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Spin Polarization and Differential Cross Section for Electron-Impact Excitation of the 6s6p I',
State of Mercury: Distorted-Wave Treatment*
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The results of the distorted-wave theory for electron-impact excitation of atoms are applied
to the excitation of the 6s6p P) state of mercury. The spin polarization and the differential
cross section are given for unpolarized incident electron beams with energies between 25 and
180 eV. The distorted-wave results are compared with experimental data, and good agree-
ment is found for both the spin polarization and differential cross section.

I. INTRODUCTION

Study of the mercury atom by electron impact
has received considerable attention in the litera-
ture over the past several years. Most of the work
dealing with the differential cross section and spin
polarization of the scattered electrons has been
focused on the elastic-scattering problem (for a
review of this work see Ref. 1). As for the in-
elastic-scattering differential cross section, there
was some very early experimental and theoretical
work. 4 Experimental interest in the inelastic-
seattering differential cross sections has recently
been revived„' 'o but no further theoretical calcu-
lations have appeared. The lack of published the-
oretical work for this problem is probably due to
the fact that the simpler theories, such as the
Born and related plane-wave theories, give very
poor results.

The problem of the angular distribution of the
spin polarization of inelastically scattered elec-
trons for an unpolarized electron beam incident
upon unpolarized target atoms was recently exam-
ined experimentally for the first time by Eitel
and Kessler. We have published a preliminary
calculation~ which made a compa, rison with these
data; other than this paper, there has been no pub-
lished theoretical work for the inelastic-scattering
spin polarization problem. It has been noted that
the Born approximation and related plane-wave
theories predict zero spin polarization for the case
of an unpolarized electron beam incident upon an
Unpolarized target. ~2 This is, of course, contrary
to the recent experimental results. This particu-
lar failure of these plane-wave theories has not
been of consequence for the light atoms since
appreciable spin polarization has not been mea-
sured for them.

It is known that for energies above 50 eV the
differential cross section for the excitation of the
Gs6p ~I'& state of mercury is simila, r in shape to
the elastic-scattering differential cross sec-
tion, ~ 4'6'~ and Eitel and Kessler found a corre-
sponding similarity between the elastic and inelas-

tie spin polarization of the scattered electrons.
This similarity between the elastic and inelastic
processes suggests that the elastic-scattering
states must play an important role in the inelas-
tic -process. Such a situation is ideal for an ap-
plication of the distorted-wave (DW) approxima-
tion, since in the DW approximation the free elec-
tron makes a transition from an initial elastic-scat-
tering state to a final elastic-scattering state. This
approximation has the further advantage in that it
is no more difficult to apply to mercury than it is
helium, and it does predict a nonzero spin polar-
ization for unpolarized beams incident upon un-

polarized targets. We have given a. general DW
theory for electron-atom collisions in a previous
paper (hereafter to be referred to as I).. In the
present paper we shall apply the DW theory (in-
cluding exchange) to the calculation of the spin po-
larization and the differential cross section follow-
ing electron-impact excitation of the 6s6p Pj state
of mercury. The energy gain of the atom corre-
sponding to this transition is 6. 7 eV.

II. DETAILS OF CALCULATION

If gz„„„&z ~ &
is the initial (final) antisymmet-

ric atomic bound-state wave function and Q, &» is
the initial (final) distorted wave, the T matrix for
inelastic scattering in the DW approximation is
given by' '~4

r„=n ( y,' ' (0) g „(1"~)
l
2/~„, l P, „(1"n)

x P," (O)& -n &y,
'-' (o) g, „(I"~)

I
2/~. 0 I

x y, „(0"n-1) y,"(n)&. (1)
A

The number of electrons in the atom is n and I/x„o
is the distance between electron n and electron 0.
The superscript + (-) on the distorted wave indicates
satisfaction of the usual outgoing (incoming) wave
boundary condition. The first term in (1) is referred
to as the direct amplitude since the incoming elec-
tron is the same as the outgoing electron and the
second term is referred to as the exchange ampli-
tude since the outgoing electron was originally in
the atom. Cross sections calculated from the di-
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rect amplitude are labeled direct; from the ex-
change amplitude are labeled exchange; and from
the difference of the two amplitudes are labeled
total. A procedure for evaluating the T matrix of
(1) for an arbitrarily complex atom is given in I
and will not be discussed here.

Evaluation of Distorted Waves

As described in I, the distorted waves are elas-
tic-scattering wave functions which are expressed
in terms of a partial-wave expansion. The poten-
tial [Eq. (3) of Ij on which the radial components
of the partial waves are calculated is given by the
relativistic expression"

&.= y.V. --(~V, ) — —' +-—A2 j+ 4
4 '

v0 g, 4

ativistic self-consistent atomic potentials currently
available for mercury, ranging from the Har tree calcu-
lation of Mayers' to the Hartree-Fock calculation
of Coulthard. 1 In the results reported here, we
have maintained the orthogonality requirement by
calculating both the bound-state and free-state wave
functions as eigenfunctions of a single relativistic
atomic ground- state potential. Trial calculations
using bound-state wave functions which were the
large components of relativistic self-consistent
wave functions that did not satisfy the orthogonality
requirements gave results inferior to those of the
above scheme, as expected.

For the construction of the total atomic wave
functions, it was assumed that both the ground and
excited atomic states could be described by the
I -S coupling scheme.

with

y, = (1+n'u2)

~ 2 pA

V", = —2Z/ro+ V; (0).

YJ (2)

(3)

(4)

(5)

In the evaluation of the DW T matrix in I, it was
necessary to assume that the bound-state and free-
state wave functions are orthogonal to make a large
number of exchange terms vanish. Enforcement of
this orthogonality requirement was found to be im-
portant in the calculation for helium in I. The
problem then is to determine how to obtain the best
bound-state wave functions consistent with this or-
thogonality assumption and consistent with the rel-
ativistic atomic potential to be used in the calcula-
tion of the distorted waves. There are several rel-

Here e is the fine-structure constant, k, is the
wave number of the free electron in the incident
channel, Z is the nuclear charge, V,'is the spher-
ical average of the interaction of the free electron
with the atomic electrons (i.e. , the potential ob-
tained from self-consistent atomic wave functions),
andj takes on theusualvaluesofl, or -l, -1, where.
/, is the order of the partial wave. The prime in-
dicates that a radial derivative has been taken. The
logic behind calculating a relativistic distoredwave
for use in a nonrelativistic T matrix is the following.
In a perturbation- type calculation such as this, one

wishes to treat the unperturbed problem as precisely
as possible to minimize the effect of the perturbation.
This particular unperturbed problem (elastic scat-
ering) is well understood and is best handled using
a relativistic treatment. Since spin polarization of
emitted electrons results from relativistic effects,
inclusion of relativistic terms in the calculation of
the distorted waves is important.

Atomic Wave Function

TABLE I. Percentage effect of the distorted-wave ex-
change term on the theoretical differential cross section
and spin polarization for the excitation of the iPi state of
mercury.

Angle
(deg)

Differential cross section
25 eV 30 eV 50 eV

Spin polarization
25 eV 30 eV 50 eV

0
30
60
90

. 120
150
180

3.4
29. 7
14.1
11.3
11.2
14.5
30.3

2. 2
13.8
10.5
9.7
8.6

11.6
20. 8

0.6
3.8
4.7
4.1
5.8
5.2
7.9

37.3
20. 0
11.3
0.8

16.0
3.2
3.3

14.7
8.6
5.5
2. 8
1.8
0.1
3.7

4, 0
1.1
0. 8
0. 1
0.5
4. 2

19.1

Numerical Procedure

The calculation was performers on a CDC 6400
computer. The numerical methods used were the
same as those employed for helium in I, but with
a radial mesh appropriate for the heavier atom.
For incident-electron energies up to 50 eV, the
direct-amplitude radial integrals were evaluated
out to a radius of about 33'7a0, and for energies
between 50 and 180 eV, the maximum radius was
reduced to about 168a0. These large radii were
necessitated by the fact that the form factor [see
Eq. (10) of I] approaches zero very slowly. The
numerical errors involved in the calculation will
be examined later.

Since the evaluation of the exchange part of the
T matrix consumes the largest portion of the com-
puter time, it is desirable to drop this term as
soon as it affects the total results only minimally.
Table I shows the effect of the exchange term on
the differential cross section and spin polarization
for incident-electron energies of 25, 30, and 50 eV.
It is seen that the effect of the exchange term on
the spin polarization has a large variation over the
entire angular range for a given incident-electron
energy. This arises from the fact that the spin
polarization changes rapidly and crosses zero a
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number of times. It is also seen that the effect
of the exchange term decreases rapidly with in-
creasing energy for both the differential cross
section and spin polarization, as should be expected.
Even though the percentage effect of the exchange
term on the spin polarization at 50 eV is relatively
large at the extreme back angles, the absolute
value of the polarization at these angles is small
enough so that this uncertainty represents less than
two parts per thousand on the polarization graph
(i.e. , 19% of 10 can be considered negligible).
The exchange term was thus dropped for energies
above 50 eV.

The number of partial waves required to evaluate
the exchange-scattering amplitude ranged from 24
at an incident-electron energy of 25 eV, to 30 at
an incident-electron energy of 50 eV. For the
direct-scattering amplitude, contributions from
the lower-order partial waves were calculated
numerically; while, as for helium, contributions
from the higher-order partial waves were calcu-
1ated analytically without 1oss of accuracy. The
total number of partial waves required for the
evaluation of the direct-scattering amplitude ranged
from 78 at an incident-electron energy of 25 eV,
to 330 at an incident-electron energy of 180 eV.
The number of partial waves evaluated numerically
in the direct-scattering amplitude ranged from 30
at 25 eV, to 90 at 180 eV. The calculations in-
cluding the exchange term took about 1 h of com-
puting time for a given energy, while the calcula-
tions using only the direct term consumed 15-20
min. The number of angles considered does not
significantly alter the time required for a given
energy.

III. RESULTS

The results for the angular distribution of the
spin polarization of the emitted electrons calculated
using Eq. (13) of 1 is presented in Figs. 1-4 for
incident-electron energies between 25 and 180 eV.
The solid curve in each figure was calculated using
the relativistic Hartree atomic potential of Mayers, ~'

g.nd the broken curve was calculated using the rela-
tivistic Hartree —Fock atomic potential of Coulthax d."
The experimental data are those of Eitel and
Kessler. ' Calculations were also performed using
the relativistic Hartree- Fock-Slater atomic po-
tential of Liberman et al. ~ These curves are not
shown since they mere almost identical to the
curves using Coulthard' s potential. It is seen that
pone of the calculations worked mell at 25 eV, which
was the lowest energy considered. The curves be-
gin to assume the shape of the experimental data
by 30 eV, however, and good agreement is ob-
tained for the higher energies. At these higher
energies, the calculations made using Mayer's
potential fit the experimental data better than the

0,6

0.4—
25eV

0,2-

P 0
50'

-0 2-

i40 e

0.4— 30eV

0.2—

-0.2—

I JC4 I

40'

I20
f f I ~~t i I

80'

e
I l I

-0.4

FIG. 1. Theoretical and experimental spin polariza-
tions of scattered electrons following excitation of the
6s6p 'P& state of mercury at incident-electron energies
of 25 and 30 eV. The theoretical curves are DW calcu-
lations performed using Mayer's potential (solid line) and
Coulthard's potential (dashed line). The experimental
data are those of Eitel and Kessler.

calculations made using Coulthard' s potential.
The results for the differential cross sections

calculated using Eq. (12) of I are presented in Figs.
5-13 for incident-electron energies between 25 and
180 eV. Each figure gives (i) a DW curve using
Mayer' s potential, (ii) a DW curve using
Coulthard s potential, (iii) a Born-approximation
curve calculated using the wave functions obtained
from Mayer's potential, and (iv) experimental data
when available. Cross sections calculated from
the direct, exchange, and total T matrices are pre-
sented at the three lowest energies. The experi-
mental data are those of Eitel and Kessler,

I Gronemeir, ~ Eitel, Hanne, and Kessler, 8 or Hanne,
Jost, and Kessler. ' The unnor malized experimental
data were normalized to give the best fit to the
theoretical curves. It is seen that the Born approx-
imation gives reasonable results only for small
angles and higher energies, as was expected. In
contrast, the DW curves exhibit qualitatively the
correct behavior over the entire anguLar range
even for the lowest energy considered, with agree-
ment improving with increasing energy. Again it
is seen that the DW curves calculated using the
Mayer potential fit the experimental data best.
Differential cross-section calculations were also
performed using the self-consistent potentials of
Liberman et al. ,

'8 but again they were nearly iden-
tical to the Coulthard potential calculations.



tion for various angles is given in Table I. The
significance of the exchange term decreases with
increasing energy more rapidly here than it did
in the previous calculation for helium.

It is of interest to determine whether the magni-
tudes of the cross sections are in satisfactory ac-
cordance with an absolute measurement. The
magnitude of the Born cross sections can be
checked by considering Lassettre' s limit theorem~
which states that the limit of the generalized os-
cillator strength for zero momentum transfer is
equal to the optical oscillator strength regardless
of whether or not the first Born approximation
holds. The optical oscillator strength calculated
using the wave functions obtained from Mayer's
potential was 8. 80. This value was consistent
with the generalized oscillator strengths calculated
from the Born-approximation cross sections
for small momentum transfer. (The actual value
of the generalized oscillator strength for zero
momentum transfer must be extrapolated as is
discussed in Ref. 5. } The experimental value of
the optical oscillator strength has been determined
by Lurio to be 1.18 + O. OV. The fact that the
limit of the generalized oscillator strength for zero
momentum transfer is larger than the experimental

50eV0.4—

14o e
T

500
I I I I

I

-0.2—

-0.4—

75eV0.4—

0.2—
e-

I'P 0

-0.2—

-0.4—

FIG. 2. Same as Fig. 1 except here the energies are
50 and 75 eV.

Examination of Figs. 5-7 reveals that the ex-
change term does not greatly alter the behavior
of the differential cross section, but tends only to
reduce its magnitude. The amount of this reduc-
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FIG. 3. Same as Fig. 1 except here the energies are
100 and 125 eV.

FIG. 4. Same as Fig. 1 except here the energies are
150 and 180 eV.
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FIG. 5. Direct, exchange, and total contributions to
the differential cross section for electron-impact excita-
tion of the 6s6p P& state of mercury at an incident-elec-
tron energy of 25 eV. The theoretical curves are solid
line, distorted-wave calculation using Mayer's potential;
dashed line, distorted-wave calculation using Coulthard's
potential; and dash-dot line, Born approximation. The
experimental data (dots) are those of Zitel and Kessler.

FIG. 7. Same as Fig. 5 except here the energy is 50 eV.

optical oscillator strength implies that the Born
cross sections for small momentum transfer are
too large. This observation indicates that the
magnitude of the higher- energy DW curves is also
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FIG. 6. Same as Fig. 5 except here the energy is 30
eV and the experimental data (dots) are those of Grone-
meier.
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FIG. 8. Differential cross section for electron-impact
excitation of the 6s6p P& state of mercury at an incident-
electron energy of 75 eV. The theoretical curves are
solid line, DW calculation using Mayer's potential; dashed
line, DW calculation using Coulthard's potential; and
dash-dot line, Born approximation.
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10'
l

180eV
tering differential cross section (and corresponding
similarity for the elastic and inelastic spin polar-
ization) for higher energies can be found by examin-
ing the expressions for the corresponding T ma-
trices. As has been shown, only the direct term in
the T matrix needs to be considered for the higher
energies. We can write the direct term of the in-
elastic T matrix (1):

L
CO

cu 0
loi—

10-i—

40 80 120
e(deg)

160

FIG. 13. Same as Fig. 8 except here the energy is
180 eV. The experimental data (dots) are those of Eitel,
Hanne, and Kessler.

time required for a calculation of this type would
be about twice that of the present calculation.
Since good agreement was already obtained with
the shape of the unnormalized experimental data,
it was felt that the additional information that
would be obtained from using configuration-inter-
action wave functions would not be justified for
the present calculation.

The estimated numerical errors in the theoret-
ical calculations for various angles and incident-
electron energies are given in Table II. These
errors were estimated for the DW calculation
employing Mayer's atomic potential by using the
error-predictor code described in I. The values
in Table II reveal that the numerical errors in the
calculation are small.

Comparison between Elastic and Inelastic Scattering

An understanding of the reason for the similarity
in shape between the elastic- and inelastic-scat-

T.=&&''IF&
I

e'."&, (6)

where

, I2i. It (&)

The radial portion of F is called the form factor
[ Eq. (10) of I ] and the 6» is included since an an-
gular momentum transfer of one unit is associated
with the form factor for a dipole-allowed transition
such as we are considering. Since there is no dan-

ger of getting the electron coordinates confused in
the above expressions, they have been omitted.
To obtain an understanding of the similarity be-
tween the inelastic- and elastic-scattering cross
section, it is necessary to understand changes that
can be made in the inelastic-scattering T matrix
that leave the shape of the results relatively un-

changed.
The first observation that can be made about

Eq. (6) is that, with increasing energy, the dis-
torted waves should approach plane waves. While
it would not be reasonable to change both distorted
waves to plane waves, since all the information
contained in the distorting potential would be lost,
it is possible that one of the distorted waves could
be changed to a plane wave without greatly influenc-
ing the results. Numerical calculations verified
that this is indeed the case. It was also observed
that for sufficiently high energy, the final-state
distorted wave could be replaced by a plane wave
with energy corresponding to no energy loss, rath-
er than by a plane wave with the actual energy loss.
This results from the fact that for high energy, the
energy difference between the initial and final free
states is small compared to the energy itself. Re-
placing the final-state distorted wave by a plane
wave P, with no energy loss changes (6) to

(6)

TABI.E II. Estimated numerical errors in the theoretical DW differential cross section and spin polarization for the
excitation of the P& state of mercury. The bound-state wave functions used in this estimation were obtained from Mayer's
potential.

E {eV)

25
50
75

125
150

00

0.1%
0. 1%.
0.1/p

0.1%
0. 1/p

0.1/o
0.1%
0.1/p

0.2/0

1.3%

0. 1/p

0.1%
0. 2%
0. 9%
2 ~ 1%

0.1%
0.1%
0.17%
0.1%
0.2/o

Differential cross section
45' 90' 135' 180'

4%
2. 1%
3 ~ 3%
7.1/p

11 2%

00

1.1%
l. 2%
1.2/o

1.4%
1.5/p

0, 2/p

0.1%
0.3%
0.4%
0.9%

0.1%
0.1%
0.1%
0.4/p

2.1%

0.1%
0.1%
3.2%
0.1%
0.3/p

Spin polarization
90' 135' 180'

1.3%
2.2%
3.1/p

8.2%
14.3%
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FIG. 14. Elastic and inelastic form factors for mercury.

Since there is no angular momentum transferred
in elastic scattering, the next logical question
would concern the effect of keeping the radial part
of F fixed and changing

Iffy

to 5,o in (8). Perfor-
mance of such calculations for high energy revealed
that this change did not greatly affect the behavior
of the results. This fact is somewhat surprising
since calculations for angular momentum changes
of 0 and 1 are quite different. Investigation of the
phenomenon further revealed that this property
held true only when slowly varying radial functions
were used in F, such as the present inelastic form
factor (see Fig. 14). This indicates that for a
slowly varying function, each partial wave has an
approximately equal probability of either gaining
or giving up one unit of angular momentum, and
the over-all effect is similar to not transferring
any angular momentum at all. With this change
of ~» to &&o, the T matrix becomes

(9)

The final question to be answered then is the effect
of changing the radial form of F. Numerical cal-
culations revealed that a wide variety of different
radial functions could be substituted in the F of (9)
without drastically changing the shape of the results.
This indicates that the shape of the scattering for
zero angular momentum transferred depends more
strongly on the free-state wave functions than it
does on the form factor. Changing F to the elastic-
scattering potential U brings (9) to

T.= Q. I
« o I

y!")
But (10) is just the direct elastic-scattering T
matrix; so we now see why the elastic and inelas-
tic shapes are similar at the higher energies. The
change in the spin polarization produced by the

0.8-

0.6—

0.4—

0,2-

P 0 J~~~

-0,2—

-04

-0,6—

FIG. 15. Transition in the spin polarization at 180 eV
as the T matrix is changed from inelastic scattering to
elastic scattering. The curves are dots, calculated us-
ing Eq. 6 (inelastic); dashed line, calculated using Eq. (8);
solid line, calculated using Eq, (10) (elastic).

transition from (8) to (8) to (10) is given in Fig.
15 for an incident energy of 180 eV. The corre-
sponding change in the shape of the differential
cross section exhibited a similar behavior.

The elastic-scattering potential is shown in Fig.
14. The calculation of the elastic spin polarization
using (10) gave good agreement with experiment,
as can be seen from Fig. 16.

To summarize then, we have seen that, for high
energies, the shape of the cross sections and spin
polarizations for zero angular momentum transfer
(elastic scattering) depends upon the free-state
wave functions. Further, with increasing energy,
form factors that vary slowly and transfer one unit
of angular momentum (inelastic scattering) begin
to yield cross sections similar to those for zero
angular momentum transfer. When this point is
reached, the behavior of the inelastic results will
be governed by the free-state wave functions. The
elastic and inelastic results must then be similar
since the corresponding free-state wave functions
are similar. These observations support the phys-
ical picture that high-energy inelastic scattering
is composed of an initial elastic scattering followed
by a small-angle inelastic scattering (small momen-
tum transfer)followedbyanother elastic scattering.

It is worth noting that if we had carried out the
above calculation in the Born approximation then
only the small-momentum-transfer step of the
above figures would have been obtained, while the
large momentum transfer corresponding to the de-
flection of the electron in the atomic field mould

have been left out. It then folloms that the simi-
larity between the inelastic and elastic scattering
is not obtainable mhen the inelastic scattering is
calculated in the Born approximation.
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distortion of the atomic charge cloud. This phe-
nomenon has frequently been approximated in
elastic-scattering problems by adding a static
potential term to the atomic potential. In order to
determine the effect of adding such a potential, cal-
culations were performed using one of the standard
forms

D 8
V~= -~ & —exp- rg

-0.4—

-06-

FIG. 16. Spin polarization of electrons elastically
scattered from mercury. The solid curve eras calculated
from Eq. (10) using Mayer's potential, and the experi-
mental data are those of Eitel and Kessler.

IV. CONCLUSION

The DW calculations presented here for the ex-
citation of the 6s6p P, state of mercury gave good
agreement with experimental data for both the dif-
ferential cross section and spin polarization of the
emitted electrons. The fact that the fit to the ex-
perimental data improved with increasing incident-
electron energy is to be expected, since phenomena
which become important at low energies (such as
coupling to other states) were neglected, lt is in-
teresting to note that the agreement between theory
and experiment is as good for the complex mercury
atom as it is for the simpler helium atom, even
though the angular distributions for mercury ex-
hibited much more structure. This fact indicates
the usefulness of the DW approximation for both
light and heavy atoms. It is seen that the familiar
Born- approximation calculation presented here
failed by many orders of magnitude at large angles.
This complete deficiency in the Born approximation
at large angles (owing to neglect of distortion) was
noted for the excitation of helium and in a calcula-
tion of the 1s-2s excitation of hydrogen. These
observations indicate that this large-angle failure
is characteristic for the Born approximation. An
additional failure of the Born approximation pre-
viously noted is that it predicts zero spin polariza-
tion for the case of unpolarized electron beams
incident upon unpolarized target atoms.

The contribution to the scattering process from
the exchange amplitude was relatively small. At
the lower energies where the exchange term made
a significant contribution, agreement with experi-
mental data was hampered by the neglect of other
low-energy effects. A low-energy effect that can
be treated by including coupling is the dielectric

Here B is the dielectric polarizability of the atom,
xo is the position of the last maximum of the abso-
lute value of the outermost wave function, and f
is an energy-dependent parameter that is varied to
fit the data. Since there was no value of D for the
~P& state available, the experimental value for the
3P3 state obtained by Levine et a/. 4 was used. The
different DW calculations that were performed in-
cluding (11)with various values of f indicated that
this term does not significantly affect the inelastic-
scattering results at these energies.

As was the case for helium, better agreement
with experiment was obtained by using orthogonal
bound- and free-state wave functions than was ob-
tained using better atomic wave functions that did
not satisfy any of the orthogonality requirements
assumed in I. We expect that the additional ex-
change terms, ~' which vanish as a result of the
orthogonality assumption, would make a signifi-
cant contribution if a complete calculation were to
be performed using nonorthogonal wave functions.
These additional exchange terms ordinarily appear
in the Born approximation owing to the difficulty of
constructing a meaningful and useful bound-state
wave function which is orthogonal to a plane wave.
For atoms heavier than hydrogen, such terms
(which are numerous for heavy atoms) are ordi-
narily ignored by workers making Born calculations.

The good agreement with experiment for the spin
polarization of the emitted electrons resulted only
when relativistic potentials were used. Use of the
full relativistic interaction in the calculation of the
distorted waves (instead of just the spin-orbit term
used in Ref. 11)produced a significant improvement
in fitting the experimental spin polarization data. We
therefore conclude that the differential cross sec-
tion and spin polarization following the excitation
of the 6s6P ~P, state of mercury can be success-
fully treated by the DW approximation using rela-
tivistic potentials and orthogonal bound-state and
free- state wave functions.
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A rapid numerical technique for the determination of bound states of a partial-wave-projected
Schrodinger equation is presented. First, one needs to integrate the equation only outwards
as in the scattering case, and second, the number of trials on ~ (=-E}necessary to deter-
mine the eigenenergy and the corresponding eigenfunction is considerably less than in the
usual method. As a nontrivial example of the technique, bound states are calculated in the ex-
change approximation for the e -He' system and l = 1 partial wave.

I. INTRODUCTION

In the case of scattering from centrally symmet-
ric potentials, one solves a projected Schrodinger
equation for a particular partial wave for a con-
tinuous range of energy E (=ks). For any value of
P a scattering solution of the Schrodinger equation
is obtained by choosing the boundary conditions on
4',(r) and its derivative at origin and integrating
the equation outwards. At asymptotic distances the
required solutions are oscillating functions of the
distance y. The bound states occur at negative en-

ergies (8 = —~s) and for the bound state values of
z the solutions of the Schrodinger equation are
square-integrable and thus at asymptotic distances
are of the form e . For a value of g not corre-
sponding to a bound state, a solution of the Schro-
dinger equation has both the regular and the irregu.
lar solution mixed in, and at asymptotic distances
the irregular part (e ) dominates and thus the out-
ward integration diverges. The usual method to
get around this difficulty is to integrate the equa-
tion inwards and outwards and impose continuity
at a midway point. ~ The inner and outer logarith-


