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The linked-cluster many-body perturbation theory has been applied to small heteronuclear
diatomic molecules using a variational Hartree-Fock molecular-orbital basis set. This pro-
cedure has been applied to study the isotropic hyperfine interaction in the ~II ground state of
the free radical O~'H and to the magnetic shielding of H and F ~ in the HF molecule. These
investigations have led to a number of physical conclusions about the influence of correlation
and exchange polarization effects on the isotropic hyperfine interactions in OH. The calculated
shielding parameters and hyperfine constants were found to be in better than 15% agreement
with experimental data wherever available.

I. INTRODUCTION

The linked-cluster many-body perturbation
theory (LCMBPT) has been applied successfully to
study the various bound-state properties of atoms
such as their energies, hyperfine constants, polar-
izabilities, and related properties. In principle,
the theory is readily extendible to molecular sys-
tems, but in practice the multicenter nature of the
latter makes it difficult to obtain the basis states
needed for perturbation calculations. To circum-
vent this difficulty about basis-set wave functions
for LCMBPT calculations, some recent approaches
have utilized zero-order one-center Hamiltonians
as the starting point for which one can obtain the
complete set of states by numerical solution as
in atoms. This procedure has provided fairly
accurate total and correlation energies in a number
of molecules. However, the accuracy of this pro-
cedure for properties such as hyperfine interactions
which depend on the immediate vicinity of the
nuclei has yet to be tested, particularly atperipheral
nuclei which are not at the center of expansion.
Since one starts in this case with a zero-order
wave function whose amplitudes at the nuclei are
expected to be significantly different from the actual
molecular wave function, one expects higher-or-
der perturbation effects to be substantial. Addi-
tionally, for homonuclear molecules, the one-
center Hamiltonian is expected to be rather differ-
ent from the real Hamiltonian and could lead to
convergence problems even for the energy.

It appears, therefore, that to attain versatility
in handling both varieties of properties and varie-
ties of molecules by the LCMBPT procedure, one
has to explore the possibilities of using multicen-
ter basis sets. One, of course, has to use varia-
tional methods to determine these basis functions

since the multicenter equations for the wave func-
tions cannot be solved conveniently by numerical
integration. Recently, Schulman and Kauf man3

have utilized linear combinations of Gaussian atomic
orbitals to generate the basis set for LCMBPT
calculations of the indirect spin-spin interaction
constant in the HD molecule. However, with the
Gaussian representation, one requires a signifi-
cantly larger number of functions to represent the
the molecular wave functions than is the case for
Slater orbitals. The latter have been used ex-
tensively to obtain self-consistent-field (SCF)
(Hartree-Fock-Roothaan) wave functions for the
occupied states of molecules. For the two mole-
cules OH and HF that we have chosen for our pres-
ent investigations, the basis sets involving the
occupied states and unoccupied excited states were
available' from Hartree-Fock-Roothaan calcula-
tions for the occupied states. The unoccupied
molecular orbitals arise as a consequence of the
large variational atomic-orbital basis sets which
were used in these calculations. Since the aim of
the calculations' from which these basis sets were
obtained was to determine good Hartree-Fock-
Roothaan wave functions for the occupied states,
the one-electron Hamiltonian used was a Hartree-
Fock Hamiltonian involving what is known in many-
body literature' as a V" potential. Consequently,
the unoccupied or excited states of the one-electron
Hamiltonian, which are referred to as particle
states, all have energies greater than zero and lie
in the continuum. In the literature on many-body
perturbation theory in atoms, the V" potential
has been the more popular choice as the zero-order
potential and is found to lead to better convergence
for polarizabilities . In one atomic system,
namely, He ('S), LCMBPT calculations with a V"
basis have led to reasonable agreement with ex-
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periment for the contact hyperfine constant. Re-
cently, other choices of zero-order potentials have
been tested' for the perturbation procedure. Since
accurate basis sets of states are currently available
for the V" potential in molecules, one is in a posi-
tion to study the nature of the results one obtains
with their use in many-body perturbation ca".cula-
tions. In addition to the intrinsic interest of these
results, one can obtain from them some insight
into the physical and computational aspects of the
perturbation approach which should be valuable for
investigations with other potentials.

Our choice of OH and HF molecules has been
dictated by the following considerations. We
wanted to study two classes of molecular systems,
one involving unpaired electrons that would have
finite hyperfine interaction in the first order as in
finite-spin atomic systems and a second class
which would be diamagnetic, but have data available
on chemical shifts associated with one order in
magnetic hyperfine interaction and one order in the
magnetic field. The OH free radical is a good can-
didate for the first class, in addition to being of
astrophysical interest. The HF molecule is a
good candidate for the second class. ' Both of these
molecular systems are small enough that one can
carry out a detailed analysis of the theory of their
hyperfine properties without an inordinate amount
of effort. In addition, there was the fortunate cir-
cumstance mentioned above that their excited states
were available from Cade and Huo's calculations. ~

II. RESi ME OF FORMALISM AND METHOD OF
CALCULATION

The LCMBPT method as applied to atoms has
been described in a number of places. ' The formu-
lation for applying it to molecules is broadly the
same and therefore only a few basic points will be
jncluded here with a few remarks that are charac-
t;eristic of molecules.

What we are seeking is the exact solution of the
Schrodinger equation for the molecule, namely,

jn the Born-Oppenheimer approximation. In
frying to obtain this objective by the perturbation
procedure, we split the Hamiltonian II into a zero-
order pari Ho and a perturbation part H', namely,

ao+ II

In the present work, Ho is the Roothaan-Hartree-
Fock Hamiltonian. ' This is the counterpart of the
Hartree —Fock V" Hamiltonian for atomic systems,
with specific choices" for certain parameters for
Fock operators for open-shell systems.

In LCMBPT, the exact wave function 4' is given
by the linked-cluster expansion

where 4o, the "vacuum" state in this formalism,
is the eigensolution of the zero-order equation

IIoC'o =Eo~'o
~

and the symbol I. indicates that only linked terms
in the perturbation series are to be retained. For
the hyperfine constant, which is a one-electron
property, one needs the expectation value of a
one-electron operator, in this case the hyperfine
Hamiltonian operator H„'„, over the wave function
4, leading to

Following the usual field-theoretic-type prescrip-
tion, a typical term in the summation in Eq. (3)
can be written in terms of a set of linked diagrams
of order (n, m). For the case of nuclear magnetic
shielding'~ in the HF molecule, one needs to include
in addition to the orbital hyperfine operator, the
operator describing the perturbation due to an ex-
ternal magnetic field. A convenient way of doing
this is to include the magnetic field perturbation
HH in H' and keep all terms in Eg. (3) which involve
one order of II„'.

As indicated earlier in the Introduction, the one-
electron basis set of states that we have used was
obtained' in the process of performing Hartree-
Fock-Roothaan calculations for the ground states
of these molecules. The many-electron zero-order
wave function @o is obtained by the occupation of
the lowest-energy one-electron states, in keeping
with the symmetry of the ground state, as in the
case of atoms. The unoccupied one-electron states
were then handled as excited or "particle" states.
The number of excited levels available is 20 for
both molecules OH and HF, composed of 13 of o.

symmetry and 7 of 7t symmetry. Since the number
of basis functions is finite and since they were
obtained variationally rather than by exact numeri-
cal solution, one might be concerned about their
completeness. To test this property, we utilized
the procedure of checking the equality of the left-
and right-hand sides of the matrix-product equa-
tion:

olA&=~ &Alo

where 0 is a one-electron operator and IA) is a
one-electron function, the summation over e run-
ning over the entire basis set. Using for IA)
several choices of Slater functions based on the
oxygen or fluorine atoms and the hydrogen atom
and 0= l, 1/x, 5(r), s, and x (with the origin of r
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taken both with respect to H and the other atom},
the completeness test was found to be well satis-
fied.

The evaluation of the many-body diagrams re-
quires the calculation of a number of one- and two-
electron matrix elements over the basis states, the
opel'Rtol involved 111 the lat'tel' CRse b61ng 1/t'xx .
The two-center integrals involved in these calcula-
tions were obtained using the a-function technique
fix'st developed by I owdin and extended ' subse-
quently by Ikenberry, Sharma, and Duff. This al-
lows convenient programing of ~-function expan-
sions of wave functloQ8 of Rny l about the initial
center and to any number of desired E components
about the second center. In view of the substantial
size of the atomic basis sets involved in the linear-
combination-of-atomic-orbital (LCAO) expansion
of the mol. ecul, ar basis orbitals used here, the
evaluation of the two-electron matrix elements
over the molecular basis sets required careful pro-
graming with special storage techniques to econo-
mize on the computer time and make most efficient
use of avail. able memory on the UNIVAC 1108.

III. RESULTS AND DISCUSSION

As pointed out in the Introduction, oux present
work falls broadly intotwo categories, the isotropic
hyperfine-interaction constant in the free radical
OH and the nuclear magnetic shieMing constants
for 8 and F nuclei. In this section, our results
will be presented in this order. In the former
cR86 fox' economy of spRce only dlagl Rms with
contributions gr'6Rtel thaQ R certRlQ minimum will
be presented and the net contribution through sec-
ond order in electron-electron interactions will.

be included. In the latter case, electron-electron
interactions will only be included through first order,
In both cases, oux" results will be compared with
available experiment and earlier theoretical re-
sults obtained through other procedures.

A. Isotropic Hyyerfine Interaction in OH

As discussed in Sec. II, for the expectation value
of one-electron operators including many-body
effects, the pertinent expression is Eg. (3). For
the hyperfine-interaction problem at hand, the
pertinent one-electron operator is the Fermi-con-
tact hyperfine Hamiltonian for nucleus ¹

Hhx, = s g Ixxli~ ~ +sl6(r,
Cg

Noting that the experimental hyperfine spin-Hami. l-
tonian is usuRlly writteQ Rs

a.„,= 2~if&(» I„S,
the expression for the hyperfine constant A(N) in
Hz for nucleus N is given in terms of linked-
diagram contributions by

&&H„'„[(Z,—H, )"'H']"
~
C,(S, M~ =S)) . (5)

In Ect. (5), 40(S, Mz =S) is the vacuum-state many-
electron wave function, which, in the present case,
is the Hartx'ee-Pock wave function corresponding
to total spin 8 and M, =S. The hyperfine constant
will be calculated in frequency units, but for com-
parison of purely electronic effects for the O ~ and
H nuclei, it is the spin density y(N), namely,

y(» = Z (c,(s, M, =s)
~
[z'(z, -a,)-']"

x2+ 5(r,„)[(Z, -a,) 'Z']" ~e,(S,M, =S)),

which ls the Blox'6 1'elevRllt cluant1ty. 111 tex'Bls of
y(N), A(N) is given by

W(N) =Z(N) g'"' y(»,

&(»= 's v(g~u~/BsS} . (8)

For ready xeference, we list here the values of
E(N) for 0" and H' using the most recent physical
con stRQt8

F(O") = —216.22O Oe,

E(H') = 1594.98 Oe . (9)

g p~/2lx)f = 2. 802 47 MHz/Oe . (lo)

For both H' and 0'~ nuclei in the ground ~II state
of OH radical (lo 2|x'So'lm, ill', ) there is no direct
contact hyperfine interaction since the internuclear
axis is a nodal line for the unpaired lm'„& electron.
As in related situations in atoms such as nitrogen
Rnd phosphorus, the hyperfine interaction ax'ises
from core-polarization and correlation effects
associated with the unpaired electron.

The hyperfine diagrams for the proton are pre-
sented in Fig. 1. For economy of space, only a
limited number of diagrams are presented, namely,
those with contrlbutlons to the spin density greater
than 0.25& 10 3@~3. In these diagrams R wiggly
line followed by the symbol C denotes the matrix
element of the spin-density operator between the
indicated states. In these diagrams, o hole states
Rx'8 dello'teel by xxcJ and xx 0' (xx~ B = l~ 2~ 3) Rnd pRrtl-
cle states by ko (4~@~16). Similarly, lwx, ill»
1m'„1are hole states and kg denotes particle states

On multiplying the calculated spin density in Eq.
(6) by the factors in (9) we get the hyperfine con-
stants in units of Oe as they ax'e often expressed in
ESR work. However, if one is interested in fre-
cluency units (Hz}, this can be accomplished by mul-
tiplying the result in Oe by the fa,ctor
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FIG. 1. Major diagrams contributing to the proton
hyperfine interaction in OH.

(2~@~8). In our work here, we have studied the
diagrams involving the orders (01), (ll), and (02),
adding up to a total of 152 in all. Table I lists the
contributions from the ones not shown.

The physical effects represented by the diagrams
in Fig. 1 are broadly analogous to the correspond-
ing atomic hyperfine diagrams. '" Thus, for
example, Fig. 1(a) represents the usual first-or-
der exchange core-polarization effects of the paired
o orbitals by the unpaired lm'& electron. The 2o
and So contributions to this diagram are of the
same order of magnitude and same sign (negative),
while the 10 contribution is negligible. This small-
ness of the 10 contribution is understandable since
this orbital has very smaQ density at the proton.
The corresponding situation at 0 7 is, however,
markedly different as will be discussed later.

Figures l(b) and 1(c) are of order (1, 1) and repre-
sent the combined influence of core polarization
and intrashell and inte rshell interactions among
the paired orbitals, respectively. Diagrams 1(d)-
1(g) are of order (0, 2) with 1(d) being related to
the core-polarization diagram 1(a) by the introduc-
tion of an additional order of a 0-o radial correla-
tion. Figure 1(e) is analogous to the "phase-space"
diagrams of atomic hyperfine literature and is the
result of the asymmetry in the correlation effects
from 0 states of opposite spin due to the presence
of an empty lm, state. Diagrams 1(f) and l(g) rep-
resent the influence of the correlation between 0
states and the unpaired w state. Finally, Fig. 1(h)
is similar in form to the (11) diagram 1(c) but,
due to different time ordering, is referred to as a
(02) diagram.

From Table I, the total spin density at the proton
through second order in electron-electron interac-
tions is seen to be —14.Ox 10 3 a. u. which is com-
posed of —0.0098, —0.0014, and —0.0028 from
(01), (11), and (02) orders. Using the requisite
conversion factor, the total spin density corre-
sponds to a hyperfine constant A(H) = —65. 52 MHz.
For ready reference, the (Ol), (11), and (02) con-
tributions to the hfs constants have also been listed
in MHz in Table III.

The hyperfine diagrams for 0' are presented in
Fig. 2 with corresponding contributions in Table
II. Again, for economy of space, only diagrams
representing spin densities greater than about
5x 10 Sas', or 5% of the total calculated quantity,
are shown in Fig. 2. Figure 2(a) again represents
the core-polarization contribution. In contrast to

TABLE I. Contributions to the hyperfine interaction
at the proton in OH. Values are given in terms of the
electronic spin density at H~, in a.u. x 10"3 (see Fig. 1).

Diagram Spin-density contribution

1(a} no = 2o. 7O 33
no =3o —2.48

14b) —0.39
1(c)
l(d) no =n'o =2o. —2.03

no =n'o =3o. —0.86
1(e) no =2o 0.52

no' = 30' —0.27
1 (f) no. = 2o. 0.25

no =3fT 0.48
1(g) no. = 3o. —0.34
1(h) 0.38

,kfyI
1T/

I
kcr

(b)

ko;

(g)

(k)

c+
Scf

ko;

+
-I k+

(d)

Total of all (0, 1)
Total of all (1,1)
Total of all (0, 2)

Net spin density

—9.81
1~ 37

—2.80

—13.98

(n)

FIG. 2. Major diagrams contributing to the O~vhyperfine
interaction in OH.
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TABLE II. Contributions to the hyperfine interaction

at oxygen nucleus in OH. The spin density is in a.u.
(see I'ig. 2).

Diagram

2(a) na. = lo.
no'= 20
na =3a

2(b)
2(c)

'

2 (d) + exchange
2(e)
2(f) = 10'nd =no

no =no
no =no

= 20'

=30
n'a=la.
n'a =30 +vice versa

no =20'~
no'= 20,

2(g)
2(h)
2(i) no =n'0 =10

no =2a, n'o =30
2 )
2(k) no = 2a.

2(l)
2(m)
2(n)

Total of all (0, 1)
Total of all (1,1)
Total of all (0, 2)

Net spin density

Spin-density
contribution

—167.48
180.35
15.77
11.47

—6.53
8.47

—5.97
—19.76

51.40
5. 22
7.31
5. 28
7.48

11~ 73
-7.35
12.49
6. 65

—11.14
—5. 86
14.47

—4.32

28. 63
19.02
54. 12

101.77

the situation for the H' hyperfine constant, the lo
contribution is now large and negative and cancels
the major part of the positive contribution from the
2o state which is augmented by a relatively small
but positive contribution from the So state. The
large negative contribution from the 1o state can
be explained by the movement of the closely packed
parallel spin electron away from the nucleus as a
result of the exchange attraction of the unpaired
m electron. This leaves a surplus negative spin
density at the nucleus. For the 2o and So states,
the electronic distribution is more diffuse and
peaked not far from the maxima of the unpaired 1n

density and, in contrast to the lo case, it is diffi-
cult to predict qualitatively which direction the
parallel spin density will be moved by exchange.
The order-of-magnitude-larger spin density ob-
served for the 2o state relative to Sp is probably
a consequence of the combination of relatively
greater density at the nucleus in the former case
as well as a stronger exchange wi~h the unpaired
electron.

Of the second order (11) and (02) [Figs. 2(a)-2(n)]
diagrams 2(b), 2(c), 2(f), 2(h), 2(k), and 2(1) repre-
sent the same physical effects as diagrams 1(b)-
1(g) for the proton hfs. Considering these latter
five diagrams first, there are some differences

in the natures of the contributions in the case of 0'~
as compared to the proton. Thus, in diagram 2(f),
the contribution from no =n o = lo is appreciable
now in contrast to the case of the proton where it
was negligible due to the small density of the lo
orbital at the proton site. Additionally, in the case
of O", the off-diagonal components of diagram
2(f), corresponding to non', are of greater rela-
tive importance compared to the diagonaldiagrams,
in contrast to the situation at the proton. Also dia-
grams 2(k) and 2(l) are now of greater relative
importance when referred to diagram 2(a) than the
counterparts in the case of the proton.

Considering the rest of the diagrams in Fig. 2,
2(d), 2(e), 2(g), 2(i), 2(j), 2(m), and 2(n) do have
their counterparts for the proton (Fig. 1) but were
not exhibited there because they made relatively
small contributions. Of these diagrams for 0'~,
diagram 2(d) and its exchange version with particle
lines crossed represent the effect of asymmetric
correlation between the 2o and Se orbitals for states
with different spin. (The empty lv, state is available
s.s an excited state for only the down-spin state. )
Figure 2(e) represents the influence of correlation
between the cr states and the unpaired lm'„, state.
Diagram 2(m) is analogous to diagram 2(f) but in-
volves m-m exchange instead of g-o. It is to be
noted that the multiplying factor~ for this diagram
is characteristic of the Roothaan approximation
to the starting Hartree-Fock potential for open-
shell molecules and would be different for a differ-
ent choice. Diagrams 2(g), 2(i), and 2(j) are
broadly similar to diagrams 2(h), 2(k), and 2(l),
respectively, in that the second interaction line is
connected between hole states in one case and be-
tween particle states in the other.

In general, the diagrams for 0 ~ resemble more
closely the diagrams for the second-period atoms'
than is the case for the H' diagrams. This is not
surprising since the electronic environment of0" in OH is similar to that for an oxygen atom.
In particular, the close cancellation between lo and
the combined 2o and So contributions is analogous
to the cancellation between ls and 2s core-polar-
ization contributions to the hfs of boron, nitrogen,
and oxygen atoms.

The total spin, density at oxygen is seen from
Table II to be 101.8&& 10 'a 33 of which 28. 6, 19.0,
and 64. 1 (x10 Bag) arise from (0, 1)-, (11)-, and
(02)-type diagrams, respectively. Using the ap-
propriate conversion factor from Eq. (9), we get
the hyperfine constant for 0'7 as A(O) = —61.67
MHz, composed of the (01), (11), and (02) contri-
butions listed in Table III.

Unfortunately, no experimental value is available
for the O'7 hfs constant. The experimental value ~

of the H hfs constant is A(H) = —74. 6+ 0.6 MHz.
Our theoretical result is in reasonable agreement
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TABLE III. Calculated hyperfine constants by order
in perturbation theory. Values given are in MHz and ap-
ply to the specific isotopes H and 0

tion, in this case, is opposite in sign and compa-
rable in magnitude to the 2' and Scr contributions as
we found for diagram 2(a).

Oi (MHz) H (MHZ) B. Magnetic Shielding of H' and F' Nuclei in HF Molecule

Total, APT)

-17.35
-11.52
-32.79

—61.67

-43.85
—6.13

—12.54

—62. 52

with this value. We shall remark on the source of
the difference later in this section, after discussing
the other available theoretical calculations.
Both of these are configuration interaction calcula-
tions, one using two-center basis sets ~ and the
other one-center ' sets. The first of these calcu-
lations, involving two-center molecular orbitals
and aimed only at the proton hfs, utilized, for
configuration interaction, excited configurations
obtained from one available empty 0 state in addi-
tion to the occupied states. Since no configurations
involving excited n states were included, this cal-
culation cannot include the influence of diagrams
of the type l(f) and l(g) for H and 2(d), 2(g), 2(i),
2(j), and 2(m) for 0'7. In addition, diagrams of the
type 1(e) for the proton were also excluded. Since
this calculation was concerned mainly with the
H' hfs constant, the omission of g excitations may
be seen from Table I to be not as serious as it
would have been for 0 ~ (see Table ll). However,
since only a single excited o state was used and
we have found comparable contributions from a
number of additional excited states, it is difficult
to assess the theoretical accuracy of the calculated
result —6V. 9 MHz. Two- center configuration-
interaction (CI) studies using more than one excited
state would be very desirable in this respect.

In the one-center CI calculation~ which has been
done, excited o orbitals were used. Since no ex-
cited m orbitals were employed, again the contri-
bution of w-excitation diagrams is absent. The theo-
retical results obtained in this calculation were
—ll. 2 MHz for H' and two alternate values —1.4
and —99.3 MHz for 0". As the author has re-
marked, not much weight is to be attached to the
H' result because the orbitals were expanded about
the oxygen center. The first 0' result is obtained
using all ten excited o orbitals to build excited
configurations, while for the second Q'~ result,
two of these orbitals were dropped from a consid-
eration of the reasonableness of their densities at
the O'7 nucleus. The second result agrees more
favorably with our result. However, an examina-
tion of the spin-density contributions from single-
excitation core-polarization effects indicates that
there is better accord with our results when the
full set was used. In particular, the lcr contribu-

In the molecule OH studied in Sec. IIIA, there
was an unpaired electron present which produced
a contact hyperfine interaction, albeit through its
correlation and exchange polarization effects on
the paired orbitals. On the other hand, the HF
molecule involves spin-paired states and does
not have a finite hyperfine constant. The hyperfine
effect that we are interested in for this molecule
is the magnetic shielding coefficient which arises
from the interplay of the orbital perturbation by
a magnetic field and the orbital hyperfine interac-
tion. In the perturbation formalism that we are
employing, as symbolized by Eg. (2), the influence
of the magnetic field perturbation (H„') is incorpo-
rated by including II„ in II and computing the expec-
tation value of the orbital hyperfine operator.

Pariational methods that have been applied~2(b), 24, 25

to the shielding problem fall into two categories.
In one of these categories, ' the effect of elec-
tron-electron interaction is ignored and one studies
the perturbations of the one-electron orbitals in-
dividually due to the magnetic field. This corre-
sponds to what is denoted as method C in I anghoff,
Karplus, and Hurst's (LKH) (Ref. 26). In the sec-
ond category, " ' corresponding to the method
A. in the language of LKH, one includes the influ-
ence of electron-electron interactions as a self-
consistency effect in the perturbed state. In our
present calculation, we have included the diagrams
which specifically include these consistency effects.
To describe the diagrams, one has first to con-
sider the perturbation Hamiltonian relevant to the
present problem. The perturbation terms involving
the magnetic fieM and nuclear-moment perturba-
tions can be obtained by considering~7 the interac-
tion between the electron and the magnetic vector
potential due to both the nuclear moment and the
applied magnetic field. The form of these pertur-
bation terms depends on the choice of origin (gauge)
used for the vector potential for the magnetic field,
but from gauge-invariance arguments the net an-
swer for the shielding constant is expected to be
independent of this choice.

In the present work, since the major part of the
electron density is o.i the fluorine atom, we have
chosen the fluorine nucleus as the origin for the
magnetic field perturbation. For the perturbation
due to the nuclear moment, the origin is chosen
at either the proton or thefluorine nucleus, depend-
ing upon the one whose shielding is being studied.
With this choice, the zero-order Hamiltonian Ho
and perturbation Hamiltonian, composed of four
terms H& through H4, are given by
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1
Ho =

2
+ &~+l'o~

SZ

1
H, =g —V",

85
H, = — H'(Q(r,

2tH C
—R) Xp,.),

RZC f Ki
(i3)

is termed ' the diamagnetic shielding term, the
balance o being defined as the paramagnetic term.
With the choice of gauge as in Eq. (11), o is given
by

3

a = —
z (O~g ', ' ~0)+(perturbation

2tFLC

terms involving one order each in H2 and Hs). (14)

The wave function I 0) refers to the many-particle
wave function involving in principle all orders in
H, , as gi'ven by Eg. (1). Similarly, the other per-
turbation terms in Eq. (14) also involve all orders
in H, and are obtained using Eq. (3) with H.= H,
+H~ and H„„=K,.

Experimentally, the absolute shielding tensor
cr is not available, since one usually measures only
the chemical shift with respect to a standard refer-
ence system. On the other hand, one can get a

2e ~ r&r& —x& 1 +r& ~ R 1 —r,R
H4

2 aa P'~
7

Vf

where Vo is the one-electron potential involving the
electron-nuclear Coulomb interaction and the
Hartree-Fock V" interaction between the electrons.
The position vector for the electron, namely, r&,
is measured from the nucleus under study, and
R is the radius vector joining the same nucleus to
the origin of the magnetic vector potential. Note
that R=O for the fluorine nucleus and is the inter-
nuclear vector HF for the proton. The vectors
1& and p& are the angular and the linear momenta,
with 1& measured with respect to the particular
nucleus under study. In addition to these perturba-
tion terms, there are two others involving p,

~ and
H, respectively, which are not of interest in the
present problem.

The magnetic shielding tensor o for the nucleus
of magnetic moment p, in the uniform magnetic
field H is then defined by the usual relation

bZ (g, H) = —p, ~ (1 —o ) ' H, (12)

where ~(p, H) represents the sum of energy terms
that involve both p and H simultaneously to one
order each. Conventionally, the part cr" of o given
by

(a) (b) (c) (e)

FIG. 3. Diagrams contributing to the paramagnetic
shielding constants in HF.

measure of o experimentally by relating it to the
rotational magnetic field. Since HF is a linear
molecule, 0,„=0» and o„=0, z being the direction
of the internuclear axis. In the literature, it is
conventional to quote the motionally averaged
paramagnetic shielding constant o~ = 3 o~„, which is
what we shall use here for both experimental and
theoretical numbers.

The diagrams for o~ involving up to one order in
the electron-electron interaction are presented in
Fig. 3. These diagrams are evaluated for the
magnetic field in the x direction. The pertinent
one-electron operators associated with H2, K3,
and H4 are thus f„z, f„„/r„', and —B,„jx, (A = F
or H). The vertices associated with these opera-
tors are shown in Fig. 4. Since the diagrams are
all evaluated in atomic units, we need the same
conversion factor a for all the diagrams where
n is the fine-structure constant.

Figure 3(a) represents the first term of o~, in
Eq. (14), a summation being taken over all the occu-
pied cr and m states. This diagram only contributes
to the proton shielding. Figure 3(b) represents
the perturbation contributions from the individual
states through one order each in II3 and H3. It
represents the effects that one obtains through
method C of LEH used in some of the earlier vari-
ation calculations. '

Figures 3(c)-3(e), combined with the various
possible time orderings of the K2 and H~ operators,
represent the consistency effects that occur in
method A. of LKH ' in carrying out second-order
polarizability-type calculations. These effects
have been incorporated in some of the more recent
var jational calculations. " ' The contributions
from these five diagrams for the protonandfluorine
nuclei are tabulated in Table IV. Figure 3(a) has
a vanishing contribution for the F nucleus. For
the proton, it is the major contributor. Figures
3(b) and 3(c) make an order-of-magnitude-larger
contribution for fluorine than for the proton. This
is understandable, since the magnetic field pertur-
bation is centered at fluorine where most of the
charge density is located and hence the perturba-
tion of this charge density provides a much stronger
field at the fluorine nucleus than at the proton which
is more distant from the region where the pertur-
bation occurs. The same explanation holds for the
even larger difference in relative effects from the
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The LCMBPT procedure with molecular-orbital
V basis sets has been applied in this paper to
study hyperfine properties for two diatomic mole-
cules OH and HF and found to give agreement to
better than 15'%%ug with available experimental data.

ex /r e„,

FIG. 4. Vertices for the magnet;ic shielding diagrams
in Fig. 3.

higher orders for the two nuclei . The net para-
magnetic shielding constants obtained from these
five diagrams for the fluorine and the proton are
listed in the last line of Table IV.

The experimental values for o from rotational
magnetic field data'0 are (-6. 'f9+0. 4)&&10 ' and
—7. 96&&10 ' for fluorine and the proton, respective-
ly. Thus, the agreement between our theoretical
value for fluorine and the experimental value is
within 15/0. For the proton, the theoretical result
is in closer agreement (within 4/q) with the experi-
mental result. The nature of this agreement is
quite reasonable considering that only one order
in the electron-electron interaction was included
in the diagrams in Fig. 3. Comparison can be
made with two recent variational calculations of
the shielding constants that included consistency
effects. In one of these calculations, a variational
function was used ' which involved essentially a
single parameter related to excitation to a 4o state.
The values obtained in this latter calculation are
—7. 570&&10 'and —7. 058~10 ', respectively, for
fluorine and proton. For purposes of comparison, we

have evaluated our contribution to o for fluorine from

all the diagrams in Fig. 3 using only the single 4o

excited state and find the result to be —7. 21&&10"'.

This result compares reasonably well with that of
Ref. 25 considering the fact that the two calculations
used dif fe rent wave functions for the occupied and
excited (4o) states. The other'2+' self-consistent
variational calculation for 0~ used a number of
additional wave functions besides the occupied
ones to expand the perturbed wave function needed
to obtain the second-order energy involving p,H.
Their values for o ~ in fluorine and the proton3'
were —6. 771&& 10" and —7. 92&& 10"', respectively,
in very good agreement with experiment. We feel
that this better agreement obtained in Ref. 12(b)
with experiment, as compared to our results, is a
consequence of their using a substantial-sized
basis set comparable in dimension to the one we
have used and the fact that consistency effects can
be incorporated to higher orders through the vari-
ational procedure.

IV. CONCLUDING REMARKS

TABLE IV. Contributions to o from the diagrams in
Fig. 3 inunits of o &&10~.

Diagram

3 (a) n =1o.
n =20
n =3o.
n-17r

Subtotal

H

-7.2972

3(b) n =10'
n =20'

n =3o
n =17r

Subtotal

3 (c) n =n' =1o.
n =n'=2o.
n =n =3o
n =n' =1'
nwn'

0
0.0256
1.3603

—6.1227

—4. 7368

0
0.0078
0.4516

—3.6594
0.1083

0
—0.1866
—0.5122

0.2761

—0.4227

0
—0.0150
—0.0749

0.1834
—0.0355

3(d)
3(e)

Subtotal —3.0012

0.1332
—0. 2900

0.0580

-0.0042
-0.0007

Total —7. 8948 -7.668

These investigations have led to certain physical
conclusions about the origin at hyperfine properties
(which provide a sensitive test of the wave function)
which should be helpful for future improved calcu-
lations on the present systems and other molecules.
For example, one of the observations that we have
made from our diagrams as discussed in Sec. III
is that the isotropic hyperfine constant on the pro-
ton in OH is quite significantly influenced by corre-
lation effects. The same is true of the 0"hyper-
fine constant but this is, of course, expected.
Another interesting effect observed was the close
cancellation for 0" of the exchange core-polariza-
tion effects associated with the lo orbitals and
the combined effect of the 2o and So orbitals. This
effect is analogous to the corresponding cancella-
tion between 1s and 2s states in open-shell atoms
of the second period.

The remaining discrepancies between experiment
and theory for the H' hyperfine constant in OH and
between the H' and F' paramagnetic shielding con-
stants and experiment most likely arise from
higher-order effects in the electron-electron in-
teraction. A preliminary examination of higher-
order diagrams indicates that their contributions
do not converge as well as in the case of atoms,
and we feel that this is a consequence of the use of
the I/' potential which does not have any bound ex-
cited states. However, reasonable success has
been achieved in this work up to second order with
basis states available from Roothaan-Hartree-
Fock calculations on molecular ground states. This
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provides encouragement for investing the time and
effort needed for calculation of hyperfine proper-

ties through the use of V ' or other basis sets
which include bound excited states.
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