body
elastic scattering, where R is the relative separa-
tion, the form of the asymptotic solution is well
characterized’% inlowest order the solutions ex-
hibit unbounded behavior on surfaces in R space
analogous to the JWKB singularities at the radial
turning points. The theories of Miller!® and Mar-
cus'! fall into the limit of Eq. (3) when more than
two heavy particles are considered. Imposition

of reactive scattering boundary conditions is then
necessary and discussed in their works. For two-
body scattering observed in a given experimental
setup, the o -0 limit ensures that the result will
be described by classical mechanics.® For many
heavy particles classical behavior would, at the
least, also require all bounded motions to be pre-
pared and detected on a large energy scale com-
pared to the separation of quantized levels.

The purpose of the present paper is to establish
the formal asymptotic limit that can be applied to
scattering involving two heavy particles and that gives
an approximation valid in the strong coupling re-
gion for inelastic processes, That this can be done
seems interesting in itself, This strong coupling
region occurs in atomic collisions when nuclear
and electronic velocities are of the same order
(excepting the avoided-crossing or near -degener-
acy problem, where strong coupling persists at
lower energy), and implies that when a parameter

is introduced to define a unique, clearly stated
limit, the heavy masses and energy should be
scaled to be large together, This fulfills the con-
ditions for the validity of the straight-line impact-
parameter method, '* but it does not require
classical position and momentum localization of the
heavy particles.* In the two-body problem, it also
fulfills the conditions set up by Glauber?® for the
useful area of application of the eikonal approxi-
mation. It is not unexpected, therefore, that these
approximations will develop in the isovelocity lim-
it in a simple and straightforward way. As an ad-
ditional clarification of purpose, it should be stated
that high-energy theories, such as the Born and
Glauber!® approximations for inelastic processes,
are not directly mass related and, moreover, are
not strong coupling descriptions of the scattering
event. What is discussed here is a proper place-
ment of the impact-parameter method among ap-
proximations in scattering theory by finding the
particular physical limit in which it becomes a
good solution,

The remainder of the paper is structured as fol-
lows: Section II presents an outline of the large-
mass limit at fixed energy in order to demonstrate
that it is the expected adiabatic limit for atomic
collisions connected with a three-dimensional
aSymptotic solution of the kind defined by Eq. (3)
for nuclear motion. This is to be distinguished
from the large-mass limit at fixed velocity de-
veloped in Secs. III and IV.:

II. LARGE-MASS LIMIT AT FIXED ENERGY

The physical system consists of two heavy par-
ticles and other lighter particles which are bound
to the heavier ones—an atom-atom collision in par-
ticular. For this problem one scales the nuclear
masses m, and mp as m,/a® and mg/a? and ob-
tains a solution to the Schridinger equation whose
residual error vanishes as o~ 0. This leads to
a Born-Oppenheimer factorization of the electron
and nuclear motion. !"~#' The full Schridinger
equation, including center-of-mass motion, is

2 2 .
< 13 v 2_L Vsz+Hel-g),

T 2m, *a T 2my
X‘I’()-ZA’)-EB’{;Ei})=O: (4)
where H® is the electronic Hamiltonian:

7l 1 1
H°1=—§-— 2V, 2=Z,e2Y — —Zgetl —
mo i i Yai i VBi

+e? 2020 1 +Z, Zget 1 . (5)
>4 Vij R
my and mp are the nuclear masses, m is the elec-
tron mass, Z, and Zz are the nuclear charges, R is
the nuclear separation, and 7;; is the various inter-
particle separations. m, and mp are now scaled with
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the smallness parameter o2 giving
7?2 7 ) ]
2 2 2 el
——ee - ¥ -
[a ( 2m, Vx, 2mp *B +HY-8
X\I’(iA’f(By{;i}, Ol)=0. (6)

As o~ 0, the wave function ¥ has an essential sin-
gularity in @; that is, ¥ is not expandable as a
Taylor’s series in « (like a perturbation series),
if it is to represent bounded motion of the elec-
trons. This does not disagree with the original
Born-Oppenheimer method for nuclear bound
states, 7 for there the expansion is in powers of a
mass ratio after scaling the nuclear coordinates
with the ratio (a “stretching,” see Wasow, Ref, 2);
the resulting expansion is valid for nuclear motion
covering a range proportional to a power of @. By
not introducing the coordinate scaling, the range
of the nuclear motion is arbitrary and the solution
is shown to be semiclassical. The essence of the
construction of an approximate solution to Eq. (6)
comes from the substitution

W(iA’iBs{;i}s Ul)=A(iA: 3.(B:{}-Ei}s a)

XeiS(iA Xp HE D/ e , @
where A is assumed to have a Taylor’s series in

« analogous to the method for ordinary differential
equations. 2 By requiring the coefficient of each
power of ¢ to vanish after substitution, one obtains
a series of equations (possibly algebraic, differ-
ential, eigenvalue, etc.) that are solved succes-
sively to higher order in o in the simplest possible
‘manner consistent with physical conditions. A
formal solution of Eq. (6) is obtained as a series
in o multiplying the essentially singular exponen-
tial, e'$/%, These expansions, called asymptotic,
usually diverge? and may contain unacceptable sin-
gularities even at zero order in the A series; the
singularities might be removed by a choice of
function other than the exponential of the essential
singular behavior in . *%® In this paper no pre-
tense of rigor in the sense of an asymptotic series
is ever intended; the ordering of the expansions is
clear, however, and they are interpreted in phys-
ical terms. From Egs. (6) and (7) after substitu-
tion, the coefficients of ¢° and o* are?

ha - => ﬁz - e
(% VXAS-VXA8+'2—WL—B VXBS-VXBS—8>AO+H°IAO=O, (8)
2 '—f—(z?/ Vi, Ag+Ag Yy 28) —”2—6 Ty SA [+ W 8)A,=0 (9
s -t omp xpS* Vxp Ao+Ag Vx "8 +2mP xp 8 Vx, S84 - 1=0, )

where A=Ay +aA;+a®A,++--. The removal of
barycentric motion is delayed to avoid the explicit
appearance of nuclear mass® terms in A that do
not enter the equations until second order in .
Define

i My i Mimy -
VoS vy My em, 0 MEMatme,
(10)
- AT B = - = - - - - -
X=yapXs+vasXp, R=X;-Xp, r;=x,-X,
so that,
VXA=728VX+VR—YﬁBZVri’
i
szz')’gs Vi =Vr=7is Z Voo (11)
1

- —
V,,i = V'{ .

X is the coordinate of the center of mass of the
nuclei, denoted CN later. Since H® is only a func-
tion of _\73,‘ and distances between particles, it may
be expressed

Hel(ex" iisiA’iB)=;Iel($r‘f FH ﬁ) ’
N _ (12)
S=S(XA,XB)=S()2, ﬁ) .

T
Equation (8) becomes

72 - > = B s - - — —o
mvxs.vstfEFVRs-VRs—é})AO+H° Ay=0,
B
(13)

which is an eigenvalue equation in bound-state
electron space {F‘ }, parametric on ﬁ, which may
be solved with any of the fixed-nuclei eigenfunc-
tions:

B %, {7} R =W, (R) X, {F, }|R) . (14)

The vector dependence on R can be removed by a
rotational transformation. A solution of Eq. (13)
can be written

A=x (7.} R fnX, R) (15)

by separation of variables, requiring

(1%/2M) VxS Vi S+ (1%/208) VR § - V2 5=8 - W,(R) .

(16)
Choosing § (X, R) =K.y X+ S(R) to satisfy linear
motion of the center of mass of the nuclei and
fuX,R)=f,(R) with E=8§ ~ (#%/2M)K %y, Eq. (16)
reduces to
(7%/2u8) VRS VRS, =E ~ Wu(R) . (17)

Equation (9), the first order in a coefficient, now
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becomes

A - A - -
i3 KCN.iE Y, Ag—i 257 (2VR Sy VrAg+AgVeS,)

+[H -W,(R)]A;=0. (18)

Introduction of Eq. (15) and the knowledge that y,,
vanishes as any particular electron coordinate be-
comes large, combined with a projection in elec-
tron space with y,, on Eq. (18), gives the simple
equation

2V fn* VeSm+fmn V2S,=0 . (19)

Equations (17) and (19) are sufficent to identify
F(R)eSm®/ @ a5 the asymptotic solution of the
two-body Schrodinger equation™®:

2
(_ o 5% V24 W, (R) - E) W&, a)=0.  (20)

This demonstrates that a zero-order Born—-Oppen-
heimer approximation for scattering is just semi-
classical nuclear motion on the fixed-nuclei elec-

tronic potential surface:

‘I,mzeIRCNoi/afm(ﬁ)eiSm(ﬁ)/a Xm({;i}lﬁ) . (21)

The residual does not vanish anywhere indepen-
dent of @, and ¥, may not be simply modified to
satisfy scattering boundary conditions exactly. =
An examination of the next-order part of the wave
function A, shows that the expansion is not valid at
first order in a region of electronic energy de-
generacy. The resolvent of H° - W,(R) is used
to solve Eq. (18) for A, (equivalent to basis ex-
pansion and projection):

Ay=fn § x» (%} R C,R) ,

1

2
C,,(R)='v‘[m-). [i % (anKcN'? V'i Xm )

. nt - -
-1 E— (anVRsm' VRXm)] . (22)

The first term in brackets may be summed, and
represents i (m/M)Kcy+ ; T;)fmXm, 2 first-order
correction appearing in A, owing to the use of the
center of mass of the nuclei; this may be re-
grouped into the leading term, Eq. (21), and is
ignored. An additional term in A;, a coefficient
of f,,Xm, Would be determined from the next equa-
tion in the sequence beginning with (8) and (9). It
contains the error in the semiclassical approxi-
mation f,e!5™/ ¢ as a solution to Eq. (20), among
other terms. Combining Egs. (21) and (22) gives

v, ~ eiKcN.i/a Im eiSm/ O‘(Xm —- ok 2 Xnvm * ﬁmn ) E)

n¥m

vm(ﬁ) = (ﬁ/“g) GR Sm ’ (23)

Bnm(ﬁ) =< an eR XM>/[H/m(R) - Wn(R)] .

Taking the first-order term to be a measure of
the errov, it depends on a product of the nuclear
velocity vector and an electronic quantity contain-
ing the eigenstates of Eq. (14). This was to be ex-
pected. '#'® The order of the error is different,
however, from that of the analysis of Gerber, %
who carries through the original scaling'’ of nu-
clear coordinates and assumes that the nuclear en-
ergy is much less than the electronic energy. The
mass parametrization used here does not require
this.

Interesting studies of the large-mass limit have
been initiated® in a finite basis electron space with
the goal of determining transition amplitudes, but
this shall not be pursued here. Neither is avoided
crossing mentioned, for this depends on a specific
property of the electronic eigenspectrum in con-
junction with nuclear motion and has its own in-
dependent development in the literature.

III. LARGE-MASS LIMIT AT FIXED VELOCITY;
THE TWO-BODY CASE

This section introduces the isovelocity param-
etrization, which is designed to give the limiting
form of the Schrodinger wave function as mass and
energy become large in such a way that the colli-
sion velocity, v=(2E/u)'? remains constant.

The masses in a given problem are not variables,
but one could picture a series of scattering mea-
surements on a three-body problem progressing
from e*+(e*e”), muonic species, H*+H, D*+D, to
T*+ T carried out at either the same energy or
collision velocity, If they are all at the same en-
ergy, the progression tends toward adiabatic be-
havior in the lighter particle; if they are all at the
same velocity, only the description of the relative
motion simplifies, This simplification in the two-
body problem is the eikonal approximation which
will be discussed now.

The coordinate R is used for relative separa-
tion, E is the relative collision energy, and p is
the reduced mass; the interaction must decay
faster than 1/R at large R and be no more singular
than 1/R at small R. The isovelocity asymptotic
parametrization results from replacing p by p/€
and E by E/¢ in the Schrddinger equation and the
integral equation® defining the scattering state:

(v 2+K2-e) IR, €)=0, (24)
- emn-w /e
R, €) =it /e 3 ) ———=—=F
YR, €)=e +fd 7 _41R-R'I

xeU RN PR, ), (25)
where
U=Qu/r®V, K*=Qu/m*E,
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ik|R-Rr1/¢
2y 2, g2 —————— _ 3[R R’
(EVe+K®) TS m _m =0 ®-R), (26)
f d*R'*®-R) fR)=rR) .

Equation (24) indicates that y(R, €) possesses an
essential singularity in € just as in the usual
large-mass limit. The substitution

IR, €)=A(R, €)e's F/ e (27)

with the assumption that A(R, €) is expandable as
a Taylor’s series in ¢,

AR, =A@+ ea @)+ -, (28)

leads to the following series of equations obtained
by equating coefficients of powers of € to zero:

VeS:VeS=K?,
i(2VgAg- VS+AVE2S) - UA=0 ,
(29)
VelAn+i(2V g A+ VR S+Ap, VE2S)
-UA,u3=0, m=0.

An acceptable solution to the first equation, con-
sistent with Eq. (25), is

VeS=K=kKe,, s=K-R=kz,

(30)
Vz25=0.
The remaining equations become
ZZK ;Z" Aoz UAO )
(31)
VRZA, +2K -8—32— Apa=UApy, m=0
which may be generally solved:
z
- 1
A®=Po(x, o3z [ var)
1 z
B —_— ?
Am+1(R)— exp (le -/-w Udz ) [Pm+1(X, Y)
(32)
| 1 (% N\ e J
_[” az .Z—Z—IE exp <—-'Z';:I—{'[w Udz )VR'Am )

m=0,

The P, (X, Y) are arbitrary functions of the Carte-
sian components X and Y of R; letting Z approach
negative large values, one has

Ao(ﬁ) Z= PO(X’ Y) )

- -

A,R) = P,(x 1), (33)

Z+moo

Zp(ﬁ, E) = eiKZ/e(P0+€P1+€2P2+o--)’

Z=aw

which, subject to the incoming boundary conditions
in Eq. (25), implies P,(X, Y)=08,,. The wave func-
tion that remains is

4
- 1
PR, €)=e*?/¢ exp (ﬂf Udz')

zZ 1 z*
7 1
x[l—efmdz exp(—Zinm Udz )

1 (7
X Vz ' e 2 . 3
® exP(Zik_[w Udz )+O(€) (34)
The first-order term is unbounded on the forward
axis (X=Y=0, Z>0) for a potential as singular as
1/R at the origin; it is dropped in any case, leav-

ing
Z

szIK(ﬁ, €)=eiKZ/eexp(_22]I~_{_ 5 Udz') , (35)
which is the eikonal wave function discussed exten-
sively by Glauber!® and attributed to Moliére, 2
who bases the construction on geometrical optics.
A thorough and precise analysis concerning this
approximation is given by Schiff, ¥ who sums the
Neumann-Born expansion of Eq. (25) after ap-
proximating the free-particle resolvent,

The difficulty inherent in y*'¥ is that it does not
have a scattered angular flux; the wave function
is modified by the interaction only in the forward
“shadow” of the potential. Consequently, yE'¥
does not satisfy free-particle motion outside the
interaction, as seen in the residual

(€ VR2+ K2 - €U) y=I%

z
1
=€zeiKz/eVRzexp(-2i—Kf Udz'), (36)

which does not vanish independent of € in the for-
ward shadow. The residual is of the order of 2
but unbounded on the forward axis if U is singular
at the origin. Suppose that U is not singular at
R=0, then one may use the scattered amplitude
determined by iterating Eq. (25) (see the Appen-
dix), This expression is simplified by the argu-
ments of Glauber'® and leads to

T(an €)= (1/6) B(Ol)+0(1) ’

B(a)= —z'Kf bdb Jy(Kba)
0 37)

x[exp(E%Ef dz'U)—l],

I},-K=cos9, 0=€a.

This displays the small-angle property of the
eikonal amplitude very directly. The case of U(ﬁ)
singular at R=0 is yet to be treated; it is rather
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obvious, for example, thata 1/R behavior at
small R must give a negligible 0(€?) contribution
to the differential cross section at large angles,
This section is concluded with an alternative der-
ivation of the isovelocity limit in the partial-wave
picture, which avoids the iteration of the integral
equation,

The radial equations for scattering from a
spherically symmetric potential®

2
(a%g»fxz-l(—grl—) - U(R))R,(R,K):O ,

(38)
R/(R,K) = (1/VEK)sin(KR -5 nl+m;)
R-

may be solved for the 5, to construct the differen-
tial scattering amplitude

T.(9)=§i1,-E :Zo (21+1) P,(cos6) (¥ —1) . (39)

The isovelocity parametrization of Eq. (38) leads
to the differential operator, €%d%/dR*+K?-€%l(l
+1)/R? - €U for a fixed ! quantum number; how-
ever, the angular momentum is proportional to
mass times velocity for a given separation and
should be scaled as 1/€. This is substantiated by
the semiclassical correspondence of [+ 3 to Kb,
where b is the impact parameter. By definition,
the radial equations are to be solved in €- 0 limit
of

2 d® 5 L%
<e W+K —ﬁg—eU)R,(R,K, €)=0, (40)

where €?1(1+1) was replaced by L% L=e(l+}), and
the second-order term €2/4R? was dropped. #® The
scaling choice L =¢] would have left a first-order
quantity €L/R?, which is of the same order as eU.
The asymptotic-type solution of Eq. (40) is devel-
oped in two steps; the first is the usual connected
JWKB or uniform solution in which one ignores the
€ dependence in €U, the second is the further ex-
pansion of this solution in powers of €. For R
greater than the turning point at T, (¢), one has

1
Ry(R, K, €)=~ X, R, ]

xsin(z+1f
4 ¢ r

R

dx Ky (x, e)) ,
AR

(41)

K, (R, €)=[K%-L¥R?- cUR)]?,

KL[TL(€)1 6]=0 s

and as R becomes large,
N SN NS f )
R;(R, K, €)R:ww/'K sm(4 +2 . i)x(KL K)
K__KTL(G))
€

(42)

The phase integral appearing in Eq. (42) may be
expanded in a power series in €, which is apparent
when the integration variable is changed to s=x

- T, (€). One has

1 . (KR nL m
R,(R, K, €)R..“,—TE sm( c T2 ¢ +g
” Ulx) )
- dx ——7——=+0(e)}) . (43
| x5 -0) . @
Returning to the amplitude expression, Eq. (39),
the € parametrization gives

T (s, 6)?2761? % (21+1) P, (cosh) (e®m© ~1)
(44)

or, changing to sum variable L=¢(l+%),

1 [~ =,
T (o <)=——_——f dL L 27 8(L-%e -me
’ €K 0 m=0 2 )

X\Py ety 2 (COSB) (€L /e-1/ 20 — 1),  (45)

Equation (43) identifies

_ - - U(x)
nL/e-1/2(€)'6L(€)e:0 fL/dem—z?Tz+O(s) )

(48)
which is to be used in Eq. (45) with suitable limits
for Pp;c.1;2. Inthe case of angles of order ¢, one
immediately derives Eq. (37), which demonstrates
that the singularity of U at small R did not affect
that result. For angles 9 neither near 0 or 7,

1 f“ o .
v = — 5(L —Le -
(8, E)e.oeiK i dLLmZ:B (L -%€ -me)

1/2
) cos<L—Ee- _41)(33‘51, @_1), @7

which indicates that, if d5,(0)/dL is singular as
L-0, there exists a point of stationary phase in
the L integral in the ¢ -~ 0 limit giving a large-
angle cross section. However, the stationary-
phase point occurs at an L proportional to a power
of ¢, which can ultimately be seen to conflict with
the derivation of 5,(0). In addition, the row of 6
functions, 6(L - ¢ —me), is not necessarily dense-
ly spaced compared to the variation in the rest of
the integrand even in the region of stationary phase,
making the stationary-phase approximation suspect
in the €~ 0 limit. In general, only the original
JWKB phase shifts seem valid for the range of
contributing to T'(6, €) at large 6.

y 2¢
\ 7L sinf

IV. INELASTIC ATOM-ATOM SCATTERING

Using the full Schrodinger equation in the labora-
tory frame as expressed by Eqs. (4) and (5), one
replaces m, by m,/€, mp by mg/€, and 8 by §/¢,
and has
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72 - - = =
5 V}(;)‘*'€IJal (in’xhXA’XB)

“om
- 5] ¥(X,,Xp,{x,}, €)=0. (48)

The essential singularity in € is again of the expo-
nential type, so the substitution

V=@ (X, Xg, {X}, €)' FarXn)/c

(49)
@ =Qo+€Q 1+
is used to define a formal series solution in €. The !
two lowest-order equations are
L. - 7 - - P
mVXAS.VXAS+§m‘:VXBS.VXBS— =0’
(50)
h—z

- —

1 - -
5 p:%,;g ;n—; (ZVXP S prao

+QOV§P5)+H°’G,°=O . (51)

Equation (50) is solved by?®

$ (X4, Xp)=RenX+K-R
nt nt
6=§M KgN+ZL§KZ’ (52)

with the same definitions as Eq. (10). Since H® is
only a function of particle separations, Eq. (51)
can be reduced to

i 1%/ up) R Ve AR, {F,})
=Hel (_V;i ’ Fi ’ ﬁ)A(ﬁ’ {-fi}) ’ (53)

where ,
. m o > . Nm = =
G, =exp (1 Ve KCN'? r‘) exp(z “Z'I‘W‘KCN'X>
XA(E:{?':}): (54)

N=number of electrons .

Since the coordinate of the total center of mass is

Reom= (my Xy +mpXp+em 21 %;)/(my+mp+ eNm),
' (55)
one can reconstruct the total solution up to O(¢) as

‘I’(XA ) 3.(3 ’ {ii}’ €) = eiKCN x/e eiK.R/ € Qo

= eX‘p{iKCN . iCOM [1 + € %’ (Nm/M)]/€} eiK.R/ eA .
(56)
The obvious identification of the total center-of-
mass wave vector, Kcoy, as Koy [1+€2(Nm/M)]
leaves an internal energy

ﬁZKZ ~ h’sz

_—— fcom 2 57
2(M+eNm) ~ 2u4 (57)

E;=8 +0(€?)
giving the asymptotic solution in the barycentric
frame up to O(e):

|3
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ll)(ﬁ, {FI}) = eiﬁ'ﬁ/ eA (ﬁ ’ {-fi}) >
(58)

[/ -
i = K-VgA=H"A.
KB

Equation (58) is precisely the parametric-time-de-
pendent impact-parameter equation for rectilinear-
heavy -particle trajectories!? that describes the
light particles as responding to the imposed motion
of the nuclei. What is demonstrated here is that
the equation is not purely classical in the treat-
ment of the nuclei, but is akin to the eikonal meth-
ods as described by Byron, 3° and that the removal
of barycentric motion leaves a unique equation,
Equation (58) may be transformed to other coordi-
nates, e.g.,%;;=7;+a%izR, Ry=R. This gives an
equation of motion analogous in form to Eq. (58)

in the new coordinates for a new solution which is
related to A by a phase factor,

The construction of the scattering amplitude
proceeds through a series of equations whose de-
tail is not wholly relevant. A similar procedure
has been described elsewhere.*® The beginning is
the extraction of a scattering T-matrix element
from a wave function with many arrangement
channels, *

TBfai(e) =(XBf| Vg wai> ’

which is assumed to provide an accurate evaluation
of amplitudes for small angles as was found to be
the case in elastic scattering [Eq. (37) and preced-
ing discussion]. Approximations are introduced
for X,; and y,; based on supposed exact solutions
(channel and total) of Eq. (58); and the integral in
Eq. (59) is rearranged to read

Tch“(e, 6):fd3Rfd37’i e-in OR/eeiKi'R/e

(59)

X (=i/2m€) (8%, K, - VpAg +Aa; Kr» Vi sy,
(60)
where & will be defined immediately. If 6=€aq,
K; and K; differ by order €; Eq. (60) is now written
with a cylindrical coordinate integration volume in
R. The z axis is chosen along _K, +K, and the z in-
tegration is performed, since

X - — = - %
BpsK; VRAg +Ay; Kpe VR Ogy

=K % (@), Agi)+0(e) . (61)

The result has the same structure as Eq. (37):

Tgsai (€0, €)= (1/€) Bgsqoi(a)+0(1),

] ° 2r
BBfai(a)=—%fo‘ bdb’/; d¢ e=iKb e coso 62)

2=
(f ensin]
Z==0
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®,m is a separated-atom electronic wave-function
product, including plane wave factors®~3® and nu-
clear parts, which is a solution of an arrangement-
channel Hamiltonian defined as a particular group
of electrons on nucleus A and the remainder on B.
The explicit form is

- s = N - onA
q’am(R’{ri})=e‘Pm R¢: ({ri" YQB R})exp<2 XA' E Fi)

on B
><¢f.({f¢+7'ﬁaR})eer<iXB- Z)?,),

1

XA=(m/mA)K’ X)5=‘(7"’L/WLB)K,

Bu=- Kz s (WaA+wEK
1 ZB N ma
oM ( am + NBm) K,

where ¢* and ¢ are atomic wave functions (N,
electrons on A, distinguished from Njy electrons
on B) with energies W4 and W2

The electron permutanon operators P,; com-
mute with H°! and VR, implying that electron per-
mutation symmetry is maintained throughout the
collision, This at first glance would seem to imply
that fully antisymmetrized, fixed nuclei, molecu-
lar electronic eigenstates are a natural choice for
a basis in the electron space needed to solve Eq.
(58). They indeed are at slow collision velocity,
but are complicated by the form of the channel
states in Eq. (63), since one must untangle the ex-
change symmetry at large separation, insert the
plane wave factors, and resymmetrize. This en-
sures that the proper boundary conditions are sat-
isfied at large separation and that the different
electron exchange symmetries (e.g., singlet,
triplet) are solved separately. Simplification oc-
curs with the use of an atomic basis (in which the
&, are that basis) and a solution of the impact-
parameter equation (58) has been carried through
for a two-electron problem including plane-wave

factors.*

V. DISCUSSION

Section IV demonstrates that a meaningful ap-
proximation exists that does not decouple elec-
tronic motion at zero order, and is precisely the
multichannel impact-parameter method for atom-
atom collisions, The differential cross sections
can be developed from scattering theory rather
than “diffraction screen” arguments?® 3 and it is

clear why the initial-final averaging of the relative
collision vector!® works in this limit for the scat-
tering amplitude. The light-mass-particle motion
is not required by the theory to be best described
by an adiabatic (as in avoided-crossing analysis) or
an atomic (as in high-energy theory) basis, but
must be solved to determine the lowest-order part
of the whole scattering problem. It is felt to be
important that this coupling occurs at zero order
in the equations derived from the isovelocity limit.
Although a many-particle system is too complex
to compare to a single differential equation, the
implications are that all terms which arise beyond
zero order in an asymptotic-type approximation
may not be helpful for the construction of a better
solution. This occurs in atom-atom scattering if
one uses only the large-mass-limit JWKB solu-
tions to investigate excitation.?®% In addition to
this, the isovelocity limit clarifies the higher-
order effect of the mass-polarization-type terms
that appear in the barycentric electronic Hamil-
tonian, and incorporates full in-out decoupling into
the coupled equations for nuclear motion.
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APPENDIX
If y is defined by
y=x+/Gcw, (E-HR=0, (A1)
and has an approximation
(E - B =RY
2P =yt [GUYD + [ GRY |

then a construction of ® by iterating the integral
equation

satisfying

(a2)

w(2)=x+fGUzpm , (A3)
can be shown to lead to a residual
(E-Hyp®=Uf GRV=R® . (A4)

Thus if U GR™ is bounded and of the same order
in a smallness parameter as R™™, y® has a resid-
ual of the same order as y® and satisfies free-
particle motion outside U.
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