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A distorted-wave formulation with exchange is given for the electron-impact excitation of
atoms from (nolo) 'to (polo) pP configurations using the LS-coupling scheme. Phenomeno-
logically determined independent-particle models and distorted-wave potentials are utilized
to compute angular distributions and integrated cross sections for 2P Ss, 3p, and 4P ex-
citations of atomic oxygen over wide ranges of energy and momentum transfer. The results
are compared with the Born-approximation limit as well as the experimental integrated cross
section of Stone and Zipf.

I. INTRODUCTION

Atomic oxygen plays a major role in the under-
standing of auroral, dayglow, and ionospheric
phenomena which require a detailed knowledge of
electron-impact cross sections, among other things,
for their explanation. There have been a number
of theoretical studies of electron-impact excitation
of atomic oxygen, and excellent reviews of the sub-
ject can be found„ for example, in the review arti-
cle by Moiseiwitsch and Smith and in the mono-

graph by Massey and Burhop. The excitation of
the 'D and 'S states of the ground-state configura-
tion ls 2s 2P from the ground 'P state by slow
electrons has received considerable attention.
Yamanouchi et al. , Seaton, Smith et al. ,

' and

Henry et al. 6 have calculated integrated cross
sections using Hartree-Fock wave functions both
in the distorted-wave (DW) approximation ' and in
the close-coupling approach. It has been estab-
lished by Bates et al. and by Seaton that the basic
assumption of weak coupling inherent in the DW

calculation was invalid in the excitation of the ~D

and 'S states because theylie too closetothe ground
'P state.

In this work, we apply the DW approximation to
the electron-impact excitation of atomic oxygen
from the ground state to the 3s( S, 'S), 3P( P, 'P),
and 4P( P, 'P) states, assuming that the core is
frozen to the S state of the 1s 2s 2P' configuration.
We expect that the coupling between the ground
state and these excited states is sufficiently weak
that the DW calculation is valid. We base this
assumption on the fact that the energy separations
between the ground and excited states are large,
and that these transitions involve the change of one
electron orbital, in contrast to the transitions
among the P, D, and S lowest levels.

The DW and exchange-DW Born-Oppenheimer
approximations have been applied by Percival to
compute the collision strengths of the excitation of
3P( P and 'P) states at very low incident energies
using Hartree-Fock wave functions. The inte-

grated cross section for the 2P( P)- 3s( S) transi-
tion over a wide range of energy has been calculated
by Stauffer and McDowell with an impact-param-
eter method using Hartree-Fock wave functions.

Here we base our computation on the indepen-
dent-particle model (IPM) of Green and his collab-
orators. ' " In comparison to Hartree-Fock-
Slater calculations and to experiment, a simple
two-parameter model has been found to provide a
good representation of atoms and electron-atom
interactions. The present DW calculation is an
extension of the previous work on Ne and Ar by
Sawada, Purcell, and Green (SPG). ' As in SPG,
we assume the LS-coupling scheme for both the
ground state and excited states. For moderately
highly excited states, it may be more accurate to
utilize the Jl-coupling scheme. A detailed formu-
lation has been given by Shelton and Leherissey'
for the transitions from the IS-coupled ground
state to a Jl-coupled excited state for the rare
gases. Here, however, as in SPG, we simply as-
sume that the I-S coupling is valid, and ignore any
spin-orbit couplings that cause fine-structure split-
tings.

In the examples cited above 9 on atomic oxygen,
no attention has been given to angular distributions
of the projectile electron. For a microscopic study
of electron energy deposition, for example, the
spatial distribution of scattered electrons as well
as their energy distribution is expected to play
important roles. Owing to the difficulty in studying
these collisions experimentally, there have been no

data available on angular distributions so far, and
some sort of reasonably reliable theoretical pre-
dictions seem worth presenting.

The electron-impact excitation and ionization of
atomic oxygen has recently been studied in the Born
approximation by Kazaks, Ganas, and Green"
(KGG) using an analytic atomic IPM potential which
reproduces the 15 excited single-particle levels
from 3s to Ss, SP to 6P, and 3d to I in close agree-
ment with the experimental energies. Their re-
sults for integrated cross sections were generally
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in good agreement with experiment above 100 eV.
In order to extend their work to lower-energy re-
gions, and to obtain more realistic angular dis-
tributions, it is necessary to include the effects of
distortion as well as exchange. The present DW
calculation utilizes the KGG potential to construct
the atomic wave functions.

In Sec. II we present a DW formulation which is
a generalization of that given by SPG, and describes
excitation from an incomplete subshell. In Sec. III
we discuss the choice of the phenomenological dis-
torting potentials in relation to the KGG potential
and to the experimental total cross sections of
Sunshine et al. In Sec. IV, we apply our formu-
lation to calculate angular distributions and inte-
grated cross sections for the various transitions
in atomic oxygen which were mentioned earlier.
We compare our integrated cross sections with the
recent measurements by Stone and Zipf.

II. DISTORTED-WAVE FORMULATION

We suppose that the initial state of the atom is
specified by the quantum numbers Lp, Sp Jp and

~p ~ After an electron has been promoted from an

nolo orbital to an nl orbital, the atom is in a final
state specified by L, 8, J, and M. We suppose that
there are N electrons in the nplp subshell, and that
the inert core (nolo)" ' is specified by the quantum
numbers I „S„J„andM, . The projectile elec-
tron has initial momentum k, and final momentum
k~. The differential cross section for the transi-
tion (nolo) - (nolo) nl is

me MD NME 2

p

(1)

where we have summed over contributions from
all final states with J that are possible for a given
set of S and L. All these states are degenerate in
our model. In Eq. (1), M and M are the ampli-
tudes for the direct and exchange processes, re-
spectively. In the DW approximation,

= N((Cy(0) xy '(o) l~oi I()'((0) x("(o)) 1

M' = &6(I)xy' '(1) l&oil ()((0)x('"(0))

(2)

(3)

Equations (2) and (3) are analogous to Eqs. (2. 8)
and (2. 14) of SPG. In the direct process, electron
0 comes in and is scattered out inelastically; we
denote the ground-state and excited-state atomic
wave functions by ()(;(0) and (C(&(0), respectively, in-
dicating that electron 0 is the projectile. In the ex-
change process, the incident electron 0 drops into
the nl orbit, while electron 1 is knocked out from
the nplp orbit; the ground-state and excited-state
atomic wave functions are then (t(((0) and g&(1), re-
spectively. The quantities y~ and g& are the dis-
torted waves for an electron in the incident and out-
going channels, respectively, with appropriate
boundary conditions at infinity. The normalization
of y,' and y& is such that in the absence of distorting
potentials they are to be replaced by exp(ik( ~ r)
and exp(i' r), respectively. The remarks made
in Secs. II and III of SPG on the choice of the dis-
torting potentials apply here also. In Eqs. (2) and

(3), &(& is the Coulomb interaction between elec-
trons i and j.

The basic difference between the present formu-
lation and that of SPG lies in the initial and final
atomic states. The LS-coupled antisymmetrized
initial atomic state for the (nolo) configuration is

(C(((0) = Z (SoMB LoM~ lJoMo)F~o o Z Q Q (S,M ~pm, lSoM~ )(L,M /om, lLoM~ )
Sp Lp Sc Lc sp lp c c

&& (S,M~ L,Mz, lJ,M, ) $(nolom, m, ; I) C', (L,S,Z, M, ; 2, 3, . . . , N) . (4)

The LS coup-led antisymmetrized final atomic state for the (nolo)" 'nl configuration is

q, (O) = Z (SM,LM~I~M) ~ ~ ~ (S'M'~ 'm. lSM. )(L'Mi 'm(lLM, )(S',M', L'Mi l&sMl)
Sc Lc s l c c

For $&(l) we have Eq. (5) with the particle index
1 replaced by 0. In Eqs. (4) and (5), C, describes
the antisymmetric wave function of the core elec-
trons, and (t( describes the extra core electron
which couples to the core to produce the initial or
final state of the atom In Eq. (.4), F~~~o is the

c ccoefficient of fractional parentage for constructing
the initial state (nolo)"SoLo from the core state

(nolo) 'S,L, and an nolo electron. In Eq. (5), the
antisymmetrization is carried out explicitly by the
exchange operators I'&&. The bracketed quantities
such as (SoM~ LoMqol&oMo) are Clebsch-Gordan
coeff icients. '

As discussed in SPG, it is advantageous for com-
putational economy and accuracy to rewrite Eq. (1)
in the form
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2w 2Jp+ 1 2

l(M' M'-) NM-'+M' l' (6)
J'gQo hatt f5

To ——y' oZ(- 2N)ReM M

T, = '-, Z!M' '

y'= (4' 8) '.

(13)

(14)

(15)

e 5 g2. (6)

T, = y'-,'Z lM'-M'l',
Tz = y' 2Z(- 2N) Re(M —M )M *,
T, = y'-,'ZN'lM'l'

T4 ——y' 2Z2Re(M —M )M

(9)

(1o)

(11)

(12)

where M is the Born amplitude. Equation (6) may
be expressed in the form

40'~ d&
= y[5ss (Ti+Ta+T4+To+To)+ T3] (7)dQ o

where

Throughout the rest of this work we use the nota-
tion Jp: 2Jp+ 2. We present our results in Secs.
IIA-H F.

A. Direct Amplitude MD-M~

We rewrite M of Eq. (2) by using Eqs. (4) and

(5) and the partial-wave expansions of the distorted
waves given by Eqs. (3. 5a) and (3. 5b) of SPG. The
radial parts of the distorted waves, f, , appearing
in the partial-wave expansions are obtained by
solving the radial Schrodinger equation with suitably
chosen potentials, as discussed in Sec. III. In the
resulting expression for M we introduce the mul-
tipole expansion of vo~ given by Eq. (3.4) of SPG.
Taking advantage of all orthogonalities, we find

So Lo Jp I Lc l

M = 5oe 5„Z Y(lymt )(k~)i'& 'y(lg)' ' Z (-) '"r
Sg sy l&xlp allm M s ML MO ~y

p 0 C

( So L Zlf' Lo
X

-I 0

A ~ A,
l Xl fl Xlf 0

x (J JLooL)' (N)' (4v) E e (lgl)/lo) !(-)'c"y('
g ii (16)000000

where

(i,. tytto=&f5~()'oy ro)R r&rs)lr(/r)~'!R ohio(ri)fi(("& ro)) .
(17)

In Eq. (17), R„,(r,) and R„, (r, ) are the radial
parts of the single-particle bound-state wave func-
tions $(nlm, m, ; 1) and Q(nolom, m, ; 1), respec-
tively. The bracketed arrays in Eq. (16) are 3j
symbols. In g,»„, we sum over all magnetic sub-
states except M and Mp. Although this sum can be
performed explicitly, the form (16) is more tract-
able for calculating T, .

For M that appears in (9), (10), and (12) in the
combination M —M, we introduce a quantity
analogous to (17):

&~,'~,»o = &A, (&pro)Rnr(r~) I4'r) 'lR.,i (rg)ji,(&~ro)),
(18)

where j,(kr) is a spherical Bessel function. Then Mn

—M is givenby Eq. (16), with $ replacedby $~ —(s~.

B. Exchange Amplitude M

In the exchange amplitude M of Eq. (3), we sub-
stitute Eqs. (4) and (5), with the electron 0 re-
placed by the electron 1. As in SPG, we choose
for the distorting potential in M the same potential
from which the bound-state wave functions are
computed. Then the scattering states in M~ be-
come orthogonal to the bound states and we may
drop the term g", ,P« in Eq. (5). By taking advan-
tage of all orthogonalities and using the multipole
expansion for vp~, the exchange amplitude becomes

(s, L, z, )ts L z)(s, —.
' s, ~fs, —,

' s
M = Z Z K(lgm, )(ky)! ( )E~+Z~

'&'y' "' M, M~ -M, M, M~ -M M, m, -M, M, m, , -M,
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lo Loll(L l L )(io & I/ )(1
X! !!( )"-'/(~o

SoL�o~SL�)'"—
m, -M, j!,M, m, -M,j(m, , l -m, j!m, p, 0)

lf X lp l X l]
x (4o.)3/2 'i)-l/ (I )1/2 2 (l l lT )1/s

ooo(oooj

where &d= —Sp+Lp —S+L+ 1 —2S„and

nr, r,»o = &fi,(&/, &1)R I(+0) l+(I+& lR ot (rg)

x f,, (kq, xo)& . (20)

The notation g,» in Eq. (19) means that we sum
over all m's except M, Mp, m... and m, . Al-
though this sum can be performed explicitly, the
subsequent algebraic manipulations become more
tractable if we leave M in the form (19).

C. Born Amplitude N~

For the Born amplitude M that appears in (12)-
(14) (but not in the combination MD -Ms), we utilize

M' = x &e'"/ 'i
g,(0) leo, ly, (0) e'"~'&&

= (4«'/ll. ")&&4/(0) le'"'i
l 4f(0)&, (21)

where K= k~ —kf is the momentum transfer. Using
Eqs. (4) and (5) and the Rayleigh expansion for
z«'&, we find

l Xlo
M = 5(SS ) 5(m m ) Q (-)s' F (If) (~) / y' o f~(4oi~ )

t, q -M M,j (0 o o j
J J X L I

x ( )
0+z+zc+s g~p+~ (g J'L L) i/s gg(If' ), (22)

Sp Lp L Lc lp

where

gx(~) = &R.i(~) lj.(«) IR„o.o(~)& (23)

In Eq. (22), the arrays in curly brackets are 6j
symbols. i In applying Eq. (22) to the pure Born
term To of Eq. (14), we choose the direction of K
as the s axis.

L Ip
To = Q (-)~Q LX

p l, c

xZ c»(l, 1/, l&l/)ks&/hsz'/ P~( sc8o), (26)
l ) ~l

c c c

D. Evaluation of Tl, . . . , T6

The quantities T&, . . . , T6, which determine the
differential cross sections, may now be calculated
using Eq. (16) with $ replaced by (~- $

~ for MD

—M, and the expressions (19) and (22) for M and
M . We omit the tedious but straightforward de-
tails and proceed to the final results:

2'

ul & Lc lp
5 f

x J&' (8) Re(gs z,, ) g (lf), (27)

2

4 Q . f f (
)l/+X+1 X L Lo

gl~ lf L lp

I Ip
T, =Z(-)'Z-, Q c» (1( 1/, l) 1/)

)t L l l l& fc 0 f

g s «z/ gs, ~i, /P/, (cos 8), (24)

L Lp
T = & (-)' &L(-)"'

p L„ l, l

where

"~,"(9)Re(/, .')S (&),

2

C

A

c»(l, ls i&i/) =' ( ) (lql/lqi/)

(29)

x Z c»(l) 1/, lq l/)Re(gs g, Ps,g" ) I'~ (cosa), (25)
lyly

x(l/01/0lp0) (l, Ol» Olpo) x
lg p l]

(30)
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g»t», = 6'(-) ' ' (l»)' '
(lqOKO Il, 0)

TABLE I. Multipole orders and lf for the p —s and

p —p transitions.

x(&»', »,», —
&»,'», »»,) (31)

6' = (4»»Nlo)'~ E~ (loOXO Il0), (32)

k,~~ —(4»»Nllo)'" Fs,», 2 (-)' (loOPOII», 0}

Transition

E] -2
lf
lg+2

l]-1
$$ + 1
lf+ 1

Contributing terms

Tf p T2p T3s T4, T5

Tfs T2p T4» T5

x(lOPO Il» 0) I p
rl»»»&»»o, (33)lol ~ s

J

g (K) = 6'(-)' (X)'~s LK sg~(k),

0

l)

For &=2, if l;=0,
have if=1 and 3 only.
l ~

= lf = 0 is allowed.

lg +1 T3

we have if=2 only, and if l~=1, we
Similarly, for &=1 inp-p, no

'JJ), ~(8) = Z (1»-mmmm Il»0) F» (k~)I'~(K) . , (36)
m f m f

In E»ls. (24)-(26), Ps(cos8) is a Legendre polyno-
mial. The»luantities $»»»»„$»»"»»»„»)», »», and

g~ (K) which appear in E»ls. (31}, |33), and (34) are
the radial matrix elements (17), (16), (20), and

(23).

E. Integrated Cross Section

The integrated cross section c'= f (d»»/dA) dA is
expressible in the form

»» = ~s@(o, +»»s+»»»+»»»+»»o)+o's,

where
1

o» = 2y»»j, T&d(cos8), j=1, . . . , 6.
We find

(37)

»»»
—ao(4k»/k») B»,o for j=1, 2, 3, (38)

where B»,o is the coefficient of Po(cos8) in T& in

(24)-(26) for j = 1, 2, 3 and

»»&- aos(2/k»s) j T»KdK for j=4, 6, 6, (39)
E)

where K= (k»+k&- 2k»k&cos8)' and K„,, =k, + k&.

F. Additional Remarks

The final expression for the differential cross
section, E»l. (7), when E»ls. (24)-(29) are substi-
tuted in, does not depend on Jo. Thus, for the
ground-state members Po, P„and P~ of atomic
oxygen, for example, we obtain the same results.
In fact, by averaging over contributions from all
three states, we find the same expression for the
differential cross sections as given here, if we
ignore the small energy splittings as we do here.

The multipole order X for the p -s and p -p
transitions that can contribute are listed in Table
I, together with the possible final-orbital angular
momenta lf that are coupled to a given initial-
orbital angular momentum l& of the projectile. The
table also contains the multipole order P that can
contribute in the sum appearing in the exchange
amplitude ks 'z,

~ of E»i. (33). The last column in

Table I indicates the terms T, -T, that contribute
for each classification.

The coefficients c»(l» l», l» lz) defined by E»i. (30)
satisfy the symmetry property given by Eq. (3. 27)
of SPG. This property is utilized to greatly econo-
mize the fourfold sums over /~ lf 1& l& that appear in

Tg y T2, y
and T3,

The asymptotic forms of the distorted radial
wave functions f, (k», r) and f, (k&, r) are given by
E»I. (3.6) of SPG. In computing the radial matrix
element gs 'z~ of E»I. (31) for direct amplitude, we
must cut off the integral at some practical point

, where f,, and f, have attained their asymp-f
totic forms. Owing to the extreme long-range
nature of the form factor (R„,(r,) Ir&'/r&~'IR„» (r,))
that appears in E»is. (1V) and (18), the error com-
mitted by ignoring the contribution from x & x ~ is
not negligible unless r ~ is chosen extremely
large. This problem is peculiar to the direct am-
plitude and does not arise for the exchange ampli-
tude. In order to achieve a sufficient numerical
accuracy and yet maintain the computational econo-
my, we proceed as explained in SPG: For lower
partial waves, we replace f, , and f, for r & r ~f
by their sinusoidal asymptotic forms and convert
the integrals involving the form factor in their
integrands into sums of quickly converging series
of integrals, each integral ranging over a period
of sine or cosine functions. This method is par-
ticularly suited for the computation of I —M,
since for higher partial waves, for which f, , and

f, have not attained their sinusoidal asymptotic
forms atr ~, the errors tend to cancel between

III. CHOICE OF IPM POTENTIALS

We apply the formulation presented in Sec. II to
the electron-impact excitation of atomic oxygen in
which an electron in the 2p shell is excited to 3s,
Sp, and 4p shells. These bound electrons are
assumed to be in the IPM potential of the form
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2 Z-1
r H(e"' &)-~ &

' ') (40)

2 Z
( ) ——

~(,.gu 1)
(41)

The parameter set KGG, when used in (41), is
found to produce a large P-wave-shape resonance.
The total cross section 0~ predicted by this poten-
tial has a peak at - 4 eV with the value - 140ao (ao

is the Bohr radius) and a half-width -3 eV. The

experimental && measured by Sunshine et al. ' as
plotted in Fig. 1 does not possess such a huge

resonance. Apparently, the elastic channel seems
to demand a somewhat different set of parameters
than KGG. The inclusion of a phenomenological
polarization potential is a possible way of eliminat-

ing this resonance. However, then the DW calcu-

40—

N o
O

uj

b

30—

25

20—

0
oe

' d = 0.8164

15 —""

IO—

I

0.1

E (ev)

FIG. 1. Total cross section oz(Z). Circles are the

experimental data of Sunshine et al. (Hef. 17). Curves
are the theoretical values obtained by using the potential

V(z) of Eq. (41) with the parameters as indicated in the

figure.

where Z= 8 and the values of the parameters are
those of KGG:

d=0. 8164, If=2. 224 (KGG) .
In this work, we employ rydberg units unless

otherwise specified (1 Ry= 13.6 eV). As explained

in the Introduction, this potential reproduces the

single-particle levels of atomic oxygen quite well. "
In particular, the binding energies of 2P, 3s, 3P,
and 4P electrons in this potential are 1.0031,
0. 3050, 0. 1950, and 0. 0929 Hy, respectively. As

in SPG, we utilize Va(x) also as the distorting po-

tential for the exchange amplitude to avoid un-

physically large exchange contributions arising
from the nonorthogonality of scattering and bound

states, and to maintain the post-prior symmetry
of the exchange amplitude.

For the direct amplitude, we employ a distorting
potential with a form similar to Va(r) but without

the Coulomb tail':

In presenting the angular distributions we define

the distorted generalized oscillator strength
(DGOS) by

g daf") 4u4k' ao g dQ
(42)

where E is the incident energy and x=ff a2O. The

lation becomes prohibitive owing to the extreme
long-range nature of the polarization potential. In

order to be compatible with the measured OT and

yet to keep the computation practical, and hopefully

to simulate the effect of the polarization potential

to some extent, we modify the potential by gradual-

ly increasing d from 0.8164, fixing II to 2. 224,

until we obtain a reasonable agreement with the

experimental a&. The variation of o& as a function

of d is shown in Fig. 1. An increase in d by -25%
eliminates the resonance completely, bringing

down the predicted OT to the experimental level.
We choose as the modified parameters of the dis-
torting potential

d=0. 9900, H= 2. 224 (set SG1)

to be used for the direct amplitude. The predicted

0& by this potential lies somewhat lower than the

data at energies above -10 eV, as can be seen
from Fig. 1. This may be desirable rather than

objectionable, since we use a purely real potential,
and hence no processes other than elastic scatter-
ing are accounted for. At present, in view of the

complete lack of data on elastic differential cross
sections, we feel that the use of a complex optical-
model potential is not warranted.

In any event, a certain degree of arbitrariness is
unavoidable at this time for the phenomenological
determination of the distorting potential. To study

the sensitivity of the results of the DW calculation
on the choice of parameters in Sec. IV, we present
an alternative set to be used in V(x) for the direct
amplitude:

d= 1.250, H= 3. 150 (set SG2) .
The predicted 0~ by this potential is also shown in

Fig. 1.
As in SPG, we use the same distorting potential

V(x) for the outgoing channel as for the incident

channel, although, strictly speaking, the incoming

and outgoing electrons should be in somewhat dif-
ferent atomic fields. The results presented in Sec.
IV utilize the potential Va(t)of Eq. (40') with the

parameter set KGG for the computations of the
bound-state wave functions and the scattering states
in the exchange amplitude. The scattering states
in the direct amplitude are computed by using V(r)
of Eq. (41) with the parameter sets KGG, SG1, and

SG2.

IV. RESULTS AND DISCUSSION
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IO

OXYGEN

2p('P) - 5s('S)

TABLE II. E er'xp imental optical oscillator stren
e p- s transition in atomic oxygen.

IO
-2

LU

BORN
-DW

2

4
IO

IO4 I I

0.0 i O. I

I

j l

/

g
I

/

I I
'g I /

I I j

I I I I I I II
IOO

Ref.

20
21
22
23
24
25
26
27

Present work

Optical oscillator strength

0. 033
0. 033
0. 035
0, 023
0. 18
0. 050
0. 046
0. 044
0. 056

FIG. 2. DGOS for 2p(3P) 3g(SS) with the SG1
etc rs. Exce

wi e param-
xcept for the Born prediction shown by the solid

curve, the beginning and the end of each curve correspond
to the 0' and 180' scattering, respectively.

quantity x& is the excitation energy in rydbey ergs.
hxgh energies, the DGOS approaches the gen-

eralized oscillator strength (GOS), which is a func-
tion of x only. In plotting DGOS, we use the scaled
variable $ = x/x, instead of x.

The theoretical predictions of DGOS as a function
of $ for various values of E obtained with SGl are
shown in Figs. 2 and 3 for the 2P- 3s( S) and

p( ) ransitions. (As explained in Sec. III, the

bound states and exchange amplitude are computed
with EGG. ) The Born limits (GOS) are also shown

in Figs. 2 and 3. The results of the 3s( S) excita-
tion shown in Fig. 2 are reminiscent of the results
obtained for Ne previously. Extrapolating GOS

to zero-momentum transfer, we find the optical
oscillator strength for this transition to be 0.056.
Comparison with the experimental optical oscilla-
tor strengths given in Table II shows that al-
though the experimental values vary considerabl,
our value is centrally located with respect to these

3 P
determinations. The results show

' Fown ln 1g. or
3p( P) exhibit the characteristic featu e f t'

call forbica y orbidden transition, approaching zero as $

goes to zero.
The results for DGOS of the 4p('P) excitation are

quite similar to Fig. 3 in their $ and E dependence
except that the magnitudes are about —,

' of the 2p- 3p transition.
The predicted DGOS for the 2P-3s('S) and 3p('P)

transitions are presented in Figs. 4 and 5. These
transitions are of purely exchan en e orxgxn zn our
model, and, as such, the values of DGOS vanish
rapidly with increasing energy. For these transi-
tions, KGG, SG1, and SG2 give identical results,
because the KGG parameters are always used for
the calculation of exchange amplitudes.

The sensitivity of the predicted DGOS to the
choice of the distorting potential may be studied by
comparing the results from different potentials
which yield comparable fits to the experimental
total cross section shown in Fig. 1. Th e results
with the alternative set SG2 are shown in Fi s. 6

espzte the large difference between SG1
n in xgs.

and SG2 the se models give rather similar results
for the DGOS a,s a function of E and $. Th'

ests that
n . xs sug-

ges s at our results may be insensitive to the
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choice of the distorting potential provided that it is
consistent with the experimental total cross sec-
tions.

As seen from Figs. 2, 3, 6, and 7, the effects of
distortion remain large even at energies as high as
10 Ry, especially at large angles. The effects of
exchange are readily seen from Figs. 4 and 5 for
quintet states which are of purely exchange origin.
As noted earlier, the exchange effects diminish
rapidly with increasing energy.

In Fig. 8, we show the integrated cross section
o(E) summed over all the triplet transition's con-
sidered. The contributions to o(E) from individual
transitions are given in Table III. Recently, Stone
and Zipf' have measured the resonance radiation
at 1304 A emitted after the electron-impact excita-
tion of atomic oxygen from the threshold to 150 eV,
and extracted the total cross section for the Ss('S)-
2P('P) emission. Their results are also shown in
Fig. 8 by a solid curve. The sharp peak observed
near 15 eV is attributed by Stone and Zipf to the
population of the 'S state by cascade radiation from
the 4/I( P) and SINAI( P) states. They estimate the

absolute magnitude of the total cross section for
direct excitation of the SP( P) and 4p( P) states to
be about 1.2x10 ' cm at its peak near 17 eV, and
that for the Ss('S) to be about 2. 1 x 10 ' cm at its
peak near 50 eV. If we assume that all direct
excitations of the 4P level lead to population of the
3s level, we may compare our result summed over
Ss( S), Sp( P), and 4p( P) with the results of Stone
and Zipf. This assumption is not strictly cor-
rect, since the 4P level can decay via 3d and 4s
levels which can both go directly to the ground
state. As seen from Fig. 8, our result is in rea-
sonable a,greement with their data for E &2 Ry, but
the low-energy peak is not reproduced at all. The
predicted o(E) for the P transition is not as sharp-
ly peaked at low energy as suggested by Stone and

Zipf. In Fig. 8 and Table III we also present the

KGG-------

IO-I

BO
= DIr'—:E=

LLj

10+—

OXYGEN

2pPP)-~s(~S)

/

~t //
/

bl o

c I—

ILI

b

O. I

0.2

Ij
o'//

I I I I I I I I

E (Ry)
IO

I I I I I I I I I

104
O.ol O. l

I I I I I I11
100

FIG. 6. DGOS for 2p(SP) —3s( S) with SG2. See the
caption of Fig. 2.

FIG, 8. Integrated cross section 0(E) summed over
the 3s( S), 3p( P), and 4p( P) final states. The experi-
mental dataof Stone and Zipf (Ref. 18) are represented
by the solid curve. The symbol refers to the experi-
mental data of Zipf (Ref. 28).
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SG1

SG2

KGG

E (Ry)

3s( S)
3p('P)
4p('P)
3s('S)
3p('P)
4p('P)

E (Ry)

3s('S')
3p('P)
4p('P)

E (Ry)

3s('S)
3p('P)
4p('P)

0. 225
0. 619
0. 132
0. 126
0. 201
0. 072

0, 230
0.767
0. 168

0. 583
2. 751
0, 250

0. 391
0. 569
0. 145
0. 049
0. 085
0. 029

0. 449
0. 521
0. 133

0. 360
l. 180
0. 363

0.442
0.488
0. 124
0. 023
0. 047
0. 016

0.438
0. 375
0. 096

0.419
0. 624
0. 170

0.435
0. 367
0. 094
0. 007
0. 020
0. 007

0. 403
0. 288

0. 432
0. 371
0. 096

4. 5

0. 385
0. 256
0, 066
0. 002
0. 008
0. 002

4. 5

~ ~ ~

0, 066

4. 5

0. 386
0. 247
0. 063

0. 315
0. 165
0, 042
0. 001
0. 002
0. 001

0. 316
0. 165
0. 042

0. 316
0. 160
0. 041

10

0. 261
0. 115
0. 030
0. 000
0. 001
0. 000

10

0. 261
0. 115
0. 030

10

0. 261
0. 112
0. 029

predicted o(E) using the KGG parameters. Owing

to the p-wave-shape resonance present in this po-
tential, the theoretical o(E) shows a, large peak
near threshold quite compatible with the data. Un-

fortunately, we have to reject this solution in view
of the difference between the predicted and experi-
mental total cross section O'T as discussed in Sec.
III. These considerations suggest that at energies
below -2 Ry our model is not accurate enough to
reproduce simultaneously the total cross section
o~ of Sunshine et ai. ' and the integrated cross
section o'(E) of Stone and Zipf. ' Also shown in

Fig. 8 are the most recent data of Zipf. The E
dependences of our DW predictions with SG1 and

SG2 are quite similar to these recent data, although
the magnitudes are smaller by a factor of 2. The
discrepancy between our DW results and the ex-
perimental data would worsen if the SP( P) state
does not have a pure parent state S but has a mix-
ture of 'S and D as suggested by Percival.

To summarize, the DW calculation presented
here for atomic oxygen shows that the effects of
distortion on angular distributions are quite im-
portant even at energies as high as 10 Ry, and

that, nevertheless, for the integrated cross sec-
tions, the Born approximation seems to hold quite
well even at lower energies. This latter result is
due to the compensation between the contributions
to the cross sections from the backward and for-
ward angles, these contributions being, respec-

tively, larger and smaller than those given by the
Born approximation. At energies below - 2 Ry,
our theory is incapable of reproducing the inte-
grated cross section of Stone and Zipf. At low
energies we may have to consider the polarization
effect explicitly. It is highly desirable that calcu-
lations with the close-coupling approach using the
formulation, for example, of Smith and Morgan
be performed in order that one may compare the
merits of the DW approximation with those of the
close-coupling theory for the transitions consid-
ered here. For the entire energy range consid-
ered, the E dependence of our theoretical predic-
tion on the integrated cross section o(E) is in rea-
sonable agreement with the recent data of Zipf.
It is hoped that our results on DGOS and o(E) are
useful in applications such as microscopic studies
of electron-energy deposition.
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Impact-Parameter Theory Defined as a Const'ant-Collision-Velocity Semiclassical Limit of a
Complete Quantum-Scattering Picture
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Sandia Laboxatomes, A/buquexque, ¹zuMexico 87115
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A semiclassical limit, defined in terms of large mass and energy at fixed arbitrary col-
lision velocity, is shown to be a simple formal prescription for obtaining a quantum treat-
ment of the impact-parameter method and the eikonal approximation. In particular, for atom-
atom collisions, the resultant approximation is emphasized to be a proper strong-coupling
equation for inelastic processes, as opposed to the adiabatic result of a large-mass limit at
fixed energy.

. I. INTRODUCTION

Semiclassical analysis and perturbation theory
are two systematic means of obtaining approximate
solutions in quantum mechanics to complex prob-
lems. This paper presents an argument for the
recognition of a semiclassical limit distinct from
the usual large-mass limit'; the new limit is
called isovelocity for it is taken at large mass with
fixed velocity rather than fixed energy. The usual
semiclassical limit involves the construction of an
asymptotic solution of an ordinary differential
equation,

a, +K (r))0(v, a)=0,

as the dimensionless parameter z becomes small.
a is sometimes associated with the physical con-
stant h, but an association with the mass p, , de-
fined by replacing p, by p/o. ~ in the Schrodinger
equation, is advantageous because it immediately
shows that the asymptotic solutions are better for
a proton than for a, positron with the same energy
in a given potential field. This paper will concern


