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A rapid numerical technique for the determination of bound states of a partial-wave-projected
Schrodinger equation is presented. First, one needs to integrate the equation only outwards
as in the scattering case, and second, the number of trials on ~ (=-E}necessary to deter-
mine the eigenenergy and the corresponding eigenfunction is considerably less than in the
usual method. As a nontrivial example of the technique, bound states are calculated in the ex-
change approximation for the e -He' system and l = 1 partial wave.

I. INTRODUCTION

In the case of scattering from centrally symmet-
ric potentials, one solves a projected Schrodinger
equation for a particular partial wave for a con-
tinuous range of energy E (=ks). For any value of
P a scattering solution of the Schrodinger equation
is obtained by choosing the boundary conditions on
4',(r) and its derivative at origin and integrating
the equation outwards. At asymptotic distances the
required solutions are oscillating functions of the
distance y. The bound states occur at negative en-

ergies (8 = —~s) and for the bound state values of
z the solutions of the Schrodinger equation are
square-integrable and thus at asymptotic distances
are of the form e . For a value of g not corre-
sponding to a bound state, a solution of the Schro-
dinger equation has both the regular and the irregu.
lar solution mixed in, and at asymptotic distances
the irregular part (e ) dominates and thus the out-
ward integration diverges. The usual method to
get around this difficulty is to integrate the equa-
tion inwards and outwards and impose continuity
at a midway point. ~ The inner and outer logarith-
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mic derivatives of 4', (r) at a midway point "r" are
plotted for a set of values of v. The points where
the two logarithmic derivative curves intersect
correspond to bound states.

In this paper we present a direct and speedier
method for the determination of bound states within
any desired accuracy. In this method, first, we
need to integrate the equation only outwards, as in
the scattering case. Second, the number of trials
required on tc to determine the bound-state value
within a desired accuracy are rapidly reduced to
a few.

II. METHOD

The method is based on the analyticity properties
of the S'matrix in the complex k plane. It is well
known that poles of the S-matrix element S,(k) on
the positive imaginary axis (k=ix) correspond to
bound states, when the analytic continuation of
S,(k), away from the real k axis, exists. Barg-
mann~ has shown that the S matrix is analytic with-
in the strip (called the Bargmann strip) defined by
0 & ) Imk ) & —,

'
p, for potentials which satisfy

f, ""~I (r)~ « & - . (1)

If the potential vanishes identically beyond a dis-
tance z„, then the Bargmann strip extends over the
whole complex k plane. In potential theory the ana-
lyticity properties of S,(k) have been understood by
studying the analyticity of the Jost functions f, (k, r)
and f,(- k, r) From .Eq. (2) to Eq. (6) below, we
briefly summarize the defining relations and
boundary conditions for the partial-wave-projected
Schrodinger equation.

The solution of the partial-wave Schrodinger
equation in terms of the Jost functions is written
as

4, (k, r) = „, [f,(- k) f,(k, r) —(-1)'f, (k)f, (—k, r)],
(2)

where 4, (k, r) satisfies the boundary conditions

4, (k, r) = Cf, (k)[S,'(k) e '""+(-1)"'e""]. (6)

For the continuation k-i~ within the Bargmann
strip and for a value of K close to one of the poles
of S(k) at k=i x„(m=1, 2, 3, . . . , etc. ), Eq. (6) takes
the form

p(r„) =C f,(ix)[ A(x-—x„)+(-1)"'e '""] . (8)

One notices that p(r„) vanishes at the bound-state
value &n with an error of the order of ~&" n"

I ~

Thus, to determine the value of the z„within the
above accuracy, one integrates the equation for a
set of values of a' and plots p(r„) against z. The
points where P(r„) changes sign correspond to the
bound states. It is obvious that one should be able
to determine ~„within any desired accuracy by
selecting z„appropriately and in just a few trials
of v. Also, one needs to integrate the equation
only outwards.

It is likely that, at the points k= iv„, f, (iv„) may
vanish, but in this case the wave function in Eq.
(V) vanishes. These zeros are related to the re-
dundant zeros of the S matrix and have been shown
to exist in the case of the exponential potential by
Ma. But within the Bargmann strip f, (ix„) does
not vanish if f,(-ix„) vanishes, because of the
Wronskian relation (5). It is possible to avoid all
questions about the redundant zeros if one assumes
that the potential vanishes identically beyond a dis-
tance "x„," in which case the Bargmann strip ex-
tends over the whole complex k plane. In practice
it is always possible to choose a distance r„suffi-
ciently large so that for all practical purposes
V(r) and V(r)8(r„—r) are equivalent.

III. CALCULATION AND RESULTS

q, (ix, r) =C f,(ix)[-A(x —x„) e""+(- 1)"'e ""],
(7)

where A is a constant. At an asymptotic point x„
we form the function p(r„) —= 4', (ix, r„)/e""", which
happens to be

@,(k, 0)= 0,
4'g(k, 0) = 5,0 .

(3)
As an illustration of the above method, we solve

the e +He' scattering problem for /=1 and get the

The Jost functions f, (k, r) and f, (—k, r) are two in-
dependent solutions of the partial-wave Schrodinger
equation and asymptotically satisfy the boundary
condition State Calculated t Cohen and Kelly

E (Ry)

TABLE I. '3P bound-state results and comparison with
the results of Cohen and Kelly.

e" "f,(+k, r) = i',
with the Wronskian

W[f, (k, r), f,(-k, r)] =(- I)'2ik,

(4) 'P(1)

'P(2)

~P(3)

3P(1)

'P(2)

'P(3)

—4. 24490

—4. 10946

—4. 06061

—4. 26236

—4. 11516

-4. 06338

-4.24490

—4. 10948

—4. 06180

-4.26264

-4. 11516

—4. 06424

For asymptotic distances Eq. (2) has the form ~Reference 6.
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energies of the lowest three singlet and three trip-
let P bound states of He. The wave function of the
system including exchange is given by

the ground-state wave function of He',

3 i/a
40(~a) = —, (10)

@,(r-„r-,)= ' ' l„(n,) y, (~,)~1- 2, (9)

where u, (w, ) is the scattering function and Po(r2) is
The function u, (~) is obtained by solving the integro-
diff ere ntial equation

~+k +v(r) — u, (x) +4z'e '" (k +z ) &io & e

'"aralu,

(rq)dha
d 2 l(l+1)

0

2

(2l + 1)
e '"2 rz"' u, (y2)dr~+y"' i e '"2 xz' u, (r2)dha =0, (11)

4

where

v(y) = + 2[z + (1/~)]e ""2(z -1
(12)

and g is the charge of the nucleus. We also have
total energy E, = —g~+ k . For calculating the
bound-state energy, we solve the above equation
for k = —g and study the function

p( .) =,'... (13)

We choose z„=40. 00, and study the singlet case
first.

With a mesh size of 0.002 in v, we find p(y„)
= —0. 1476x 10 at e = 0.244 and p(x„)=+0. 1832
x10 at tc =0.246. If we look at the two values of

p(x„) and guess a linear interpolation, one is led to
search for a value of t& about midway between
0. 2440 and 0. 2460. Thus, employing a mesh size
of 0.00001 and searching around 0. 2450, we find
—0.4726x10 ~&p(y„) &0.22V6x10 ~ for 0. 24490
& v &0. 244S1. This shows that the first bound state
is at E, = —4. 244SO Ry. In Table I we present our
results for the lowest three singlet and three trip-
let P states. We compare our results with those

of Cohen and Kelly, and the agreement is seen to
be satisfa"tory. If z„ is increased to 60. 00, our
results are exactly the same as those of Ref. 6.
It is to be emphasized that the exchange approxima-
tion used in this calculation is a restricted approxi-
mation and therefore the presently calculated re-
sults have not been compared with the accurate re-
sults of Schiff et al. ,

~ who include effectively all
correlations between the electrons.

We find that in this method the position of the
bound states is at first located by choosing a rough
mesh size in K, and then by using a finer mesh
size in the neighborhood of the location one may
improve the value to within a desired accuracy.
This results in desirable computational economy.

In conclusion, this method should be particularly
good to calculate the quantum defects of highly ex-
cited levels, as the energies of these closely spaceo
states can be obtained by this method.
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