7 TRANSITION PROBABILITIES AND MULTIPLE. ..

*Research supported in part by the U. S. Atomic Energy
Commission and by the Air Force Office of Scientific Re-
search, Office of Aerospace Research, United States Air
Force, under Contract No. F44620-70-C-0028.

TOn sabbatical leave from the Physics Department,
University of Connecticut, Storrs, Conn. 06268. Partici-
pating guest, Lawrence Berkeley Laboratory.

ISee E. J. McGuire [Phys. Rev. A 5, 1052 (1972); 3,
587 (1971)], where many of the earlier references could
be found. Also W. Fink, R. C. Jopson, H. Marks, and
C. D. Swift, Rev. Mod. Phys. 38, 513 (1966); W,
Bambynek, B. Crasemann, F, W. Funk, H. U. Freund,
H., Mark, C. D. Swift, R. E. Price, and P. V, Rao,
Rev. Mod. Phys. 44, 716 (1972).

2y, o. Kostroun, M. H., Chen, and B. Crasemann,
Phys. Rev. A 3, 533 (1971); 4, 1 (1971).

3See, for example, K. Omidvar, H. L. Kyle, and E.

499

C. Sullivan, Phys. Rev. A 5, 1174 (1972).

‘F. Herman and S. Skillman, Atomic Structuve Calcu-
lations (Prentice-Hall, Englewood Cliffs, N, J., 1963).

For example, R. Latter, Phys. Rev. 99, 510 (1955);
J. C. Stewart and M. Rotenberg, ibid. 140, A1508 (1965).

SA. E. S. Green, D. L. Sellin, and A. S. Zachor,
Phys. Rev. 184, 1 (1969).

Y. Hahn and K. M. Watson, Phys. Rev. A 6, 548
(1972).

8N. F. Mott and H. S. W. Massey, The Theovy of
Atomic Collisions (Oxford U.P., Oxford, England, 1965),
Chap. 16.

SCorrections for a relativistic impacting electron will
be introduced later.

Vg, T. Whittaker and G. N, Watson, A Course of
Modevn Analysis (Cambridge U.P., Cambridge, England,
1952), pp. 337-342.

PHYSICAL REVIEW A

VOLUME 7,

NUMBER 2 FEBRUARY 1973

Distorted-Wave Approximation and Its Application to the Differential and Integrated
Cross Sections for Electron-Impact Excitation of the 2 P State of Helium*
D. H. Madison and W. N. Shelton

Department of Physics, The Flovida State University, Tallahassee, Flovida 32306
(Received 15 December 1971; revised manuscript received 25 September 1972)

Theoretical results are given for the application of the distorted-wave approximation to
electron-atom impact excitation for transitions from an L-S coupled initial state to an arbi-

trarily coupled final state.

Expressions for the differential cross section and spin polariza-

tion of the emitted electrons are given for unpolarized electron beams incident upon unpolar-

ized atoms.

These results are applied to excitation of helium from its ground state to the

1s2p P, excited state for incident-electron energies between 26.5 and 300 eV. The results

are compared with previous theoretical and experimental works.

It is found that the distorted—

wave calculation is superior to previous calculations in fitting the absolute magnitude and

angular distribution of the experimental data.

The improvement over the plane-wave calcula-

tions is greater at large angles, where the plane-wave approximations fail by several orders

of magnitude.

I. INTRODUCTION

Until a few years ago, theories of electron-im-
pact excitation were judged principally on their
ability to predict integrated cross sections, while
today there is an increasing emphasis on the cor-
rect prediction of the angular distributions as well.
Recently there has also been an increasing interest
in the spin polarization of the scattered electrons.
This interest has been stimulated by the appearance
of reliable experimental polarization data for un-
polarized electron beams on unpolarized atomic
targets. We can expect in the near future that the-
ories of electron-impact excitation will be required
to predict not only correct integrated and differ-
ential cross sections, but also correct angular dis-
tributions of electron spin polarization. It seems
likely that those theories which predict incorrect
spin polarization, or which yield no information of
this type, can be expected to be of decreasing im-

portance.

For the past several years many calculations
have been made for inelastic electron-atom scat-
tering cross sections using the Born!'2 and other
related plane-wave approximations.>~® These ap-
proximations give fairly good integrated cross sec-
tions, at high energy, for allowed transitions. The
shape of the small-angle differential cross sections
is reasonably good for allowed transitions provided
the momentum transfer is small and the incident
energy is sufficiently high.®!! However, the angu-
lar range over which the Born approximation gives
approximately correct results decreases with in-
creasing incident-electron energy. At a given in-
cident-electron energy, the breakdown at large
angles occurs rapidly once it has begun, so that an
error of many orders of magnitude is quite com-
mon. As for the plane-wave exchange approxima-
tions, there is no evidence that any of them give
even qualitatively correct angular distributions at
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any energy, for either allowed or forbidden transi-
tions. The failure of the plane-wave exchange ap-
proximations is seen most clearly for transitions
in which the direct excitation mode is forbidden,
such as the 115-2°P transition for helium,!?:!

An additional defect of the plane-wave theories
is that they predict zero spin polarization for the
electrons emitted following scattering of an un~
polarized electron beam on unpolarized target
atoms.

Although the distorted-wave (DW) approximation
was used by Massey and co-workers to treat the
electron-scattering problem as early as the 1930’s,
it has been only recently that a resurgence of in-
terest in this approximation has taken place. This
is due mainly to the appearance of modern comput-
ing machinery capable of properly carrying out the
DW approximation, and to the recent availability
of good angular distribution data which make the
failure of the plane-wave approximations obvious.
One reason for the relative lack of interest in the
DW approximation in the period 1940—-1960 was that
further approximations were necessary for compu-
tational convenience, and these approximations re-
sulted in integrated cross sections which exceeded
the experimental values by an even greater margin
than did the plane-wave results.

In the DW approximation, the incident electron is
taken to be elastically scattered by the initial-state
atomic potential. If the excitation of the atom is
through the direct process, the incident electron
makes a transition to a state in which it is being
elastically scattered by the final-state atomic po-
tential. If the excitation of the atom is through the
exchange process, the incident electron is captured
into a bound state of the atom, while one of the
initially bound electrons is ejected into an elastic-
scattering state. In each case, the transition be-
tween the initial and final elastic-scattering states
is calculated by a perturbationlike method. This
procedure is to be contrasted with the one followed
in the plane-wave approximations, which take the
initial and final free-electron states to be plane
waves and thus ignore the presence of the atom al-
together in this part of the calculation. (For furth-
er discussion of the plane-wave versus DW ap-
proximation, see the fifth and following paragraphs
of Sec. IV.)

Until very recently, little theoretical work had
been done to develop a complete DW theory treat-
ing the multiparticle aspects of the electron-atom
scattering problem., Some recent DW work was
done by Sawada et al.,* but the detailed atomic
structure was not considered. The most thorough
previous effort in this direction was made by the
present group for the excitation of rare-gas
atoms.!® A disadvantage of the latter work was that
the atomic wave functions were expressed in a j-§
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coupling scheme using fractional parentage coeffi-
cients that are not widely tabulated. There exists
a need for a general theory applicable to any atom
developed in a coupling scheme appropriate for the
atomic problem and in terms of coefficients readi-
ly available. In Sec. II such a theory is given for
transitions from an L-S coupled initial atomic state
to an arbitrarily coupled final state. The theory

is easily extendable to arbitrary coupling schemes
for the initial state, and to mixed configuration
wave functions. General expressions for the dif-
ferential cross section and spin polarization of the
emitted electron are given. Section III contains the
application of the theory to the excitation of helium
from its ground state to the 1s2p 1P1 excited state,
and the conclusions are in Sec. IV.

II. THEORY

The problem to be considered here is inelastic
electron-atom scattering. The Hamiltonian for
such a process is given by!®

H=H, +Tg+V,=Hy + To+ V, . (1)

The Hamiltonian for the initial state of the n-elec-
tron atom is H,,, with the prime indicating the
final state; T, is the kinetic energy operator for
the free electron whose coordinate is labeled 7y,
and V,(V,) is the potential influencing the free elec-
tron in the incident (exit) channel. Since only atom-
ic excitation will be considered, H,, and H,,. should
be equal, and V, and V, should be equal. This dis-
tinction is made to allow for the fact that it may be
desirable to choose these operators unequal when
performing a calculation using self-consistent po-
tentials.

If V$(0) is defined to be the spherical average of
the interaction of the free electron with the atomic
electrons in the exit channel (i.e., the negative
of the electrostatic potential of the spherically
averaged electronic charge distribution of the final
atomic state), the 7 matrix in the DW approxima-
tion with full allowance for exchange symmetries
is given by

. N2 s
Tya= (07 Oy 1+ )| 2 2 v,,(o)j

X‘pJAMA(l st n)d)a(”(o)) "’n<¢b(‘)(0)
> 2 V;(o)l

i=1 7io

XwJBMB(l ERE))

XUy 0,0+ n=1)00 () . (2)

The first term of (2) is the direct amplitude since
the outgoing electron is the same as the incoming
electron, and the second term is the exchange
amplitude since the outgoing electron was original-
ly in the atom. The properly antisymmetrized
initial (final) atomic wave function is s 4u, W sz ),
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the elastic-scattering wave function in the inci-
dent (exit) channel is ¢,(¢,), and 7,, is the distance
between the electron whose coordinate is ¥, and the
free electron. The superscripts + (=) indicate sat-
isfaction of the usual outgoing (incoming) wave
boundary conditions. The elastic-scattering wave
functions (DW’s) are calculated on the potential

Uy == 22/74+ V§4)(0)+ V5, (0) . @)

Here Z is the nuclear charge and V¥ allows for the
inclusion of relativistic (e.g., spin-orbit) and other
small terms. Although these terms are not of
significance for a light atom such as helium, we
allow for their presence so that the results will be
applicable to electron scattering on heavy atoms.

In order that a multiparticle expression such as
(2) be evaluated, some specific assumptions about
the form and orthogonality of the atomic wave func-
tions must be made. The assumptions made here
are the following.

(i) The atomic wave functions are suitable com-
binations of single-particle wave functions obtained
in the central field model. The initial and final
atomic states differ by one single-particle wave
function. The initial-state wave function is as-
sumed to bhe L-S coupled, and the final-state wave
function is assumed to be arbitrarily coupled.

(ii) The bound-state single-particle wave func-
tions are assumed to be mutually orthonormal. It
can be seen that imposition of this orthogonality
requirement alone results in several exchange

B;}nmbma(ﬁb , Ea) - Z} 4,n,Ilsj
Ladogmi

Ipdp

terms. However, if the requirement that the
bound -state single-particle wave functions be or-
thogonal to the free-state wave functions is imposed,
all the exchange terms except one vanish. This
orthogonality requirement was imposed to make
the calculation tractable.

Assuming the above orthogonality requirements
are satisfied, (2) reduces to

Tba":n((bb-)(o)l»bJ'BMB(l o) Z/Vnol‘l).rAMA(l ceem)
X $E(0)) = n{ S0V by iy (L - -+ 1)] 2/70)
XZ/)JAMA(O RN 1)¢;+)(n)> . (4)

By making a partial-wave expansion of the dis-
torted waves and exploiting the angular momentum
properties of the system, it can be shown that!?

Tba = Z) fc(JAjJB ’ MA; MB - MA; MB)B.lssnmbma (Eb > Ea) *
1sf
(5)
The summation is performed for all the possible
angular momenta transferred to the atom
i=dpg-d4.
This transferred angular momenta is composed
of a spin part (s) and an orbital part (I). The
symbol C(jyj,js; my, my, my) is a Clebsch—Gor-
dan coetficient,’® 7 = (27 +1)"2, &, (k,) is the initial
(final) wave number of the free electron, m, (m;)
is the spin projection of the free electron initially
(finally) with m =Mz ~ M ,+m, — m,, and

lbjblujail- 'a =12 187, C(lySy Jp 5 M1 = M, My s My + 1y = M)C(1, Sy Gy 5 My s My, My +10,)

X C(Jy Ja3 My +my = my M=~ My + Mg, My + M) X(1,S4 5o 5 BSy s 5 157) Y;"al* (eha¢ha) Yy m(ekbq)kb) .

Here X is a Fano coefficient,*® Y1(6¢) is a spheri-
cal harmonic, and s, (s,) is the initial (final) spin
of the free electron. The radial integral is

4n
1si -
Il:l blada P f Vn anJ'VOd'VOlejb(kb ’ 70)

XXlaja(ka’Tn)G%b 1, (7’0’ 7’7«) . (M

where x;,;,(k, 7) is the radial component of the par-
tial-wave expansion of the incident-channel DW.

sj -
Gubza(”o; Tn)=
apSpLp {y}

anl poy

73

(6)

[

The DW depends on j as well as [ since we are al-
lowing for relativistic effects (such as the spin-
orbit term). The relativistic effects are impor-
tant for heavy atoms. The angular-momentum
properties of the atomic matrix elements are con-
tained in the radial function G. The evaluation of
G depends upon the form and coupling scheme of
the atomic wave functions and involves lengthy
angular momentum algebra. Using the wave func-
tions assumed above, a straightforward, but tedi-
ous, calculation gives

2 L ittt G, EE LT napSpLe, &l Yo' L'S Y (apSp Ly, |} aLS)
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XR¢ [Og—~ L'S’] W(L'zL,,z,,;Lz,’,)( 15 W(L'1SJ, ; LJ)C (1,41 0, 0, 0)C(1,1,1; 0, 0, 0)
5(r, —7y) T . ‘. TR
XL (rg) —3,—2—0— 850 — 855" 1j W(Sps,S's; Ss,)X(LIL'; Ss8'; J 4jd5) 24 (=
n K

X WL, ; KIC(I 1K1, ; 0, 0,0)C(1,Kl, ; 0, 0, 0) g, (7, , VO)U,’.I(V,,)U,n(%'O)> . (8)

The first term in (8) results from the direct part Lry)= fsz,'.' ) g (r, ro)U,n(r)dr . (10)

of (4), and the second term rfesults from the ?x' This function is referred to as the form factor.

change part. The symbol W is a Racah coeffi- In terms of the T matrix, the differential cross

cient,” L and S are the total orbital and spin angu- section for unpolarized beams incident upon un-

lar n30mentum qua}ntum numbexl‘s .of the 1fut1al : polarized targets is given by

atomic wave function, and [, (I,) is the single-par- o 1 B .

ticle quantum number of the transition orbit in the yoRET ;”- 53252 L |12 (11)

incident (exit) channel. The symbol Ro[Og—~ L'S’] T My Mg

represents all the angular momentum coefficients Ma ™p

necessary to recouple the other coupling scheme Insertion of the form of T,,, (5), into the above

of the final atomic wave function into an L'-S’ ba- yields

sis, and the set {y} represents all the quantities o1k J2

that need to be summed over for the recoupling. 70" 162 k F2g 2 Zﬁi}""‘b"‘a 2 (12)
AS a jmmym, | 1s

The quantity (apSpLp, a,l,1}aLS) is a coefficient
of fractional parentage,?"?® with L,S, the total or-
bital and spin angular momentum of the parent and
a,, o,, and « any additional quantum numbers
necessary to describe the particular states com-
pletely. The sum over apSpLpa,l,a,l, is per-
formed for all parents common to the initial and

Note that there is no interference between the
terms representing different total angular momen-
tum transferred to the atom (j), while there is in-
terference between the different orbital and spin
(1, s) contributions to a given j value.

The spin polarization P of an emitted particle is

final atomic wave functions. The symbol U;, (U,;') defined to be the expectation value of its spin oper-
designates the atomic single-particle radial wave ator. It can be shown that if an inci_gent beam is
function in the incident (exit) channel, and the radi- unpolarized, only the component of P perpendicu-

lar to the plane &, xk, will be nonvanishing. If the
w1 z axis is chosen along k, and the y axis along k,
grlrn, ro)=[2/ @K+ 1] 7 /7 ©) xK,, B becomes a function of the angle 6 between
K, and k,, and the polarization of the emitted elec-

al multipole factor gy is defined by

where 7, (r,) is the smaller (larger) of 7, and 7;.

The radial function in the direct term of (8) is trons becomes?
J
-1
P, (6)= 2 [(sp = my) (5 +mp +1)]*/ 2 Im(BLT™o™a gL, 7 meimeimg) (g 3 @’"‘"‘bmaﬁéf}”’"b’”: ) (13)
M

The spin polarization results from the fact that g III. EXCITATION OF THE 2 ! P STATE OF HELIUM

is a complex number with a nonzero imaginary
part. This imaginary contribution arises from the The excitation of helium from the 1s21 S ground

imaginary part of the radial DW’s. Any free-state state to the 1s2p 2P, excited state by electron im-
wave function whose partial-wave radial component pact has been the object of considerable experi-
is real in our phase convention, such as a plane mental and theoretical investigation.®?2* In spite

wave, gives no spin polarization for the emitted of the considerable effort consumed in these
electrons for the case considered here (i.e., un- prior studies, agreement between theory and ex-

polarized electron beams incident on unpolarized periment is still poor in many regions. The pre-
target atoms). This means, for example, that the vious theoretical works have relied primarily on
Born approximation predicts zero spin polarization calculating direct excitation by means of the Born

for this case. approximation,! and exchange excitation through
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various Ochkur—Bonham-like relations.® A sam-
pling of the present status of agreement between
experiment and theory would be the following.

For differential scattering cross sections, Vriens
et al.?’ found departures from the Born approxima-
tion in the shape of their small-angle (5°<6<15°)
experimental cross sections for energies less than
200 eV. This observation was supported by the
work of Kim and Inokuti.?® The small-angle theo-
retical cross sections calculated from very ac-
curate generalized oscillator strengths are larger
than the recent absolute differential cross section
measurements of Chamberlain et al.*" over the en-
tire energy range. Truhlar ef al.® found qualita-
tive agreement between the shape of their experi-
mental differential cross sections and their Born-
Ochkur-like calculations in the range 10° < <40°
for energies between 34 and 81.6 eV. Their theo-
retical cross sections fall much faster than the
data for 6>40°. The absolute magnitude of their
theoretical cross sections was too large for small
‘angles and too small for large angles. Recently
Hidalgo and Geltman? compared the results of
their Coulomb-projected Born approximation with
the large-angle data of Opal and Beaty® at 82 and
200 eV and found improvement over the Born ap-
proximation at large angles.

Integrated Born cross sections obtained from
Kim and Inokuti’s®® generalized oscillator strengths
are much larger than the experimental integrated
cross sections of Jobe and St. John®® for incident
energies under 200 eV. The integrated cross
sections of the Coulomb-projected Born approxi-
mation were larger than those of the Born ap-
proximation in this energy range.

A. Wave Functions

One of the requirements imposed on the wave
functions in Sec. II was that all the bound- and
free-state single-particle wave functions be mutu-
ally orthogonal. In practice, it is difficult to ob-
tain accurate wave functions and still meet all the
orthogonality requirements. Ideally, one would
wish to obtain self-consistent Hartree—Fock wave
functions for the bound and free electrons in the in-
cident channel, and then perform a similar calcu-
lation for the exit channel, keeping these new self-
consistent wave functions orthogonal to the ones ob-
tained in the incident channel. The difficulties of
such a project can be appreciated by studying the
elastic-scattering work of La Bahn and Callaway.’!
The large amount of computer effort required for
the evaluation of the exchange integral dictated that
the formation of the DW’s represent a minor part
of the calculation. For this reason, the decision
was made to calculate the DW’s on spherically
averaged potentials obtained from available self-
consistent bound-state wave functions.

The question that arises immediately is whether
the accuracy of the bound-state wave functions is
more important to the calculation than orthogonal-
ity between the bound- and free-state wave func-
tions. The orthogonality requirement could be met
exactly by calculating all the bound- and free-state
wave functions on a single potential. Naturally
such a procedure would not yield accurate bound-
state wave functions. In the opposite extreme, one
could use the best available Hartree—Fock bound-
state wave functions for the incident and exit chan-
nels, and then calculate the DW’s on the respective
atomic potentials without regard to the orthogonal-
ity requirement. Another possibility is that the
most desirable state might lie intermediate be-
tween these two extremes. Since there was no «a
priori way of knowing the answers to these ques-
tions, various possibilities were examined. The
different methods used for obtaining the single-
configuration, L-S coupled wave functions were as
follows.

(a) Exact orthogonality and poorest bound-state
wave functions (HG): for this case the bound-state
and free-state wave functions for both channels
were calculated as eigenfunctions of a single atom-
ic potential. The potential used was that of the
ground state of helium obtained from the self-con-
sistent Hartree—~Fock-Slater program of Herman
and Skillman.3?

(b) Orthogonality within channels and good
bound-state wave functions (H): in this case the
bound-state and free-state wave functions for a giv-
en channel were calculated as eigenfunctions of the
atomic potential for that channel. The atomic po-
tentials for the respective channels were obtained
from the Herman and Skillman®? program.

(c) Orthogonality between channels and better
bound-state wave functions (FG): for this case the
ground and excited bound-state wave functions
were calculated in the frozen-core approximation
using Fischer’s® Hartree—-Fock program. In the
frozen-core approximation, the 1s wave function of
the excited state is chosen to be identical to the 1s
wave function of the ground state. The DW’s for
both channels were calculated as eigenfunctions of
the atomic potential obtained from the ground-state
wave function. (This makes the DW’s orthogonal.)
Figure 1 shows this atomic potential.

(d) Worst orthogonality for the free-state wave
functions but best bound-state wave functions (F):
for this case the bound-state wave functions were
calculated in their respective channels using Fi-
scher’s®® program. The distorted wave for each
channel was then calculated on the potential given
by the self-consistent wave functions for that chan-
nel. Orthogonality is not obtained between the
bound - and free-state wave functions within a chan-
nel since the bound-state wave functions are not
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FIG. 1. Negative of the atomic potential and the in-
elastic form factor for the excitation of the 2'P state of
helium obtained from the FG wave functions.

eigenfunctions of the spherically averaged self-
consistent Hartree—Fock potential.

B. Numerical Procedure

The calculation was performed on a CDC 6400
computer. The code was checked against plane-
wave calculations for scattering from hydrogen'l3*
and helium. Noumerov’s method®® was usedto solve
the radial equation in the evaluation of the DW’s,
The DW’s were formed on a mesh whose step size
(0. 001764,) was doubled after each block of 40
points until the number of points per lobe of the
wave function reached a minimum number, and be-
yond this point a constant step size was used. The
minimum usable number of points per lobe for the
wave function was found to be 13, but a larger num-
ber is desirable and was generally used. Simp-
son’s method®® was used to evaluate the radial
overlap integrals. Typical run time for an incident
energy of 29 eV was about 15 min, increasing up to
almost 2 h for an incident energy of 300 eV. The
time required for a given energy is not appre-
ciably affected by the number of scattering angles
calculated.

C. Direct Case

In the evaluation of the direct amplitude, the
DW’s are integrated against the form factor [see
Eqs. (7) and (8)]. The DW’s must therefore be
known out to a radius where the form factor ef-
fectively vanishes. The point where the form fac-
tor effectively vanishes also determines the num-
ber of partial waves required. This can be seen
from the following consideration. The radius at
which a partial wave first acquires an appreciable

value moves out from the origin with increasing
partial-wave order. The limit on the number of
partial waves that need to be considered is reached
when additional partial waves are effectively zero
over the range of finiteness of the form factor.
This limiting number increases with increasing
energy of the incident electron.

For a [ transfer of 1 unit, the form factor (10)
falls off like K/#? for large », where K is a con-
stant proportional to the electric dipole matrix
element taken between the initial and final bound-
state wave functions. The form factor obtained
from the bound-state wave functions FG of Sec.
IITA is shown in Fig. 1. The unfortunate fact that
the form factor falls off so slowly requires inte-
gration of each partial wave out to a large radius,
and also requires the evaluation of many partial
waves. For incident energies of 29-81 eV this
maximum radius was taken to be 288q,, but for
energies in the range 100-300 eV this value was
reduced to 1444, to provide enough points per lobe
for the more rapidly varying wave functions. The
errors involved in the calculation will be examined
in Sec. IITF.

The total number of partial waves required for
the evaluation of the direct amplitude was about 17
for an incident energy of 29.2 eV, and 200 for an
incident energy of 300 eV. However, it was not
necessary to numerically calculate the contribu-
tions from all the partial waves. Higher partial
waves that are effectively zero over the range of
the atomic potential (~40q,) approximate spherical
Bessel functions. At the large radii where these
partial waves begin to acquire a finite value, the
form factor will have already fallen to its asymp-
totic value of K/#%. Under these circumstances
we were able to obtain an analytic expression for
the direct part of (7). At 29.2 eV 13 partial waves
were calculated numerically, and at 300 eV 80 were
calculated numerically. Higher partial waves
were calculated analytically.

D. Exchange Case

The exchange case is free of the numerically
troublesome long-range interaction problem ap-
pearing in the direct case for allowed transitions.
However, an independent double integration must
be carried out for each contributing pair of partial
waves so that the exchange case is considerably
more time consuming for the computer. Since a
DW is integrated against a bound-state wave func-
tion for the exchange case, the radial integration
may be terminated at the radius where the bound-
state wave function effectively goes to zero. This
occurs at about 12¢, for the ground state and about
40q, for the excited state. The total number of
partial waves needed for evaluation of the exchange
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amplitude was 13 for an incident energy of 29.2 eV
and 42 for an incident energy of 300 eV.

E. Results
1. Differential Cross Section

Figures 2—5 compare the results of this calcula-
tion with the experimental and theoretical work of
Truhlar et al.® for incident energies of 34, 44,
55.5, and 81.63 eV. Each figure gives the direct,
exchange, and total differential cross sections
from this work and total differential cross sections
from Truhlar et al. The DW calculations are
labeled HG, H, FG, and F. The curve labeled HG
resulted from using the poorest wave functions, but
ones that ensured exact orthogonality; H resulted
from using good wave functions and orthogonality
within channels; FG resulted from using better
wave functions and orthogonality between channels;
and F resulted from using the best wave functions
and the poorest orthogonality. (For a more com-
plete description, see Sec. IIIA.) The experi-
mental points are “absolute” in the sense that they
were normalized to the integral cross sections of
Jobe and St. John.’® The solid curves are various
Born and Born-Ochkur -Bonham-like results cal-
culated using the Kim and Inokuti set of general-
ized oscillator strengths. The abbreviations are:
B, Born approximation; O and OP, Ochkur approx-
imation (prior and post forms); BOR and BORP,
Born-Ochkur—-Rudge approximation (prior and

DIRECT

TIaON. Es34eV

/sr)

10°2F=

2
(0]

do
da (a

40 80 120 160

FIG. 2. Theoretical and experimental differential
cross sections for electron-impact excitation of the 2 1P
state of helium at an incident energy of 34 eV. The
curves labeled H, HG, F, and FG are distorted-wave
calculations, and the curves labeled B, O, and BOR are
plane-wave calculations. The labels are described in the
text in Sec. III E 1. The experimental data (heavy dots)
is that of Truhlar et al.

—
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FIG, 3. Same as Fig. 2 except here the energy is 44 eV.

post forms); and BTKF, Born-transferred Kang—
Foland approximation. (For a more complete de-
scription of these approximations see Ref. 8.)

Examination of these four figures reveals that
the FG curve is superior for predicting the abso-
lute magnitude of the cross section for small
angles and gives the best over-all fit to the data.
The only notable exception to this rule occurs at
34 eV where F better predicts the shape of the
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FIG. 4. Same as Fig. 2 except here the energy
is 55.5 eV.
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FIG. 5. Same as Fig. 2 except here the energy
is 81.63 eV.

data. At 81.63 eV, FG is within the experimental
error at practically every experimental point. The
DW calculations represent a marked improvement
over the Born calculations for fitting the large-
angle experimental data, and with the exception of
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FIG. 6. Comparison of the distorted-wave calculation
FG with the experimental results (heavy dots) of Mazeau
for the excitation of the 2 1P state of helium at 29.2 eV.
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FIG. 7. Same as Fig. 6 except here the energy
is 39.2 eV.

H, give lower small-angle cross sections.
Mazeau®” has also taken low-energy data, but
over a larger angular range 10°<6<110°, In
Figs. 6-8, we compare his data with the DW cal-
culations FG for incident-electron energies of
29.2, 39.2, and 48.2 eV. Crooks and Rudd®® have
recently performed absolute measurements over an
even larger angular range, 10°<6<150°, at 50

/sr)

2
[}

do/da (a

¢} 40 80 120 160
O (deg)

FIG. 8. Comparison of the distorted-wave calculation
FG with the experimental results of Mazeau (dots) for the
excitation of the 2!P state of helium at 48.2 eV. Also
shown are the experimental results of Crooks and Rudd
(crosses) taken at 50 eV.
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and 100 eV. Their data for 50 eV are included with
the results for 48.2 eV in Fig. 8. It is seen that
the FG calculation fits the larger-angular-range
data as well as it fits the corresponding data of
Figs. 2-5 which extend over a more limited angu-
lar range.

Figures 9-14 compare experimental and theo-
retical differential cross sections for incident-
electron energies between 100 and 300 eV. The
experimental data extending to 150° at 100 eV are
those of Crooks and Rudd.3® The small-angle data
at each of these energies are that of Vriens et al.%®
normalized to the absolute measurements of Cham-
berlain et al.?" (The normalization for incident en-
ergies of 175 and 225 eV was obtained from Fig.
16.) The solid curve labeled B in these figures is
the Born approximation calculated using Kim and
Inokuti’s generalized oscillator strengths. The
remaining curves are DW calculations, with the
abbreviations as before. It is seen that the FG cal~
culation gives very good agreement with the 100-
eV data of Crooks and Rudd over the entire angu-
lar range, and also gives the best fit to the small-
angle data of Vriens et al. in the energy region
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FIG. 9. Theoretical and experimental differential
cross sections for electron-impact excitation of the 2 1P
state of helium at an incident energy of 100 eV. The
curves labeled H, HG, F, and FG are distorted-wave
calculations and B is the Born approximation. A descrip-
tion of the distorted-wave labels is contained in Sec. III.
E 1. The experimental data are that of Vriens et al.
(dots) and Crooks and Rudd (solid triangles). The dis-
torted-wave curves F and FG are identical to within plot-
ting accuracy in the direct and total cross sections for
0 <25°,
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FIG. 10. Theoretical and experimental differential
cross sections for electron-impact excitation of the 2 1P
state of helium at an incident energy of 150 eV. The
curves labeled H, HG, F, and FG are distorted-wave
calculations and B is the Born approximation. A descrip-
tion of the distorted-wave labels is contained in Sec. III
E 1. The experimental data are that of Vriens et al.

The distorted-wave curves F and FG are identical to with
in plotting accuracy in the direct and total cross sections
for 6<20°,
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FIG., 11. Same as Fig. 10 except here the energy is
175 eV. The distorted-wave curves F and FG are identi-
cal to within plotting accuracy in the direct and total
cross sections for 6<20° and in the exchange cross sec-
tion for 6 <45°,
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FIG. 12, Same as Fig. 10 except here the energy is
200 eV. The distorted-wave curves F and FG are identi-
cal to within plotting accuracy in the direct and total
cross sections for 6<20° and in the exchange cross sec-
tion for 6<45°,
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FIG. 13. Same as Fig. 10 except here the energy is
225 eV. The distorted-wave curves F and FG are identi-
cal to within plotting accuracy in the direct and total
cross sections for 8 <20° and in the exchange cross sec-
tion for 6<40°,
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FIG. 14. Same as Fig. 10 except here the energy is
300 eV. The distorted-wave curves F and FG are identi-
cal to within plotting accuracy in the direct and total
cross sections for 6 <20° and in the exchange cross sec-
tion for 6<40°.

from 100 to 300 eV.

Figure 15 compares the DW calculation FG
(solid line) and the Coulomb-projected Born-ap-
proximation calculation of Hidalgo and Geltman?®
(dashed line) with the experimental data of Vriens
et al.®® and Opal and Beaty?® at an incident energy
of 200 eV. The Coulomb-projected Born calcula-
tion is a high-energy approximation which neglects
the screening effect produced by the atomic elec-
trons, and also neglects exchange scattering which
we find affects the angular distribution by about
10% at this energy. It is seen that while the Cou-
lomb-projected Born calculation does give much
improvement over the plane-wave theories, the
DW calculation fits the data best at this energy.

Figure 16 gives experimental and theoretical
cross sections at 5° in the energy range 50-400
eV. The theoretical values are those of the Born
approximation and DW calculation FG. The ex-
perimental data are that of Chamberlain et al.%
Table I gives the percentage deviation of small-
angle theoretical cross sections from the experi-
mental values of Vriens ef al. in the energy range
100-300 eV. Figure 16 and Table I show the ex-
tent of the improvement of the DW calculations us-
ing the Fischer wave functions over the Born ap-
proximation in predicting the magnitude of small-
angle differential cross sections. Both the DW and
the Born calculations approach the experimental
data as the energy increases. However, the FG
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FIG. 15. Comparison of the distorted-wave calcula-
tion FG (solid line) and the Coulomb-projected Born cal-
culation (dashed line) to the experimental data of Vriens
et al. (solid square) and Opal and Beaty (solid circles)
at an incident-electron energy of 200 eV.

calculation for 5° has already come to within the
experimental error of 6% by 225 eV, while the
Born calculation has come to within only 11% of the
data at the higher energy of 400 eV. At 300 eV,
both the shape and magnitude of the FG calculation
are within experimental error.
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FIG. 16. Comparison of theoretical and experimental
differential cross sections at 5° for the excitation of the
21p state of helium, The experimental data (heavy points
with error bars) is that of Chamberlain ef al. FGis a
distorted-wave approximation calculation and B is a Born
approximation calculation using Kim and Inokuti’s general-
ized oscillator strengths.

Comparison of the four different DW calculations
presented here reveals that they all predict a simi-
lar type of angular dependence for a given energy.
The calculations using the Hartree—Fock wave
functions of Fischer® give small-angle cross sec-
tions whose magnitude is closer to the experimen-
tal data than the calculations using the poorer wave
functions of Herman and Skillman.? A very in-
teresting feature is that HG and FG have almost
identical shapes, and a corresponding similarity
exists between H and F. Since H and F satisfy
similar orthogonality conditions, as do HG and FG,
this observation suggests that the shape of the
cross section depends more strongly on the ortho-
gonality conditions than it does upon the accuracy

TABLE I. Comparison of theoretical and experimental differential cross sections for the excitation of the 'P; state of
helium at different impact energies.

% deviation

% deviation % deviation

E (eV) 0 (deg) Expt.? FGP from expt. Fe from expt. B from expt.

100 5 2.411 2.837 18 2.892 20 3.509 46
10 0,918 1.122 22 1.176 28 1.367 49

15 0.335 0.432 29 0.459 37 0.516 54

20 0.123 0,172 40 0.179 46 0.198 61

150 5 3.018 3.306 10 3.315 10 3.837 27
10 0.759 0.867 14 0.899 18 0.998 31

15 0,205 0.251 22 0.262 28 0.283 38

200 5 2.911 3.107 7 3.113 7 3.524 21
10 0.563 0.624 11 0.647 15 0,702 25

15 0.124 0.147 19 0.152 23 0.162 31

300 5 T 2.339 2,382 2 2.404 3 2,647 13
7.5 0.821 0.853 4 0.876 7 0,947 15

10 0.312 0.333 7 0.347 11 0.369 18

2Experimental values of Vriens et al. normalized to the absolute measurements of Chamberlain et al.
bpistorted-wave calculation using atomic wave functions of Fischer calculated in the frozen-core approximation.
®Distorted~wave calculation using atomic wave functions of Fischer calculated separately for each channel.
4Born approximation using the generalized oscillator strengths of Kim and Inokuti.
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of the wave functions. It is also to be noted that
the improvement of the orthogonality criterion be-
tween H and HG and between F and FG shifts the
magnitude of the small-angle differential cross
sections closer to the experimental data. The best
fit then is obtained for FG and not for the calcula-
tion with the best bound-state wave functions F.

Massey and Mohr calculated the differential
cross section for excitation of the 2P state of
helium using a DW method with and without ex-
change®® for incident energies of 33 and 50 eV.
They used the simplest Hylleraas wave function for
the ground state and the simplest Eckart-type wave
function for the excited state. Since their calcula-
tion was not normalized, only shapes of the angular
distributions can be compared. The shapes given
by the present calculations fit the data better. This
is not surprising when consideration is given to the
wave functions they used and to the numerical ap-
proximations they were forced to make owing to the
lack of modern computational machinery.

Table II examines the effect of the exchange
term on the differential cross section. The ex-
change term decreases the magnitude of the cross
section, and the values listed in the table give the
percentage of the decrease. The values were ob-
tained from the FG calculation. In general the ex-
change term has the largest effect for the lower
energies, and for a given energy it has the largest
effect for the larger angles. The increasing effect
of the exchange term as @ increases from 0° to
30° brings the theoretical results into closer
agreement with the data. Examination of the DW
results presented here reveals that the exchange
amplitude does not drastically alter the behavior
of the angular distributions, in contrast to some
Ochkur and Ochkur-like approximations. For in-
cident energies greater than 55.5 eV, the exchange
differential cross sections have a peak away from
0°. A similar behavior was obtained in previous
calculations of the exchange amplitude with Ochkur—
Bonham-like relations.®

TABLE II. Effectof the distorted-wave exchange ampli-
tude on the theoretical angular distributions for the ex-
citation of the 'P, state of helium at different impact
energies. The bound-state wave functions were calculated
with Fischer’s program using the frozen-core approxima-
tion.

E (eV) 0° 15° 30°  60° 90° 135°  180°

34 19% 25% 38% 54% 60% 63% 59%
55,5 7% 14% 28% 35% 39% 41%  39%
100 2% 9% 21% 19% 22% 23%  23%
150 1% 8% 1% 12% 14% 15% 16%
300 0% 7% 10% 6% 7% 8% 9%

SHELTON
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2. Integrated Cross Sections

Figure 17 compares various theoretical inte-
grated cross sections with the experimental results
of Jobe and St. John.3° The three plane-wave
curves calculated using Kim and Inokuti’s general-
ized oscillator strengths are taken from Ref. 8.
The DW curve F is not shown above 81.63 eV since
it would not be distinguishable from the FG curve.
On an expanded scale the F curve would lie above
FG in this energy range. The DW curve H (not
shown) gives integrated cross sections that are off
the scale in the intermediate energy range. All
the theoretical cross sections exceed the experi-
mental data in the intermediate energy range, but
the FG curve fits best. While the various plane-
wave calculations appear to be approaching the ex-
perimental data at higher energies, the DW calcu-
lations using the Fischer wave functions have al-
ready come to within experimental error at about
200 eV.

As was the case for the differential cross sec-
tions, the present DW integrated cross sections do
not agree with the earlier DW work of Massey and
Mohr.3® Their integrated cross section has a high
maximum near 55 eV, falls rapidly, and crosses
the experimental data near 100 eV. All of the
present DW calculations (except H) yield a smaller
maximum which occurs at a higher energy.

F. Errors

When performing a calculation such as this, a
careful monitor of the numerical errors must be
maintained. The errors contributing to uncertain-
ty in the direct amplitude are errors in the DW’s,
numerical integration errors, and tail error. Er-
rors in the DW’s arise from using a finite number
of points per lobe in the calculation of the waves,
and numerical integration errors arise from the
finite spacing of the integration points used in cal-
culating the overlap integrals. Tail error is the
label given to the contribution to the overlap inte-
grals that is missed because the outward integra-
tion is terminated before the form factor has
reached zero.

For the exchange case, only errors in the DW’g
and numerical integration errors contribute ap-
preciably to uncertainty in the amplitude. These
errors will give a larger uncertainty in the ex-
change amplitude than they gave in the direct amp-
litude since the exchange amplitude requires a
larger number of numerical manipulations. This
effect could be devastating to the calculation if the
exchange integral had to be evaluated over the
same number of integration points as the direct
integral. However, since the exchange integration
can be terminated when the bound-state wave func-
tion effectively vanishes, the number of integration
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FIG. 17. Comparison of theoretical and experimental
integrated cross sections for the excitation of the 21P
state of helium. The experimental cross-section curve
is that of Jobe and St. John; the plane-wave curves B,
BOR, and BTVPS are those of Truhlar et al., and the
distorted-wave curves HG, F, and FG are from the pres-
ent calculation.

points required for the exchange integral was only
200-400 (versus 1500 for the direct integral), and
good accuracy was maintained.

The wave-function error and numerical-integra-
tion error were kept at one to two orders of mag-
nitude smaller that the tail error in the direct
amplitude in order than the total uncertainty be
about the same in both the direct and exchange
amplitudes. To meet this requirement, it was
found that the DW’s should have a minimum of 13
points per lobe. Numerical-integration error was
generally a little smaller than the wave-function
error, but they were of comparable orders of mag-
nitude. It is worthwhile to note that the different
errors affect the direct overlap integrals in basi-
cally different manners. The wave-function and
integration errors tend to give a percentage error
that is independent of the angular momentum of
the partial wave. On the other hand, the tail error
is approximately a constant, and thus yields a per-
centage error which increases with increasing
angular momentum of the partial waves.

An error-predictor code was written for the
purpose of monitoring and controlling the numeri-
cal errors. The code was tested on a calculation
of the differential cross section for the excitation
of hydrogen from its ground state to the 2p state in
the Born—-Oppenheimer approximation. The results
were then compared with the analytic expressions
given by Corinaldesi and Trainor.*® The errors
predicted by the code agreed closely with the actual
error.

Table II gives the estimated errors in the FG
calculation for different impact energies using the
error estimation techniques. Since the differential

cross section is more sensitive to errors for
angles near 180°, the errors are relatively larger
for such angles (see Table ITI). The numerical er-
rors in the exchange amplitude had little effect on
the total cross section, and even less effect on the
integrated cross section.

IV. CONCLUSIONS

The DW calculations presented here give better
agreement with experiment than do previous theo-
retical calculations for both differential and inte-
grated cross sections in the entire energy range
considered, 29.2<E<300 eV. The fit to the ex-
perimental data given by the DW differential cross
sections improved with increasing energy, so that
the DW curve FG lies within experimental error
at practically every datum point by 81.63 eV. The
DW calculations gave small-angle cross sections
that were closer to absolute measurements than
those given by the Born approximation. But the
most dramatic improvement over the plane-wave
theories was obtained at large angles, where the
plane-wave theories failed by several orders of
magnitude. The high-energy Coulomb-projected
Born calculation of Hidalgo and Geltman gave bet-
ter large-angle results than the plane-wave theo-
ries. However, the DW result FG reported here
fits the data best at 200 eV, the highest energy for
which large-angle data are available.

While the DW integrated cross sections reported
here exceeded the experimental data in the inter-
mediate energy range, the FG calculation did fit
the data better than the best previous theoretical
calculation. The DW calculations made using the
Fischer wave functions gave integrated cross sec-
tions that came within experimental error beyond
200 eV.

Among the various DW results, the calculations
made using the better Hartree—Fock bound-state
wave functions of Fischer gave cross sections
whose magnitude was closer to experiment than
the calculations made using the less accurate
bound -state wave functions of Herman and Skill-
man. Improving the orthogonality requirements
for a particular set of bound-state wave functions
improved both the shape and magnitude of the dif-

TABLE III. Estimated numerical errors in the dis-
torted-wave differential cross sections for the excitation
of the P, state of helium at various impact energies.
The bound-state wave functions were calculated with
Fischer’s program using the frozen-core approximation.

E V) 0° 15° 30° 60° 90° 135°  180°
34 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.4%
55.5 0.0% 0.2% 0.1% 0.1% 0.0% 0.2% 1.7%

100 0.0% 0.3% 0.1% 0.3% 0.0% 0.7% 5.0%

150 0.0% 0.3% 0.1% 0.4% 0.1%  1.0% 6.6%

300 0.0% 0.3% 0.2% 0.4% 0.0% 0.6% 11.0%
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ferential cross sections. The shape of the differ-
ential cross sections seemed to depend more
strongly on the orthogonality requirements than on
the accuracy of the bound-state wave functions.
The best fit to the experimental data was obtained
using the better bound-state wave functions of
Fischer with their accuracy somewhat reduced in
favor of satisfying some of the orthogonality re-
quirements.

The effect of the exchange term on the DW re-
sults was greatest at the lower incident-electron
energies, and at a given energy it had the greatest
effect at the larger angles. The exchange term
lowered the magnitude of the DW results and so im-
proved the agreement with experiment, but it did
not greatly alter the behavior of the angular dis-
tributions. .

The failures and successes of the plane-wave
approximations can be easily understood within the
framework of the DW approximation. The plane-
wave approximations will give reasonable results
only when the distorted partial waves can be re-
placed by spherical Bessel functions over the radi-
al range where most of the contribution to the scat-
tering amplitude is obtained. This replacement is
never justified in the exchange case. In this case,
the bound-state wave functions are integrated
against free-state wave function [see Eq. (2)].
Thus the contribution to the exchange scattering
amplitude comes from the region where the bound-
state wave functions have an appreciable value.

In this region the atomic potential is also large,
and hence is precisely the region where distortion
is most important. Consequently, the various
plane-wave exchange approximations give angular
distributions which disagree with one another, and
which bear little or no resemblance to the experi-
mental data.

As for the direct-scattering amplitude, the
special case for which the Born approximation
gives good results, i.e., for allowed transitions
at high energies and small angles, is understood
as being just that case for which distortion is un-
important. To see this, one must consider the
radial overlap integrals of the DW approximation,
which determine the cross section. The direct-
scattering radial overlap integral of the DW ap-
proximation is obtained by first integrating the
product of the bound-state wave functions against
the radial multipole factor to yield the form factor
[see Eq. (10)] which is a function of the scattered
electron radial coordinate. The form factor is then
integrated against the product of the initial and
final distorted partial waves of the free electron.
The strength of the form factor at a given radius
thus controls the strength of the scattering for that
radius. For the case of a dipole-allowed transi-
tion, the form factor at large » is seen to be 1/72
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times the dipole matrix element between the initial
and final bound-state wave functions. This long-
ranged form factor remains large beyond the atom-
ic radius, so that the radial range in which distor-
tion is small contributes strongly to the scattering
and is the main contributor to the higher partial
waves. The small-angle scattering results pre-
dominately from the higher partial waves (semi-
classically, large impact parameters), and hence
is affected only minimally by the distortion. This
argument holds only at energies sufficiently high
that exchange and coupling effects are negligible.

At energies near threshold and somewhat above,
the DW approximation does not give the good quan-
titative agreement with experiment that it gives at
higher energies. At these lowest energies one is
forced to resort to the close-coupling, correlation,
or some other elaborate method. The upper limit
in energy of a few keV at which the DW approxima-
tion may be applied routinely is governed by the
limitations of present-day computers. At these
high energies the analytical Coulomb-projected
Born approximation is expected to give good re-
sults, but further comparisons with high-energy
angular distribution data are needed to establishthe
validity of this approximation. The region in which
the DW approximation is highly useful is the inter-
mediate energy range where there formerly ex-
isted no valid calculations of angular distributions.

The reader will note that we have not displayed
generalized oscillator strengths. It is well known
that the Born approximation gives generalized
oscillator strengths which depend only on the trans-
ferred momentum, and not on the energy. The
usefulness of the generalized oscillator-strength
concept depends on this latter property which in-
corporates the scattering at all energies into a
single generalized oscillator-strength curve.
Therefore, this concept is useful only for the lim-
ited special cases in which the Born approximation
gives good results. Accordingly, we have re-
frained from extracting “apparent generalized os-
cillator strengths” from our DW differential cross
sections. Generalized oscillator strengths ex-
tracted in this way either from our DW theoretical
results or from experiment depend on the energy
as well as the momentum transfer. It thus seems
more sensible to display the differential cross sec-
tions directly, rather than to display a derived in-
direct quantity to which no particular advantage is
attached.

It might appear that it would have been desirable
to have performed a calculation using highly ac-
curate correlated bound-state wave functions.
However, the results of this paper show that it is
useless to employ highly accurate bound-state wave
functions in a first-order or modified-first-order
scattering calculation, except for the special case
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in which the scattering part of the calculation may
be done crudely, i.e., for high energies and small
angles. In consideration of this latter case, we
point out that a DW calculation using correlated
wave functions is beyond our present computational
resources.

A brief report?! on this work was given at the
Seventh International Conference on the Physics of
Electronic and Atomic Collisions.

It was not feasible to include. in tabular form all
the DW numerical results presented in the present
work. Complete tables for the FG calculation may
be obtained from one of the authors (W.N.S. ).

The reader may find of interest some recent
work on the excitation of the 2P state of helium

calculated in the eikonal approximation by Byron.*?
Unfortunately, the numerical errors in his calcula-
tion preclude a meaningful comparison with the
present calculation. (See Fig. 1 of his work.)

ACKNOWLEDGMENTS

The authors give thanks to J. Mazeau for making
his unpublished angular distribution data available,
to C. B. Opal and E. C. Beaty for sending their
unpublished large-angle data, to M. B. Hidalgo and
S. Geltman for sending the results of the Coulomb-
projected Born calculations prior to publication,
and to G. B. Crooks and M. E. Rudd for sending
their unpublished data.

*Work supported in part by the National Science Founda-
tion under Grant No. GJ365.

M. Born, Z. Physik 38, 803 (1926).

’H. Bethe, Ann. Physik 5, 325 (1930).

3J. R. Oppenheimer, Phys. Rev. 32, 361 (1928).

‘R. H. Bonham, J. Chem. Phys. 36, 3260 (1962).

SH, M. Mittleman, Phys. Rev. 126, 373 (1962); Phys.
Rev. Letters 9, 495 (1962).

y. I Ochkur, Zh. Eksperim, i Teor. Fiz. 45, 734
(1963) [Sov. Phys. JETP 18, 503 (1964)].

™. R. H. Rudge, Proc. Phys. Soc. (London) 85,
607 (1965); 86, 763 (1965).

8D. O. Truhlar, J. K. Rice, A. Kuppermann, S.
Trajmar, and D. C. Cartwright, Phys. Rev. A1, 778
(1970).

9. Vainshtein, V. Opykhtin, and L. Presnyakov,
Zh. Eksperim. i Teor. Fiz. 47, 2306 (1964) [Sov. Phys.
JETP 18, 1383 (1964)].

100, Bely, Nuovo Cimento 49, 66 (1967).

Uy, N. Shelton, E. S. Leherissey, and D. H. Madison,
Phys. Rev. A 3, 242 (1971).

25 . Steelhammer and S. Lipsky, J. Chem. Phys.
53, 4112 (1970).

185, Trajmar, J. K. Rice, and A. Kuppermann, Advan.
Chem. Phys. 18, 15 (1970).

47, Sawada, J. E. Purcell, and A, E. S. Green,
Phys. Rev. A 4, 193 (1971).

15w, N. Shelton and E. S. Leherissey, J. Chem. Phys.
54, 1130 (1971); a more detailed treatment of the theory
is found in D. H. Madison and W. N, Shelton, Electron
Physics Technical Report No. 9 (Department of Physics,
Florida State University, Tallahassee, 1971) (unpublished).

16a11 equations are given in atomic units; in particular
the unit of length is a;=0.529 A and the unit of energy
is Ry=13.605 eV.

"G, R. Satchler, Nucl. Phys. 55, 1 (1964).

8M, E. Rose, Elementary Theory of Angulay Momen~
tum (Wiley, New York, 1967), Chap. 3.

p, M. Brink and G. R. Satchler, Angular Momen-
tum (Oxford U. P., London, England, 1968), Chap. 3,
p. 45.

20Reference 19, Chap. 3, p. 40.

21Reference 19, Chap. 5, p. 83.

227, de-Shalit and I. Talmi, Nuclear Shell Theory
(Academic, New York, 1963), Chap. 31.

8L, J. Keiffer, Bibliography of Low Enevgy Electron
Collision Cross Section Data, Natl. Bur. Std. (U, S.)
Misc. Publ. No. 298 (U.S. GPO, Washington, D. C., 1967).

24B, L. Moiseiwitsch and S. J. Smith, Rev. Mod.
Phys. 40, 238 (1968).

257, Vriens, J. A. Simpson, and S. R. Mielczarek,
Phys. Rev. 165, 7 (1968).

26y, K. Kim and M. Inokuti, Phys. Rev. 175, 176
(1968).

2'G, E. Chamberlain, S. R, Mielczarek, and C. E.
Kuyatt, Phys. Rev. A 2, 1906 (1970).

%M, B. Hidalgo and S. Geltman, J. Phys. B 5, 617
(1972).

%C, B. Opal and E. C. Beaty, J. Phys. B 5, 627
(1972). .

83, D. Jobe and R. M. St. John, Phys. Rev. 164,
117 (1967).

3R, W. La Bahn and I. Callaway, Phys. Rev. 180,
91 (1969).

32§, Herman and S. Skillman, Atomic Structure Cal-
culations (Prentice-Hall, Englewood Cliffs, N. J., 1963).

8C, Froese Fischer, Computer Phys. Commun, 1, 151
(1969).

34w, N. Shelton, K. L. Baluja, and C. E, Watson,

J. Phys, B4, 71 (1971).

83, M. Blatt, J. Computational Phys. 1, 382 (1967).

%R, W. Southworth and S. L. Deleeuw, Digital Com~
putation and Numerical Methods (McGraw-Hill, New
York, 1965), p. 372.

373, Mazeau (private communication).

3G, B. Crooks and M. E, Rudd, Bull. Am. Phys,
Soc. 17, 131 (1972); and private communication,

3%H, S. W. Massey and C. B. O. Mohr, Proc. Roy.
Soc. (London) A139, 187 (1933); see also S. Khashba
and H. S. W. Massey, Proc. Phys. Soc. (London) 71,
548 (1958).

4E, Corinaldesi and L. Trainor, Nuovo Cimento 9,
940 (1952).

4p, H., Madison and W. N, Shelton, in Proceedings
of the Seventh Intevnational Conference on the Physics
of Electronic and Atomic Collisions, edited by L, M.
Branscomb, R. Geballe, F. J, deHeer, N, V., Fedorenko,
J. Kistemaker, M. Barat, E. E, Nikitin, and A, C. H,
Smith (North-Holland, Amsterdam, 1971), pp. 768-770.

42F, W, Byron, Jr., Phys. Rev. A 4, 1907 (1971),



