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The electron-excitation cross sections of the 3 P, 3 'D, 4 8, 4 P, 4 D, and 4 I"' states have
been calculated at several incident energies between 4 and 24 eV by using the method of close
coupling. Three different sets of calculations in which the wave functions of the electron-atom
system are expanded by three states (3s, 3p, 3d), by seven states (3s, 3p, 3d, 4s, 4p, 4d, 4f),
and by eight states (3s, 3p, 3d, 4s, 4p, 4d, 4f, 5p) of the target atom, have been performed in or-
der to investigate how the cross sections are influenced by the indirect coupling of the ground
state to the final state through the intermediate ones. The 3 D cross sections are found to be
about 30% higher than the values obtained by the Born approximation and by the scheme of
3s-3d two-state close coupling. The strong coupling of 3s with 3p and of 3d with 3p provides
an indirect coupling between 3g and 3d which is mainly responsible for the large increase of
the 3 D cross sections over the Born-approximation values. A similar kind of increase in
the cross sections is also observed for the 4 D state owing to the indirect coupling through the
intermediate 3p and 4p states. Inclusion of the intermediate states 3 D, 4 D, and 4 S in the
close-coupling calculation likewise affects considerably the 3 P and 4 P cross sections. The
effect of indirect coupling is most pronounced in the 4 I' cross sections (ranging from a four-
fold to a tenfold increase over the Born approximation), because the direct coupling between
3s and 4f is weak and of rather short range so that the major contribution to the cross sections
arises from the indirect part. Comparisons of the theoretical cross sections with the experi-
mental values are made.

I. INTRODUCTION

In the last decade a great deal of effort has been
directed toward the experimental study of electron
excitation of atoms. Excitatian cross sections for
a number of atoms have been measured and com-
parisons of the experimental data with theory have
been made. ' Many of the theoretical calculations
of the cross sections were based on the Born ap-
proximation. For some cases the Born theoret-
ical crass sections are in rather good agreement
with the experimental values at high energies,
whereas in many other cases, notably for the di-
pole-forbidden states (with respect to the ground
state), the Born approximation tends to underesti-
mate the excitation cross sections. ' ' In the case
of neon and argon, the Horn approximation (first)
gives zero excitation cross sections for a number
of non-spin-forbidden states for which quite sub-
stantial cross sections were observed experimen-
tally at high energies.

In performing a Born-approximation calculation

of the excitation cross sections, one essentially
makes two approximations, i.e. , (i) considering
the coupling of the final state with only the initial
state and neglecting the roles of all the other ex-
cited states, and (ii) neglecting distortion and the
back coupling from the final to the initial state
(plane-wave approximation). The second approxi-
mation may be expected to be valid at high ener-
gies; indeed, high incident energy as a major cri-
terion for the applicability of the Born approxima-
tion has been well recognized. However, the con-
sequence of approximation (i) was not as fully ap-
preciated until rather recently. For excitation to
a dipole-allowed state, the interaction between the
incident electron and the target atom provides a
coupling of the final state of the atom with the ini-
tial state, which is usually strong enough so that
omission of all other states may be justified. On
the other hand, if the direct initial-final state cou-
pling is relatively weak, as in many cases of the
dipole-forbidden states, there may exist a third
state which couples strongly to both the initial and
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final states. Such a state then provides an indirect
coupling for the excitation process in question.
The Born-approximation excitation cross sections
would be in serious error if the indirect coupling
becomes as important as the direct one. Thus at
moderately high energy the Born approximation
may give good excitation cross sections for the di-
pole-allowed states but becomes less satisfactory
for the spin-allowed dipole-forbidden states. This
indirect coupling effect was suggested as an ex-
planation of the observation in helium that the Horn
cross sections agree reasonably well with experi-
ment for the 'P states but are much below the mea-
sured values in the case of the 'D series, and cal-
culations of the 'D cross sections by means of the
multistate close-coupling scheme have demon-
strated quantitatively the importance of the indirect
coupling. '

One way to take the indirect coupling into account
is to go on to the second Born approximation which
allows one to treat the indirect coupling via each
intermediate state individually. However, the
Born series does not necessarily converge unless
the couplings are sufficiently weak. Vfhen the cou-
plings of some of the intermediate states with the
initial state and/or with the final state are strong,
going to higher-order Born-type corrections does
not always yield satisfactory results.

In this paper we adopt the method of close cou-
pling to investigate quantitatively the effect of in-
direct coupling on the excitation cross sections.
In addition to the initial and final states, we attempt
to include as many intermediate states as is prac-
tical in setting up the scattering equations. Be-
cause the time required for the numerical compu-
tation increases drastically with the number of
channels in the scattering problem, only a limited
number of intermediate states can be covered.
Selection of the intermediate states may be based
on the strength of their coupling with the initial and
final state. Thus for excitation of the O'D state of
helium, we expect 2'P and 3 P to have a strong
influence. Our calculations show that the indirect
couplings via 2 'P and via O'P have an opposite ef-
fect on the cross section and tend to cancel each
other quite substantially. An accurate calculation
of the O'D cross section of helium would require a
detailed examination of not only the ~ = 1, 2, 3, 4
states but also possibly of some higher n P states.
A much better testing case is the 3 D state of sodi-
um. Here we can single out the 3 P state as the
most important intermediate state for' furnishing
an indirect coupling of the type 3 S-3 P-3 D, and
the effect of 4 P may be expected to be consider-
ably smaller. For the case of sodium, the dipole
matrix elements (Ss I z I nP) and (nP I z I 3d) become
very small for n ~5 (the former being —2. 505,
—0. 227, —0.083 a.u. , and the latter being

—3.043, 4. 854, —0.080 a.u. for n= 3, 4, 5, re-
spectively), thus one may expect the results of a
close-coupling calculation, which covers only the
low excited states, to include adequately the effects
of long-range polarization. With this in mind, we
have performed a series of multistate close-cou-
pling calculations for the electron excitation cross
sectionsoftheOP, OD, 4S 4P, 4D, and4E
states over the energy range of 4-23 eV and have
analyzed the influence of the indirect coupling. It
should be mentioned that the multistate close-cou-
pling scheme has been used to calculate excitation
cross sections for a number of atoms including H,
He', Ca', and Mg'. Most of them, however, were
confined to the near-threshold region so that some
of the intermediate states included are closed chan-
nels. Our calculations, on the other hand, are
conducted at much higher energies with all open-
channel intermediate states.

While the Born approximation is generally ade-
quate for excitation of dipole-allowed states at en-
ergies several times larger than the excitation en-
ergy, an exception to this rule is the case of the
first resonant states of the alkali-metal atoms. It
has been pointed out that the coupling between the
3 S and 3 P state of sodium is so strong that the
Born approximation grossly overestimates the ex-
citation cross section of 3 P over a wide range of
energy, and the use of two-state close coupling in-
deed gives much smaller cross sections. ' In this
paper we shall examine in more detail the cross
sections of the O'P state by means of multistate
close-coupling schemes. For excitation calcula-
tions of the sodium atom the method of close cou-
pling is a particularly important tool, as the Born
approximation tends to overestimate the cross sec-
tions of the O'P state and underestimate those of
n'D.

The majority of the calculations reported in this
paper was done with the incident energy of the elec-
tron between 10 and 24 eV. In this energy range
the kinetic energy of the incident electron is sub-
stantially larger than that of the valence electron.
Except for the unusually strong-coupling case of
3 P cited in the preceding paragraph, and for a
low-energy point of 4 S, the use of the plane-wave
approximation as done in the Born-type calcula-
tions of the total excitation cross sections gives
satisfactory results in the range of 10-24 eV (see
Sec. III). On the other hand, the effects of indirect
coupling on the cross sections of the D states
prove to be very important. In some cases we
have carried the calculations down to incident en-
ergies of 7. 364 and 4. 21 eV to examine the indi-
rect coupling at lower energy. However, the cross
sections at 4. 21 eV are not expected to have the
same accuracy as those at higher energies since
the exchange of the incident and atomic electrons
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was neglected in this work. Extension of the cal-
culations beyond 24 eV was not made, partly be-
cause we have already detected a trend of decreas-
ing importance of the indirect-coupling effects with
increasing energy, and partly because our close-
coupling calculations at higher energy require the
solutions of more partial waves and therefore en-
tail more lengthy computations. We have, instead,
confined ourselves to the intermediate" energy
range where the deviation of many of the excitation
cross sections from their Born-approximation val-
ues is most pronounced.

II. FORMULATION AND SOLUTION OF SCATTERING

EQUATIONS

The formulation of the problem of electron-atom
excitation by the close-coupling scheme has been
discussed extensively in the literature. ' In this
section we shall outline only the key steps which
are essential in the subsequent discussion.

I et us denote the coordinates of the incident elec-
tron by r and those of the electrons of the atom
(nuclear charge &) by F„F , 3. . . . The Hamiltonian
(in Hartree's atomic units) divides naturally into
that of the isolated atom, the kinetic energy of the
incident electron, and the interaction between the
incident electron and the atom, i.e. ,

H=H, —~ V ——+Z
~

r —r»
~

' .

The wave functions of the free atom g(nl, m, I r „ra, . . . ),
which are characterized by v and by the angular
momentum quantum numbers l,m„are compounded
with the partial waves Y» (r) of the incident elec-
tron by means of the Clebsch-Gordan coefficients
to form the coupled-representation basis functions
of total angular momentum (LM) as

q„(F„r,. . . , r) = 5 c'„"„'»» ((nf.m.
I F») r2 ~ ~ ) y» (r)

One then expands the wave function of the complete
system in the form of

)it(v'~ F&, F~, . . .r) =r Z&„(v'~ r)(t)„(F(, r2, . . .r) .
(3)

In this paper we neglect the exchange of the inci-
dent electron with the atomic electrons. The func-
tions E„(v'I g are the solution of the set of coupled
differential equations

where

«.»,~„.».~(F)l'» (r) dr", (8)

V„»,~ „»,~(F) =Jl (S) (nl, m,
~

F»r r~. . . )

x — + x' —r)

x(S)(n'f,'m,'
~

F&, rz. . .)dF»dF2. .. , (8)

with the asymptotic condition either in terms of the
S matrix as

~S( t
~

) k-1/2 ( 4 (»tt »r~l2) 8»(h »rl2)-8

or in terms of the R matrix as

E„(v'~ r)-k '~ [sin(kr ——,'k»)& +cos(kr ——,'l7»)R .].
(8)

From the A-matrix elements, the excitation cross
sections can be computed in the usual manner.

To render the solution of the coupled differential
equations tractable, several approximations were
introduced. The number of terms included in the
expansion of Eq. (3) must be limited to a manage-
able size. Selections of the atomic states in the
close-coupling manifold will be discussed in detail
in Sec. III. The wave functions of the free atom
are approximated by antisymmetrized products of
one-electron orbitals tt) determined by the Hartree-
Fock-Slater self —consistent-field procedure.
The coefficient of the Slater exchange potential is
adjusted to give good agreement between the calcu-
lated valence-electron energy and the experimental
value. The 4s function obtained in this manner is
not automatically orthogonal to 3s; thus it is nec-
essary to orthogonalize the 4s function to 3s, and

4p to 3p, etc. In this work we confine ourselves
to the singly excited configuration like 1s 2s 2p nl,
for sodium. The interaction potential matrix ele-
ments of E(l. (6) are to be evaluated between the

I P„.. .$2», $„», I and I P&, . . .(t)2~»t)~»t I configurations.
Although in principle the core-state functions in the
two different configurations are different as de-
noted by P» and tt)» (i=is, 2s, 2)»t,)the numerical
values of the overlap integrals of the corresponding
orbitals ((t)» I(t)») are very close to unity (typically
0.9988), and the integrals (Q» I (I))») with i &j are no
greater than the order of 10 . Hence in computing
the nondiagonal elements of the interaction poten-
tial, we neglect the difference between the set of

Q» and Q» and obtain

V„» „,„.». „(r)= f tt) „*, „,(r, )
~
r —r,

~

' (t)„.» „(r,) dr, .
(9)

The diagonal part likewise can be reduced to

V„». .„,,„(r)= +Z~ y(r, )»~ r —r,
~

'
t (Ft,)»dr,

+~ y„»,(F,) ~r-F, ~-'y„» „(F,)dF, . (lO)
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The second member of the above expression (which
is to be summed over all ten core electrons) rep-
resents the interaction of the incident electron with
the 1s 2g 2p core. Since the core electrons ex-
tend only over a small domain near the nucleus, we
ignore the structure of the core and thus replace
each integral inside the summation by 1/x. (The
effect of the core size will be discussed in Sec.
IV. ) Equation (10) then becomes

1
Vn& z mz, g& +m@

(r) =--

which is essentially the expression for a one-elec-
tron atom.

With a given selection of the target states in the
close-coupling expansion (e. g. , 3s, 3p, 3d) and
for a given L and M we set up the scattering equa-
tions (which are independent of M) in accordance
with Eq. (4). The values of the angular momentum
of the partial waves (I) range from L+I, to I I. —I, I.
The nondiagonal interaction potential U„„(r) between
a channel of even value of /, + l and one with odd

l, + l vanishes, thus the system of the scattering
equations separates into two subsets . For exam-
ple, inclusion of the atomic states Ss, Sp, Sd, 4s, 4p,
4d, and 4f results in a set of 16-channel and a set
of 9-channel equations for L ) 3 ~

The numerical procedure for solving the coupled
differential equation system of Eq. (4) has been
described previously. ' '" The solution is initiated
near the origin by a Frobenius-type expansion and
developed out from the origin using a Numerov
method. ' With a series of transf ormations as out-
lined in Ref. 10, the solution is then matched to the
asymptotic form of Eq. (8} in order to obtain the R-
matrix elements. In matching the solution to the
desired asymptotic form, it is more expedient to
use the spherical Bessel and Neumann functions in
place of the sine and cosine functions. Since some
of the nondiagonal members of U„,(r) have a very
long range like r, we have found it necessary in
some cases to carry the numerical integration of
the differential equations to a distance of 200ao,
where ao is the Bohr radius, before matching the
solutions to the appropriate asymptotic forms. The
computations then become exceedingly time con-
suming when a large number of channels are in-
cluded. Burke and Schey ' have given a method to
get around this difficulty using an asymptotic expan-
sion. This method works well for the case where
only the Ss, Sp, and Sd states are included in the
expansion of Eq. (3). For this 3s-3p-3d problem,
numerical integration up to x= 80ao gives R-matrix
elements gaod to about 1%. However, when the
states with e = 4 are added to the manifold of the ex-
pansion, complications arise because the small en-

ergy separations of some of the channels (4p and

M) cause poor convergence of the asymptotic ex-
pansion. We have therefore introduced an alterna-
tive scheme for obtaining the R matrix without hav-
ing to carry out the numerical solution to an unduly

large distance. This scheme is described briefly
in the following paragraph.

Let us write the solution E which has the asymp-
'totic properties of Eq. (8) in a matrix form so that
E .(x) corresponds to F (v'Ir), and likewise the in-
teraction potential U~„(r) as a matrix U(x). The
solution of the scattering equation which conforms
to the R-matrix-type asymptotic form may be writ-
ten in terms of the homogeneous solution [spherical
Bessel function j(r) and spherical Neumann function
n(r)] as

F(~) =&(~) X(~)+N(~) Z(~),
where

J;,(x)=k';~ xj, (k;r)5.;g,

N;, (x) = —k, r n, . (k;x)5;),

X(r) =1 —f N(s)U(s)F(s)ds,

Z(x) = R+ f J(s)U(s)'F(s) ds,
R= —f J(s)U(s)E(s) ds .

(12)

(»)
(14)

(15)

(16)

(1'7)

By examining the asymptotic behavior of Eq. (12),
it is easy to show that the quantity defined in Eq.
(17) is indeed the same as the R matrix introduced
earlier. Differentiation of Eq. (12) along with the
use of Eqs. (15) and (16) gives

(18)

As F(r) and dF(x)/dr can be determined by numer-
ical integration, and J(r) and N4'), as well as their
derivatives, are readily available, one can eval-
uate X(x) and Z(x) at any paint. It is convenient to
define

R(r) = Z(x)X (r) =—[R+ f J(s)U(s)F'(s)ds]

x [1 —f N(s)U(s)F(s) ds] ' (19)

which reduces to the R matrix when x tends to in-
finity.

If we fix x to be some value x where we may ex-
pect R(r ) to be approximately equal to R, then
Eqs. (12), (15), (16), and (19) can be used as the
basis for an iterative approach. As the zeroth-
order approximation we take

R'" = R(~.), (20)

E '(r)= J(r)+N(r)R' ', x&r (21)

An improved version of R (designated as R' ') is
then obtained by putting E (r) back into Eq. (19):

R"'=[R"'+f J(s)U(s)F' '(s)ds]
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&&tl —J N(s)U(s)F' '(s)dsj ', (22)

and F" is obtained from Eq. (12) with X(r) and
Z(r) computed by the approximation of substituting
F '(s) and 8 ' for F(s) and 8, respectively, in
Eqs. (15) and (16). Although this scheme can be
repeated to achieve higher-order approximations,
the computational procedure becomes quite lengthy
beyond Eq. (22). Nevertheless, even with a single
iteration, this method still proves to be very use-
ful. Test calculations performed for some se-
lected partial waves of the Ss-Sp-Sd and the Ss-Sp-
Sd-4P problem show that the cross sections ob-
tained from R "with matching at r = 60ao are gen-
erally accurate to within 1%. In fact, even a,

matching point at as low as 40ao is found to be quite
satisfactory (- 2/p).

For each incident energy the scattering equations
were solved from L =0 to typically J =16. A plot
of the log of the partial-wave cross sections versus
L is nearly a straight line for large I.. Cross sec-
tions for L &16 were obtained by extrapolation of
this plot. To check the accuracy of this procedure,
we have computed the partial-wave cross sections
for selected high L values at 16.8 and 23. 1 eV with
the Ss-Sp-Sd close-coupling scheme, and the re-
sults agree with the extrapolated values to within
10% for I = 20 and 24 at both energies.

III. RESULTS

A. Excitation Cross Sections of 3 ~P

The problem of electron excitation of the 3 P
state of sodium has been treated by several au-
thors. ' ' Because of the unusually strong cou-
pling between the Ss and the SP state produced by
the interaction between the incident electron and
the sodium atom, the use of the Born approxima-
tion results in a very serious overestimation of the
excitation cross sections. To correct for this
overestimation, Seaton" has given modified ver-
sions of the Born approximation which preserve the
unitary property of the 8 matrix. Barnes, Lane,
and Lin performed two-state Ss-Sp close-coupling
calculations (neglecting exchange between the inci-
dent and the atomic electron) for five energies be-
tween 4. 2 and 23. 1 eV. In the two-state close-
coupling calculations of Karule and Peterkop
which cover the energy region from threshold to
5 eV, allowance was made for the exchange effect.
Compared to the results of the Born approxima-
tion, all of the more refined calculations cited
above yield considerably smaller cross sections of
the 3 P state.

We have calculated the excitation cross sections
of the 3 P state by taking three different sets of
atomic states in the close-coupling expansion, i.e. ,
Ss-Sp, Ss-Sp-Sd, and Ss-Sp 3d-4s 4p 4d 4f. Th-e---
results are summarized in Fig. 1. Our 3 P cross
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FIG. 1. Electron-excitation cross sections of the 3 P
state of sodium calculated by the first Born approximation
(1), two-state 3s-3p close coupling without core and ex-
change (5}, three-state 3s-3p-3d close coupling without
core and exchange (6), seven-state 3s-3p-3d-4s-4p-4d-&f
close coupling without core and exchange (7}. The other
cr'oss sections shown are the two-state 3s-3p close-cou-
pling results of Karule and Peterkop (2, with core and
without exchange; 3, with core and exchange) and of
Barnes, Lane, and Lin (4, without core and exchange).

sections of the Ss-Sp two-state calculations are
about 10/p lower than the values obtained by Barnes,
Lane, and Lin. ' The difference in cross sections
is due to the different choice of wave functions,
i.e. , Barnes et al. used for the valence electron
of the sodium atom hydrogen-like wave functions
(with an effective charge adjusted to fit the experi-
mental Ss-Sp line strength), whereas the atomic
electrons are represented by the Hartree-Fock-
Slater wave functions in this work. The 3 P cross
sections become smaller when the M atomic state
is added to the manifold of the scattering equations.
The radial integral (SP I r I 3d) is of comparable
magnitude to (Ss!r I Sp), thus the Sp-Sd coupling
terms channeled" the Ss-Sp coupling to the Sd
state, resulting in a decrease of the 3 S-3 P exci-
tation cross sections and simultaneously an increase
of the 3 S- 3 D cross sections (see Sec. IIIB) from
their respective two-state close-coupling values.
The coupling of the Sp state with the 4d state is
much weaker than the Sp-Ss and SP-Sd pairs; hence
the 3 P cross sections are reduced only slightly in
going from the Ss-Sp-Sd to the seven-state mani-
fold. The very small difference between the three-
state and seven-state results suggests that we have
reached good conver gence in the multistate expansion
as far as the 3 P cross sections are concerned. A
listingof the partial-wave cross sections of the bvo-.
three-, and seven-state calculations for a few en-
ergies is given in Table I. The indirect coupling
via the Sd state is seen to be effective in decreas-
ing the 3 P partial-wave cross sections from their
two-state values over the entire range of partial
waves shown, while the indirect coupling via the
n= 4 states is effective only at low and intermediate
partial waves. Also shown in Fig. 1 are two sets
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TABLE I. Partial-wave excitation cross sections of the 3 P state of sodium.

E =7.364 eV
2-st 3-st 7-st

Qi in units of ao
E=10.520 eV

2-st 3-st 7-st
E=16.832 eV

2-st 3-st 7-st
E=23.144 eV

2-st 3-st 7-st

0
1
2
3

5
6
7
8

9
10
11
12
13
14
15
16

5.27

9.06
29. 02
28. 24
22. 92
17.65
13.24
9.79

7.17
5.21
3.76
2. 71
1.95
1.40

3.18
1.63
5.75

23. 10
20. 22
13.03
11.27
9.86
8.07

6.28
4 74
3.52
2. 58
1.87
1.35

2. 67
2.46
5.27

18.87
16.22
12.34
11.45
10.07
8.23

6.40
4.85
3.60
2.65
1.92
1.40

3.24
2.26
3.64

15.59
20. 17
19.54
17.19
14.60
11.98

9.84
7.93
6.40
5.15
4. 15
3.31

2. 04
1.04
2. 38

12.57
17.15
14.93
12.09
10.23
8.93

7.76
6.59
5.50
4. 58
3 ~ 73
3.07

1.90
1.44
2. 51

11.26
15.11
13' 37
11.44
10.12
8. 95

7.78
6.62
5.54
4. 58
3.73
3.06

1.43
0. 87
1.12
5. 57
9.58

11.44
11.72
11.13
10.18

9.11
8.07
7.10
6.22
5.43
4. 74
4. 14
3.16

1.02
0.47
0.71
4. 62
8.55

10.26
10.17
9.34
8.37

7.48
6.69
6.00
5.35
4.78
4.24
3.76
3.32

1.06
0.66
0. 89
4.50
8.10
9.63
9.57
8.89
8.09

7.33
6.62
5.96
5.34
4. 78
4.23
3.75
3.30

0.75
0.41
0.51
2. 56
5.05
6.83
7.71
7.91
7.69

7, 24
6.69
6.12
5.57
5.04
4. 56
4. 12
3.72

0.56 0.61
0.24 0.34
0.32 0.44
2. 16 2. 19
4.57 4.46
6.32 6.09
7.12 6.83
7.19 6.90
6.86 6.62

6.38 6. 18
5.86 5.72
5.38 5.27
4.90 4. 84
4.49 4.45
4.09 4. 06
3.73 3.70
3.41 3.38

'2-st, B-st, and 7-st mean Bs-Bp, Bs-Bp-Bd, and 3s-Bp-3d-4s-4p-4d-4f close coupling, respectively.
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FIG. 2. Comparison of the electron-excitation cross
sections of the 3 P state of sodium calculated by seven-
state 3s-Bp-Bd-4s-4p-4d-4f clos e coupling without core and
exchange (+) with the experimental results of Enemark
and Gallagher (dash-dots), Zapesochnyi (solid curve),
and Christoph (+).

of two-state close-coupling cross sections of the
3 P state given by Karule and Peterkop, one with

both the exchange and core effects included and the
other containing core effects only without exchange.
McCavert and Rudge' have calculated excitation
cross sections for several states of Na. In their
calculations, a plane-wave approximation in a
modified form was used. Because of the basic dif-
ference between their approach and ours, no com-
parison of these two sets of results will be made.

A comparison of our calculations with experi-
ments is illustrated in Fig. 2. Measurements of
the excitation function of the 3 P- 3 S transition
have been reported by Zapesochnyi and Shimon. '

Zapesochnyi subsequently has given an absolute
excitation function of the 3 P state (with cascade
correction). It was pointed out, however, by
Moiseiwitsch and Smith' that the cross sections of
Ref. 18 may possibly be too low. The cross sec-
tions given by Enemark and Gallagher were ob-
tained by normalizing their optical measurements
to the Born-approximation value at 1000 eV. Our
theoretical cross sections (seven-state calculation)
are considerably higher than the values given by
Zapesochnyi, but are in very good agreement with
the results of Enemark and Gallagher. The mea-
surements reported by Christoph ' in 1935 are
much higher than our seven-state cross sections.
Further experimental work on absolute excitation
cross sections should be particularly valuable for
testing the theory.

B. Excitation Cross Sections of 3 2D

Vfe have calculated the electron-excitation cross
sections of the 3 D state by using the Born approx-
imation, a two-state (Ss-Sd), a three-state (Ss-Sp-
3d), and a seven-state (n= 3, 4) close-coupling
scheme. The results are displayed in Fig. 3. For
the 3 D state as well as 4 S, 4 P, and 4 D, the
Born cross sections computed in this work apache
with those given by Vainshtein to within typically
2—4%%uo. The Ss-Sd coupling is much weaker than
the 3s-3p; as a result the gross overestimation of
the excitation cross sections by the Born approxi-
mation discussed in Sec. IIIA is absent here. In
fact the good agreement between the two-state
close-coupling and the Born-approximation cross
sections supports the validity of the plane-wave
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FIG. 3. Electron-excitation cross sections of the 3 D
state of sodium calculated by the first Born approximation
(long-short dashes), two-state 3s-3d close coupling with-
out core and exchange (~), three-state 3s-3p-3d close
coupling without core and exchange (&&), and seven-state
3s-3p-3d-4s-4p-4d-4f close coupling without core and
exchange (&). The optical excitation function of the 3 D-
3 2P transition measured by Zapesochnyi and Shimon
(solid curve) is also shown.

approximation for the 3 D excitation in the inter-
mediate" energy range. On the other hand, since
both the Ss-Sp and the Sp-Sd coupling are strong,
their cumulative effect is to produce an indirect
coupling between Ss and 3d which may be of com-
parable strength to the direct Ss-3d coupling. This
is reflected by the la, rge increase of the theoretical
cross sections in going from the two-state to the
three-state calculation.

It is interesting to note that the inclusion of the
n= 4 states substantially reduces the cross sections
from the values of the three-state calculations. Of
the four members of the n=4 group, the 4 P state
may be expected to be mainly responsible for these
reductions. In other words, the effect of the indi-
rect coupling Ss -4p - Sd cancels an appreciable
part of the Ss - SP - 3d. A similar kind of cancel-
lation, though to a much less extent, is found in
the matrix elements of z, i.e. ,

n

Numerical computations by means of the Hartree-
Fock-Slater wave functions give (Ss I z 13d),
(Ss lz I SP)(SP I z I Sd), (Ss Iz I 4@)(4@I z I M), and
(Ss I z I 5P)(5P I z I 3d) as 6. 527, 7.621, —1.104, and

0.007 a.u. , respectively. The 4p state does tend
to cancel part of the Sp contribution in the right-
hand side of Eq. (23), while the contribution from
the 5p state is insignificant. Motivated by this ob-

servation, we have added the 5p state to the n= 3
and n=4 states, and calculated the 3 D cross sec-
tion at 10.5 and 16.8 eV with this eight-state mani-
fold. The cross sections are 19.4@0 and 13.5ao,
being 5. 6 and 2. 8%, respectively, above the seven-
state result. The small difference here indicates
that the close-coupling method is also converging
rather well for the 3 D case.

In Table II are given the 3 D partial-wave cross
sections. In comparing the two- and three-state
partial waves, the effect of the SP state in increas-
ing the D cross sections is seen to occur for al-
most all of the partial waves. Similarly, in going
from the three- to seven-state calculation, the ef-
fect of the n = 4 states in decreasing the 3 D cross
section is evident for nearly all the partial waves
except those of large I for which the seven-state
results appear to be converging rather well to the
three-state ones.

The experimental data of the optical excitation
function of the 3 D 3 P transition observed by
Zapesochnyi and Shimon are included in Fig. 3
for comparison with the theoretical calculations.
To estimate the amount of cascade into the 3 D
level, we note that the contribution from the n P
states is negligible because of the very small prob-
ability of the n P-3 D tra, nsitions in comparison
with the n P-n' S. From our calculated cross
sections of the 4 E state (Sec. III E), we estimate
that the 4 I'" - 3 D cascade contribution is about
10/o above 10 eV but may become higher at lower
energies. In the absence of a detailed cascade
analysis, we shall not apply the cascade correc-
tions to the optical excitation data of Zapesochnyi
and Shimon which were estimated to have an ac-
curacy of about 30-35/p. Our cross sections
calculated by the seven-state close-coupling
scheme agree well with the observed values at 16.8
and 23. 1 eV, but a much larger discrepancy is
seen at 7. 36 eV. Because of the omission of ex-
change in the calculations, our cross sections at
4. 2 eV are expected to be of lower accuracy than
the ones at higher energies. The Born-approxima-
tion cross sections are substantially lower than
the experimental ones except at very low energies.

C. Excitation Cross Sections of 4 ~P

The Ss-4P coupling is much weaker than the Ss-
Sp coupling; for this reason one may expect a bet-
ter agreement between the Born approximation and
the two-state close coupling for the 4 P state than
for 3 P. This is indeed borne out by our calcula-
tions as shown in Fig. 4. The two-state cross
sections are somewhat below (-15/p) the Born-ap-
proximation values whereas the seven-state calcu-
lations move the cross sections up by 15-25/p. In-
spection of the individual partial waves shows also
only small variations in most of the partial cross
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TABLE II. Partial-wave excitation cross sections of the 3 D state of sodium.

E=7.364 eV
2-st 3-st 7-st

QL, inunits of ao
E=10.520 eV

2-st 3-st 7-st
E = 16.832 eV

2-st 3-st 7-st
E=23.144 eV

2-st 3-st 7-st

0
1
2
3

5
6
7
8

9
10
11
12
13
14
15
16

0.02
1.23
2.65
1.66
2. 03
3.11
1.91
0.95
0.47

0.23
0.12

1.87
0. 58
4. 52
4. 54
5.63
6.37
3.91
l. 99
0.97

0.47
0.23
0.11
0.06
0.03
0.01

0.16
0.70
2. 82
2. 93
4.98
4, 43
2.63
1~ 33
0.68

0.36
0.19
0.10
0.05
0.03
0.01

0.04
0.80
1.41
1.51
0.89
1.59
1.83
1.60
1.02

0.66
0.43
0.28
0.18
0.12
0.08

0.92
0.71
2. 05
2. 86
2.67
3.66
3.68
2. 87
1.98

1.28
0.81
0.51
0.32
0.20
0.13

0.08
0.30
1.62
1.60
2. 34
3.09
2.88
2. 18
1.48

0.97
0.63
0.41
0.27
0.16
0.11

0.04 0.33
0.42 0.41
0.66 0.88
0.83 l.20
0.60 1.16
0.58 1.32
0.77 l.58
0.90 1.69
0.88 1.58

0.76 1.36
0.63 1.09
0.51 0.85
0.38 0.65
0.30 0.49
0.22 0.37
0.17 0.28
0.13 0.21

0.05
0.17
0.75
0.78
0.85
1.14
1.40
1.46
1.34

1.13
0.91
0.71
0.55
0, 42
0.32
0.25
0.19

0.04
0.26
0.40
0.51
0.43
0.37
0.41
0.49
0.55

0.55
0.52
0.46
0.39
0.33
0.27
0.22
0.18

0.16
0.24
0.51
0.65
0.65
0.68
0.79
0.89
0.94

0.92
0.84
0.73
0.62
0.52
0.42
0.34
0.28

0. 04
0.14
0.45
0.49
0.49
0.57
0.70
0.81
0.85

0.81
0.73
0.64
0.54
0.44
0.37
0.30
0.25

'2-st, B-st, and 7-st mean Bs-Bd, Bs-Bp-Bd, and Bs-Bp-Bd-4s-4p-4d-4f close coupling, respectively.
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sections between the two-state and seven-state cal-
culations. It may be noted in pa.ssing that for the
3'P and 4'P states of helium one finds only small
differences among the excitation cross sections by
the Born approximation, by the two-state, and by
the multistate close-coupling scheme. '

Zapesochnyi and Shimon have measured the opti-
cal excitation cross sections of the 4 P 3 S tran-
sition. By combining their data with the theoret-
ical transition probabilities of the 4 P-3 S, 4 P

4 S, and 4 P-3 D lines calculated from the
Hartree —Fock-Slater wave functions, we can de-
duce an excitation function of the 4 P state which is
labeled as experimental" in Fig. 4. Since the
4 P- 4 S transition is much stronger than the 4 P
-3 S, the experimental" cross sections are quite

sensitive to the errors of the theoretical transition
probability of 4 P-4 S. Furthermore, no attempt
was made to correct for the cascade contribution.
Nevertheless, the experimental" cross sections
seem to be much smaller than the theoretical cross
sections (computed both by the Born approximation
and by the close-coupling schemes) in addition to
a very substa, ntial difference in the shape of the ex-
citation function.

D. Excitation Cross Sections of 4 D and 4 F

Similar to the case of 3 D, the two-state close-
coupling and the Born approximation give nearly
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FIG. 4. Electron-excitation cross sections of the 4 P
state of sodium calculated by the first Born approxima-
tion (long-short dashes), two-state Bs-4s close coupling
without core and exchange (), and seven-state Bs-Bp-
Bd-4s-4p-4d-4f close coupling without core and exchange
(&). The "experimental" (see text) results of Zapesoch-
nyi and Shimon (solid curve) are also shown.

FIG. 5. Electron-excitation cross sections of the 4 D
state of sodium calculated by the first Born approxima-
tion (long-short dashes), two-state Bs-4d close coupling
without core and exchange (), and seven-state Bs-Bp-
Bd-4s-4p-4d-4f close coupling without core and exchange
(a). The "experimental" (see text) results of Zapesoch-
nyi and Shimon (solid curve) are also shown.
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FIG. 6. Electron-excitation cross sections cf the 4 5'
state of sodium. The solid curve and the symbol give
ten times the values of the cross sections calculated by
the first Born approximation and ten times the two-state
close-coupling values (without core and exchange), re-
spectively. The seven-state &s-Sp-Sd-4s-4p-4d-4f
close-coupling cross sections (without core and exchange)
are represented by

identical cross sections for the 4 D and 4 I' states
(see Figs. 5 and 6). The very substantial deviation
of the seven-state cross sections of 4'D from the
Born values as shown in Fig. 5 indicates the im-
portance of indirect coupling in the excitation cal-
culations. The major part of the indirect coupling
may be expected to come from Ss - Sp-4d and
Ss -4p-4d which are included in the seven-state
scheme. To ascertain the effect of the indirect
coupling through the 5p state, we may note that
upon adding 5p to the close-coupling manifold of
the n= 3 and n = 4 states, the resulting eight-state
scheme gives the cross sections of 4 D at 10.5 and

16.8 eV as 5.7ao and 3.6ao as compared to the
seven-state values of 6.8ao and 4. 4ao, respectively.
The coupling of the 4d state with the np states be-
comes much weaker for n &5. For this reason we
expect the higher P states to have only minor ef-
fects on the 4 D cross sections. However, we have
performed no calculations to verify this point as
the inclusion of the higher states would make the
solution of the scattering equations exceedingly
time consuming.

The role of indirect coupling becomes even more
remarkable in the excitation of the 4 I' state.
Comparing our calculated cross sections based on
the Born approximation and on the seven-state
close-coupling scheme in Fig. 6, it is clear that
the indirect coupling completely dominates the di-
rect one over the energy region of our calculations.
This striking feature is due to the fact that the di-
rect coupling between Ss and 4f is weak and of
rather short range (r ' dependence at large dis-
tance). Our eight-state (n= 3, 4, and 5p) calcula-
tion yields 2. 7ap and 1.2ao as the 4 I' cross sec-
tions at 10.5 and 16.8 eV, respectively. Because

of the relatively large number of intermediate
states which may be important in the indirect cou-
pling mechanism, no systematic investigation of
the convergence behavior of the 4 I" cross sections
has been made.

Analogous to the 4 P case, we have used theoret-
ical transition probabilities to convert the optical
cross sections of the 4 D- 3 P transitions ob-
served by Zapesochnyi and Shimon into 'experi-
mental" excitation cross sections of the 4 D state.
These values (shown in Fig. 5) are much lower
than both the Born-type and close-coupling theoret-
ical cross sections.

E. Excitation Cross Sections of 4 ~S

In Fig. 7 are shown the 4 S cross sections calcu-
lated by the Born approximation and by three dif-
ferent close-coupling schemes. Unlike the cases
of 3 D, 4 D, and 4 E, the two-state close-coupling
scheme gives appreciably larger 4 S cross sections
than does the Born approximation. The difference
may be due to the Ss distortion term, the 4s dis-
tortion, and/or the 4s-Ss back coupling. Uponper-
forming some test calculations, it was found that
the Ss and 4s distortion terms are mainly respon-
sible for the increase of the cross sections over
the Born values. The results of the three-state
close-coupling (Ss-SP-4s) calculations indicate the
importance of the indirect coupling through Sp on
the 4 S cross sections. The close agreement be-
tween the seven-state and the Born results is, of
course, fortuitous, as the indirect coupling and
distortion effects which are neglected in the Born
approximation just counterbalance each other.

For the 4 S state it is especially instructive to
analyze the partial-wave cross sections given in
Table III. The Ss-4s coupling is a short-range
one, thus in the two-state calculation one would

expect only the lower partial waves to contribute
significantly to the total cross sections. Indeed,
Table III shows that in the two-state case practical-
ly all of the total cross section comes from par-
tial waves of L = 0 to L = 4. In going to the three-
state case, the Sp state provides an indirect cou-
pling between Ss and 4s which is of longer range than
the direct coupling, with the result of increasing the
higher partial-wave cross sections. However, as
maybe seen in Table III, there is a simultaneous re-
duction of the contributions from the partial waves of
L 4, and the reduction more than compensates
for the gain in the large partial waves. Comparing
the three-state to the seven-state calculations, we
notice both increases and decreases in the partial-
wave cross sections although the total cross sec-
tions remain nearly the same. This is in contrast
with the 3 D case where the inclusion of the n= 4
states tends to reduce practically all the pa,rtial-
wave cross sections.
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FIG. 7. Electron-excitation cross sections of the 4 8
state of sodium calculated by the first Born approxima-
tion (solid curve), two-state Bs-4s close coupling without
core and exchange (4), three-state Bs-Bp-4s close cou-
pling without core and exchange (&&), and seven-state
Bs-Bp-Bd-4s-4p-4d-4f close coupling without core and ex- '

change (+). Also shown is the result of Hertel and Rost
(g) obtained by a second Born-type scheme.

A second Born-type scheme has been employed
by Hertel and Rost to calculate the 4 8 cross sec-
tions. The states included by these authors are
Ss, 4s, and 3p. Their value (see Fig. 7) at 25 eV
is seen to be an overestimation by a considerable
amount. The coupling largely responsible for the
increase of the second Born over the first Born
value was found to be the indirect 3s-3p-4s cou-
pling. It is true that as far as the high-L partial
waves are concerned, the 3s 3p 4s indirect cou-
pling does have the effect of increasing the cross
sections. However, the lower partial waves, which
are the major contributors to the total cross sec-
tions, are governed by the combined action of the
3s - 3p 4s indirect coupling, distortion, and in-
direct coupling through other intermediate states.
One would, therefore, not expect the second Born
approximation to be adequate for the lower partial-
wave cross sections. Moreover, it is known that
the first Born approximation gives a gross over-
estimation of the 32P cross section because of the
very strong coupling between 3s and 3p. In view
of the fact that the 3p-4s coupling is also a very
strong one, the second Born approximation is
likely to overestimate the contribution of the 3s- 3p-4s indirect coupling to the cross sections
since the second Born amplitude due to this indirect
couplirg route is a suitably weighted convolution
of the Ss-3P and 3P-4s first Born amplitudes.

IV. EXAMINATION OF APPROXIMATIONS EMPLOYED IN

CLOSE-COUPLING CALCULATIONS

The calculations presented in Sec. III were based
on the close-coupling expansion along with a num-
ber of auxiliary approximations as described in
Sec. II. These approximations will be examined in
some detail in this section.

0
1

3

5

7
8
9

10

1 ~ 34 0 ~ 23
6 ~ 25 2 ~ 89
5 ~ 96 6 ~ 05
1 ~ 81 1 ~ 36
0 ~ 29 0 ~ 24
0 ~ 04 0 ~ 18
0 ~ 00 0 ~ 07

0 ' 75 0 ' 61
3 ' 10 1 ~ 96
3.87 2.81
2 ' 08 1 ~ 21
0 ' 70 0 ' 57
0 ' 17 0 ' 43
0.04 0, 31
0 F 01 0 ' 20

0.09 0.34 0. 11
1 ~ 66 1~ 25 0 F 88
3 ~ 51 1~ 86 1.62
1.76 1~ 55 1~ 38
0 ~ 44 0 ~ 90 0 ~ 71
0 ~ 28 0 ~ 14 0 ~ 34
0 ~ 21 0 ~ 16 0 ~ 21
0 ~ 12 0 ~ 05 0. 17

0 ~ 02 0 ~ 13

0 ~ 20
0 ' 68
1~ 06
1~ 06
0.79
0 ~ 48
0 ~ 25
0 ~ 11
0 ~ 04
0 ~ 02
0 ~ 01

0 ~ 10 0 ~ 09
0 ~ 50 0 ~ 55
0 ~ 83 0 ~ 94
0 ~ 83 0 ~ 96
0 ~ 60 0 ~ 67
0 ~ 38 0 ~ 39
0 ~ 25 0 ~ 23
0 ~ 18 0 ~ 15
0 ~ 14 0 ~ 12
0 ~ 12 0 ~ 10
0 ~ 09 0.08

'2-st, B-st, 7-st mean 3s-4s, Bs-Bp-4s, and Bs-Bp-Bd-
4s-4p-4d-4f close coupling, respectively.

The wave functions of the free atom are taken as
antisymmetrized products of the Hartree-Fock-
Slater one-electron orbitals. One criterion that
may be used to assess the reliability of the atomic
wave functions is that of line strength. All the di-
pole-type (~f, = + I) potential elements of U,~(r)
have a long-range ~ dependence of the form c/r',
where c is directly proportional to the square root
of the line strength between the initial and final
state defined by the potential element under consid-
eration. Thus the long-range behavior of the inter-
action potential elements would be given correctly
if the Hartree-Pock-Slater orbitals could provide
accurate values of the line strengths. In Table IV
we list the line strengths of thirteen transitions
calculated from our Hartree-Pock-Slater wave
functions and compare them with the values com-
piled in the National Bureau of Standards publica-
tion Atomic Transition Probabilities. Our line

TABLE IV. Comparison of the line strengths (in units
of ao) of sodium calculated by the Hartree-Fock-Slater
(HFS) wave functions and those listed in Ref. 24.

n'E'
Values of S(nl, n'l')

HFS functions Ref. 24

Bs
Bs
Bs
Bs
3p
Bp

Bp
4s
4s
4s
Bd
3d
4p

3p
4p
5p
6p
4s
Bd
4d
4p
5p
6p
4p
4f
4d

37.6
0.310
0.0411
0.0120

38.5
139
11.0

209
2.75
0.447

353
608
438

38.1
0. 311
0.0415
0.0129

36.7
135
11.9

197
2. 72
0.444

351
610
420

'The uncertainties in the line strengths are given in
Ref. 24 as less than 3% for the Bs-Bp case and less than
25% for the rest of the cases listed.

TABLE III. Partial-wave excitation cross sections of the
4 8 state of sodium.

Q~ in units of a0
E=7.364 eV E=10.520 eV E= 16.832 eV E=23.144 eV

L 2-st 7-st 2-st 3-st 7-st 2-st 7-st 2-st 3-st 7-st
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strengths agree with those of Ref. 24 to within the
uncertainties given therein. As noted in Sec. IIIA,
the difference between our two-state Ss-Sp results
and the corresponding results of Barnes, Lane,
and Lin is because of the use of different atomic
wave functions. The latter authors used hydrogen-
ic wave functions with an effective charge of 2.92
which reproduces the correct Ss-Sp line strength.
A detailed analysis shows that the potential pri-
marily responsible for the difference between the
results of Barnes et al. and our results is the
Sp-Sp self -distortion potential. Even with the
rather crude hydrogenic wave functions, the cross
sections so obtained differ only by 10/o from those
derived from the Hartree-Fock-Slater orbitals.
To get a further quantitative measure of the ad-
equacy of our choice of wave functions, we have re-
placed the Hartree-Fock-Slater wave functions by
the Hartree-Fock functions, ' and repeated the
3s-3p-Sd close-coupling calculations at 10.520 eV.
The 3 P and 3'D cross sections were found to in-
crease by 5. 5 and 6. 6%%uo, respectively.

In order to estimate the importance of core in-
teractions that were neglected when we approxi-
mated Eq. (10) by Eq. (11), we did a three-state
Ss-Sp-Sd close-coupling calculation at 10.5 eV and

a two-state Ss-Sp close-coupling calculation at 4. 2

eV including core interactions. The core potential
of Eq. (10) was generated using the Hartree-Fock-
Slater-type core orbitals. These two test calcula-
tions show that for I &4 the core effects are negli-
gible. The change in the L &3 partial-wave cross
sections result in a 4%%uo increase in the 3 P total
cross section at 10.5 eV and a 10/o decrease at
4. 2 eV. For 3 D excitation, the inclusion of the
core interactions altered the cross section by less
than 1% at 10.5 eV.

In our calculations the exchange effects between
the incident and the atomic electrons have been
neglected. This approximation can be justified on

the grounds that exchange effects are important
only for incident energies slightly above the thresh-
old. Nevertheless, an estimate of the influence of
the exchange on the excitation cross sections may
be obtained by comparing the with-exchange and

without-exchange calculations of Karule and Peter-
kop. ' Their two-state Ss-Sp calculations in the

energy range 2. 5-5 eV show that for L ~4 the par-
tial-wave cross sections are virtually unaffected

by exchange and that inclusion of exchange tends to
decrease the L = 0-3 partial cross sections, on the

average, by about 45/o. If we assume, for the pur-
pose of estimation, that in general the electron ex-
change has no effect on the partial-wave cross sec-
tions of L 4 but may alter those of L = 0-3 by as
much as 45'%%uo even at higher energies, the inclusion
of exchange would then change the 3 P and 3 D
cross sections above 10 eV by no more than 10/o.

On the other hand, according to this criterion, the
4 S cross sections may be much more susceptible
to exchange, 40/p at 10.5 and 30'%%uo at 16.8 eV.

The approximation of truncating the close-cou-
pling expansion of Eq. (3) and the question of con-
vergence have been discussed for excitation of each
individual state in Sec. III.

V. DISCUSSION AND CONCLUSIONS '

By means of close-coupling calculations we have
demonstrated the importance of indirect coupling
on the excitation cross sections of the 3 D, 4 D,
and 4 F states in the intermediate" energy range
of 7-24 eV. To obtain excitation cross sections
for these states, it is not sufficient to consider just
the initial and final states, but the coupling through
the intermediate states must also be included. Un-

der the framework of the method of close coupling,
the total wave function (of the incident particle and

target system) is expanded in terms of the ground
state (of the target atom), the final state, and as
many intermediate states as is practical. In the
case of the 3 D state, a very good convergence of
the close-coupling expansion is achieved by includ-
ing the seven states corresponding to n = 3 and n
= 4. This seven-state expansion gives adequate
(20%%uo) cross sections for the 4 D state. For the
4 F state some of the states with n 5 may possi-
bly affect the indirect coupling to a greater extent,
but we have made no systematic investigation of the
convergence behavior. The influence of indirect
coupling on the 4 8 state, however, is consider-
ably smaller than that on the D and F. Of some
special interest is the fact that the Ss -Sp - Sd in-
direct coupling route has the effect of substantially
decreasing the 3 P cross sections from the values
obtained by consideration of the 3s-Sp direct cou-
pling alone.

For energies between 10 and 24 eV, the Born ap-
proximation and the two-state close-coupling
scheme give nearly identical cross sections for the
3 D, 4 D, and 4 F states, and show reasonable
agreement for the 4 P states. This tends to sup-
port the validity of the plane-wave portion of the
Born approximation. The Born approximation
fails for 3 P in the intermediate" energy range as
explained in Sec. IIIA. For the 4 S state the
agreement between the cross sections computed by
the Born approximation and by the two-state close-
coupling method is rather poor at 10.5 eV but be-
comes much better at higher energies. At 10.52

eV the major contributions to the 3 8-4 S excitation
come from the first few partial waves which are
quite susceptible to distortion effects. With in-
creasing energies, the higher partial waves as-
sume a more important role with the results being
diminished distortion effects and restoration of the
agreement between the Born approximation and the
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two-state close-coupling scheme.
The numerical procedure of the close-coupling

calculation becomes progressively more time con-
suming as one adds more atomic states to the basis
set of the expansion. It would be very desirable if
one could introduce some simplifying approxima-
tions to the close-coupling scheme so that the latter
could be used directly to handle indirect coupling
through the higher states which are otherwise not
easily included in the basis sets. Our calculations
show that the second Born approximation is not
satisfactory in the energy range of our interest.
For instance a Ss-3p-3d second Born approxima-
tion overestimates the 3 D cross section at 10.5

eV by more than a factor of 2. We have tried a
few versions of an iteration technique in combina-
tion with multistate close-coupling calculations,
but the results have not yet been completely suc-
cessful. Nevertheless in the intermediate" ener-
gy range the method of close coupling in its present

form proves to be a useful tool for calculating ex-
citation cross sections of dipole-forbidden states
for which indirect coupling with the ground state
through the dipole-allowed states may be of com-
parable importance to the direct coupling.
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