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The single-particle model for atoms and ions is used to calculate the transition probabili-
ties to bound and continuum electronic states. The projection operators in the semiclassical
approximation derived previously are applied to treat the large numbers of final states in-
volved. Ionization cross sections of atoms and ions by high-. energy-electron impact are then

estimated. The ionization cross sections result both from direct transition to the continuum

and from inelastic scattering followed by Auger emission.

I. INTRODUCTION

Electron impact provides a possible mechanism
for production of highly ionized beams to be used

for injection into heavy-ion accelerators. With
most of the Periodic Table and as many as twenty
to thirty steps of ionization considered of interest,
it is evident that several thousand ionization cross
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sections may be required to estimate ionization
rates. It is also evident that great accuracy is not
feasible in the calculation of so many cross sec-
tions. The purpose of this paper is to obtain a
reasonable estimate in parametrized form for the
many required cross sections.

W'e shall assume the bombarding electrons to
have energies large compared with the relevant
electronic ionization potentials. Two mechanisms
for ionization will be considered: (a) direct transi-
tions to continuum states; (b) excitations of inner-
shell electrons to excited states followed by Auger
emission. Several studies of the fluorescence
yield~ ~ indicate that process (b) is no less impor-
tant than (a) for producing ionization.

To obtain a quantitative estimate of the contribu-
tion from the processes (a) and (b), it is desirable
first to evaluate the transition probabilities of both
inner- and outer-shell electrons to various allowed
excited states, including the continuum. For the
target atoms and ions, we choose a simple single-
particle model. Based on the extensive studies
carried out earlier using the Hartree-Fock' and
Fermi-Thomas models, Green et al. have de-
rived an even simpler model for complex atoms,
with analytic potentials of the Coulombic plus
Wood-Saxon type. Although rather crude in the
prediction of term values, this model is probably
sufficient for our present purpose. The form of
the potential we have adopted contains essentially
one adjustable parameter d for each core charge
Zc ~

The transition probabilities to a group of excited
states and the continuum may be conveniently eval-
uated using the projection operators derived earli-
er in the semiclassical approximation. Since the
model potential we have chosen is local and in a
single-particle form, very little modification is
necessary; we have used the simple form A~0 in
the notation of Ref. 7.

In Sec. II we define the model potential for the
target ions. Since we present the result of our cal-
culations at only several typical values of Z~ and
the degree Zr of ionization, the intermediate steps
involved in the energy eigenvalue calculations and
scaling should be helpful in obtaining results at
other values of Z~ and Zz. We give a brief discus-
sion of this in Appendix A. The transition proba-
bilities with dipole coupling are defined in terms of
the semiclassical projection operators, and the
complete set of transitions allowed by the selection
rules and exclusion principle is studied.

The result of Sec. II is then used in Sec. III to
estimate the ionization cross sections of ions and
atoms by high-energy-electron impact. Contribu-
tions from the different competing processes men-
tioned above are evaluated. With the various sim-
plifying approximations which are expected to be

valid for high-energy collisions, the transition
probabilities evaluated in Sec. II can be directly
related to the ionization cross sections.

II. SINGLE-PARTICLE MODEL AND TRANSITION
PROBABILITIES

a'= a (Ze —Z, —1)"d,
with

v=0. 4, a. = l. 00, m=5=@ =1

for all Z& and ZI. Thus, the only parameter which
is varied as a function of Z~ is d, which is as-
signed the values8 given in Table 1. (We take
Green's values. )

The result of the calculation of the single-par-
ticle energies E„,is summarized in Tables II-lV for
the values Z&= 10, 20, . . . , 80. For each Zc, all
values of ZI which correspond to the filled sub-
shells are considered.

As V(y) of (2. 1) is Coulombic for large values of

x, we expect to have an infinite number of bound
states near each ionization threshold. Therefore,
the excitation probabilities to these discrete and
also to continuum states may be evaluated most
conveniently using projection operators. We have
shown~ previously that the projection onto all the
bound states generated by the potential V(x) may
be given in a semiclassical approximation by

TABLE I. The parameter d (in atomic units) in the
single-particle potential as given in Hef. 6. The same
values are used for all ZI at each Z&.

10
20
30
40
50
60
70
80

0.500
1.154
0.612
0.866
0.841
0.938
0.654
0. 671

For simplicity, we adopt the single-particle po-
tential for atoms and ions obtained by Green et al. ,
which was derived by fitting the Hartree —Fock (HF)
and Hartree-Fock-Slater (HFS) solutions. Its
form is

(2. 1)

where Z& is the bare-core nuclear charge of an
atom or ion, ZI is the degree of ionization of the
target before the collision (Z, =O for a neutral
atom), and

(2. 2)
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3s2p 3d 4s 4p

10 8 98.02
6 91.45
0 64. 20

20 18 398.0
16 391.4
10 362. 0

8 350.4
2 311.4

30 28 898.0
26 891.0
20 859.8
18 847. 2
12 804. 9

2 723. 1

18.50
3.38

92. 84
72. 25
64. 64
40. 79

216.6
191.7
182.3
151.8
96.9

1.88

70.70
62. 51
36.80

190.7
180.7
148.4
89.7

20. 88
7. 70 6.58

68. 10
48. 15 46. 59
15.65 13.38 7.60

40 38 1598
36 1591
30 1559
28 1547
22 1503
12 1419
10 1401

4 1343

391.3
365.2

355, 1
322. 1
261.1
248. 2

208. 7

364. 6
354.0
31S.2
2i&4

240. 8
198.6

142.8
119.5
79. 0
70, 8
46. 5

.17.2
76. 0 70. ()

67. 6 60.0 25. 7
42. 7 33.4 11.6 10.7

A~'(r, r') = (I/m. r') sinPu,
where

P(v) = [-2 V(r) —L„'/v']"'

(2. 3)

(2. 4)

TABLE II. The energy eigenvalues calculated vrith

the single-particle model potential of Hef. 6, for the core
charges Zt.- =10, 20, 30, and 40. The values of Z& are
chosen for all closed subshells. The energies E«are
given in rydbergs.

Zg Zl 1s 2s 3p

TABLE III. Same as Table II, for Zc =50 and 60.

Z~ Z q 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f

50 48 2498
46 2491
40 245S
38 2446
32 2402
22 2315
20 2296
14 2237

4 2130

616
588 588
578 577 239
542 540 213
476 480 166
462 456 157
419 410 128
343 329 79

212
164 156
150 146
124 113

73 60

68
49 48
19 18 13

60 58 3598
56 3591 890
50 3559 862 862
48 3545 851 851 359
42 3501 814 813 331 330
32 3413 745 740 280 277
30 3393 730 724 269 266
24 3333 683 676 237 233
14 3224 602 590 181 175

6 3131 534 518 136 129
0 3057 481 462 102 95

270
258 126
222 104 102
161 67 65 58
111 39 37 29 19

74 19 18 10

A,"~(r, r ') = (1/err ') (sinP, u —sinP, u),
where

(2. 6)

In (2. 5), I, = I +1 are the angular momenta of the
excited states reached by the dipole coupling from
the initial state with the angular momentum /.

For a more general case in which the projection
onto states which lie between E, and E„ is desired,
we have

u=r r', -v=-,'(r+r'), L,'=(I, +-,')'.
(2. 5)

P, (v) = [2E, —2 V(v) —L, v ]

P, (v) = [2E& —2V(v) —L, v ]

TABLE IV. Same as Table II, for Z~ =70 and 80.

70 68
66
60
58
52
42
40
34
24
10

2

4898
4891
4858
4845
4799
4710
4690
4629
4518
4347
4242

2g

1215
1185
1174
1135
1061
1046

997
910
780
703

1186
1174
1134
1058
1041

990
899
763
681

3s

500
470
413
401
365
303
214
162

469
411 404
399 391
362 352
298 283
206 184
153 127

195
169
126

67
35

168
124

64
33

116
54
22

4f

40
8.7

5s

5.8

5p 5d

80 78
76
70
68
62
52
50
44
34
20
12

2

6398
6391
6358
6344
6299
6209
6189
6127
6014
5841
5735
5597

1589
1559
1547
1508
1432
1416
1365
1275
1140
1059

954

1561
1549
1508
1429
1412
1360
1266
1124
1039

929

665
633
574
561
523
456
359
302
231

633
572 566
559 552 281
520 510 253
451 436 205
351 329 138
293 267 100
220 189 54

252
203
135

97
51

194
123

84
38

107
66
19

37
10.1 10;0
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E &E~&0.

Note that, in the rescaled units of Appendix A,

E, V(v) L,
Pa(v) =

4 (E )1/2
—=P

with

g=-,'(s+s'), s-=2(E„,)'i'~ (E„,&0) .

(2. 7)

In particular, we choose in the following E, = ED,
E, =O, which gives A,"~-A&' for the projections onto
states which lie between ED and the ionization
threshold.

For dipole coupling, the integrals of interest
here are then given by

M„""=(ni
t
s'~ I&,

Ms"=(nl/ s ~ Aa+s /nZ&, (2. 9)

(2. 10)

M &D=(nl~s ~ A]f:s ~nl& . (2. 11)

TABLE V. The transition probabilities and overlap
integrals for Z&=20, and in the dipole approximation.
All values are given in atomic units. Z& denotes the de-
gree of ionization.

Zr nl l M~ M@ Mg ML)

18 10 1 0.922 0.008 0.006 0.002 0.006

16 10
20

10 10
20
21
21

1 0.920
1 0.960

1 0.914
1 0.952
0 0.960
2 0.960

0.008
0.107

0.008
0.116
0.085
0.085

0.006
0.104

0.005
0.112
0.085
0.070

0.002
0.003

0.002
0.005
0.000
0, 015

0.006
0.104

0.001
0.095
0.044
0.070

8 10
20
21
21
30

1 0.912 0.008
1 0.949 0.121
0 0.958 0.089
2 0.958 0.089
1 0.962 0.731

0.005
0, 115
0.089
0.071
0.720

0.002
0.006
0.000
0.018
0.010

0.001
0.098
0.002
0.071
0.719

2 10
20
21
21
30
31
31

1 0.902
1 0.929
0 0.943
2 0.943
1 0.936
0 0. 955
2 0.955

0.008
0.142
0.110
0.110
l. 164
1.149
1.149

0.005
0.130
0.110
0.068
1.114
1.151
1.024

0.003
0.012
0.000
0.042
0.050
0.002
0.126

0.000
0.008
0.002
0.068
0.765
0.724
1.024

The values for ED are chosen such that the tran-
sitions are only to the unoccupied levels of given
l, = $+1, in accordance with the exclusion principle.
Therefore, MD corresponds to the correct transi-
tion probability to all the unoccupied bound states
of the ion with Z~ and ZI, while M~ includes tran-
sitions to all bound levels, some of which are for-
bidden by the exclusion principle. Throughout the
calculation, we have taken ED to be the E„,, cor-

responding to the last-filled-subshell energies.
Table V contains a sample for Z& = 20.

The accuracy of the projection operators A~ and

A~ is partly reflected in the integral

S„,=(nI~A,'~ I&, (2. 12)

which should be unity if A~ were exact and the state
I nl& is contained in As . This value is also given in
Table V. We refer the readers to Ref. 7 where the
accuracy of A~ was studied in detail for several
cases where exact results are available for com-
parison. Except when M~ or M~ are very small
compared with M„, we expect our result to be fair-
ly reliable.

Relativistic corrections are expected to be sig-
nificant for K-shell electrons when Zc~ 50. Be-
cause these inner electrons contribute little to the
ionization processes when Zc &40 [see Fig. 2], we
have ignored relativistic corrections to the atomic
structure. The projectile electrons will be treated
relativistically, however, in our final results.

Finally, it is of interest to compare the transi-
tion probabilities to the continuum calculated here
with those for an hydrogenic atom given in Ref. 8.
For this purpose, we write

((1+1)Mc'+IMc' & E„( (2. 13)

8 is the scattering angle, and

V, = /e/ , -rr/ . (3.4)

We take Z to be the number of electrons in the

where the factor 3 is the average of the orientation
of the dipole operators in (2. 8)-(2. 10). Table VI
contains the result for Z& = 10 and Z~ = 60, with
ZI=0. Figure 1 also contains the result for Z~=30.

III. TOTAL IONIZATION CROSS SECTIONS

We consider the collision of a fast electron of
momentum ko (energy co= ko/2m large compared
with single-orbital ionization energies) with an ion
characterized by the charge parameters (Zc, Z&).
The collision leads to a single-orbital transition
n- P, where n=n, I, etc. The final momentum of
the impacting electron is k~, where

/ks2meo —b, ~, A g=E~ —E, . (3. 1)

Neglecting exchange terms involving the impact-
ing electron, we may write the differential cross
section in the form given by Mott and Massey

2

x d yd ~op~(r) V, Q (r)e"'o, (3.2)
I

where the P's are single-electron orbital states,

q=ko —kg= qn, (3.3)
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shell n= (n, t).
For high-energy impacts, we may use the dipole

approximation

1.0

32+

f d y() e' 'o y, = (4 p'e /q ) e' ' 31+ 30+

= (4p'e /q ) (1+iqr ~ n)

Thus,

I, (p8) = 8p (kplk o q ) Z„M p

where

M, = f d'~y*, (r)y (r)r n1'/app.

Now,

&o kssingdg = qdq=k'o sing dg,

so we may introduce

d, p(q) dq = 2m I p(8) k kp sin8 d8/q,

(s. 5)

(s. 5)

(3.7)

(3.8)

(s. 9)

0.1—

0.01—

31-

Zc=&o

20+

~ 21-

-«21+

or the total cross section

o,(k, ) = f™~Z„(q) dq
min

= (4 pZ /k,') M, in(4e /&, ) . (s. 10)
0.001

0
1

IO

Zz

~30

20

—10+

20+

30

Here, we have used high-energy nonrelativistic
kinematics to determine the limits on q as

qm„= m h, p/k~, q = (2mEo)'~ (3. 11)

We consider first the direct ionization to continu-
um states. When the expression (3. 9) for o, p is
summed over all available final states, we have

c c

FIG. 1. Transition probabilities ML) to all the allowed
bound states and Mc to all the continuum, at Zc =30. The
numbers next to each curve are nl+ or nl —. The solid
lines are the MD values, while the dotted lines are for

C.

and 6 is the average eXcitation energy defined by
(3. 12). Since both M "J+ and M c'- are involved in
our case, we replace M c in (S. 12) by its average

where

4pz„1(4&
y8 gC) Ct (3. 12)

M c' —=
)

[(1+1)Mc'+lMc' j=—Mc (S. 14)

c
M;=Z M'.„~=(n, f),

8
(S. 13)

and set

Z, = Z„, = 2(2l + 1) (S. 15)

TABLE VI. Comparison of the transition probabilities
t;o the continuum as calculated here and those given in
Ref. 8. c„, is defined by {2.13).,

for each closed subshell. Thus, combining (3. 12)-
(S. 15), we finally have (NR denotes nonrelativistic)

'.(k„)=,';, 11; M, (NR), (.15)
kp Qp)

ZC

10

60

Zg

10
20
21

10
20
21
30
31
32
40
41
42

Col

0.28
0.21
0.13

0.28
0.21
0.13
0.17
0.14
0.07
0. 15
0.13
0.09

Cnl

0.36
0.30
0.20

0.30
0.14
0.32
0.14
0.20
0.27
0.18
0.22
0.54

and thus

0' (Zc i ZI qE) =Xi~ v~ . (3. 17)

As discussed earlier, the ionization of the target
ions is also possible through the excitation of an in-
ner-shell electron followed by an Auger transition.
This is then related to the transition matrix ele-
ments M ~'+ to all the allowed bound-state levels
and also to the fluorescence yield. If we denote

by W, the probability that an Auger transition will
follow excitation from the orbital state n, the cross
section for ionization following collisional excita-
tion is
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o (k )=aao „a ln a Mo W, (NR),p 4Z 4c
u~ ao S

(3. 18)
which follows from the argument similar to that
was used to obtain (3. 16), and thus

o' (Zo ~ ZI ~ E)= Za (7~ . (3. 19)

In (3. 18), the W are given by the fluorescence
yield Y as 5' =1 —Y, and the actual values used
in our calculation are given in Fig. 2, with W = 1
for g~ 3; h~ is the average excitation energy of the
nth subshell, and

Mo=3(21 )
[(&+1)Mo'+&Mo-]. (3. 20)

~e=~e =Er ~

C B (3. 22)

where EI is the ionization potential for the electron
in the highest-filled subshell. Since the cross sec-
tions depend on 6 only logarithmically, the choice
(3. 22) is not expected to affect the result drastical-
ly. An improved treatment of the ln factor is pos-
sible, however, and this is outlined in Appendix 8,
where a procedure to estimate the average excita-
tion energy is presented.

When the incident electron is relativistic, we
have to modify (3. 16) and (3. 18) slightly asa

In(4e /4, )- in(4e, y/4, ) —p' (3. 23)

The total ionization cross section is finally given by

(Zo, Z, E)=Z (o +o") (3. 21)

for each set of parameters Zg, Zg, and E.
In actual calculation, we simply used

aa- p/na,

where

(3. 24)

n =e /bc=i —, y= (1 —P ) ~, P= v/c .

Thus, we have explicitly, at high energies with
relativistic electron beams and with E = ymc (ER
denotes extreme relativistic),

4no t'2P E l
n, =ciao a lnI o I

—P ZMc
p &~a 3

(ER),

(3. 25)

n, = mao a ln a —P Z„MD W, (ER) .a 4no ' 2P'E a —I

(3. 26)
In Table VII, both NR forms (3. 16), (3. 18), and

the ER forms (3.25), (3. 26) of cross sections are
used to calculate the total ionizations. The result
at &o=1 and at 10 keV seems to agree reasonably
well with the earlier calculations and also with the
experimental value. We note that the contribution
of o" is not negligible.

Individual values of o and g" for various Z~ and
Z-=Z~ —Z, are presented in Fig. 3. For given Z,
o seems to dominate at small Z&, but this trend
is reversed for large Zz, with o." dominating at
high Z&. The total ionization cross section o is
given in Fig. 4 for an electron energy of 20 MeV.
The cross section at other energies may be scaled
from Fig. 4 and Eqs. (3. 10), (3. 18), (3.25), and
(3. 26).

IV. DISCUSSION

Wn

I.O

The ionization cross sections that we have ob-
tained in Sec. III are based on a rather crude model
for the electron orbital states. The comparisons in
Tables VI and VII with the corresponding exact cal-
culations given in Ref. 8 (for hydrogen, however,
so that direct comparison is not possible) and with
some experimental cross sections provide an indi-
cation of the accuracy of our cross sections. We
have made several of the "standard" high-energy
approximations and these of course limit the energy
range over which our expressions can be used.

The previous estimates of o do not include the
contribution of cr", which requires both MD and 8' .
Since 0" seems to dominate the ionization cross
sections at high Z~, any agreement previously. ex-
isting between the theoretical calculations and ex-
periments could be fortuitous.
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APPENDIX A

The calculation of the eigenvalues and eigenfunc-
tions with the local potential V(v) given in Sec. II
is well known, but we briefly describe the proce-
dure used in our calculation so that results at other
values of Zc and Z& than those presented here could
be readily reproduced.

The single-particle energies and wave functions
are calculated in the usual way by solving the ra-
dial equation

CU 00

10

10

10

g+ s +RV(x)+E„)R (r)= „,0(
d l(l+ I) (Al) 10

10 20 30 40 50 60 70 80
Zc

where E„, is given in Rydberg units. Since a large
variation in Zc and E„, is involved, we rescale the
variable x such that (Al) becomes

(
d ' 2 V(s) l (l+ —,')' ——,

' i .

2+ ~ il/a + + 2 I +nt(s)

(A2)

FIG. 4. Total ionization cross sections for 20-MeV
electrons as functions of Zc and Z=Zc -Zz. All values
are given in mao units.

with

NO0

10
crc prId crA

(Z = Zc-Zg)

IO

10

IO

IO

I

'
I

'
I

Z=60

s=2(E„,)"'~ (Z„, &O),

V(s)= V(~-s, d-d'=2(Z„, )'/'d) .
The solutions obtained by integrating (A2) in from
the large values of s and out from s = 0 are matched
at s=sp sp 20h with A=0. 2 in the above unit.

The starting values for the integrations are cal-
culated as follows.

a. S=0 region. Using the expansion of the regu-
lar 'Qr"hjttaker function, iP

TABLE VII. The ionization cross sections oo, c,
and cr in units of mao, where ao= Bohr radius. cr corre-
sponds to total excitation cross section to all the bound
states, where the effect of the exclusion principle is
neglected. The experimental values are summarized in

Ref. 3' Zc =10 Zr=0 Z=Zc ZI=10

10 20 30 40 50 60 70 80
ZC

FIG. 3. Estimated ionization cross sections o and
cr corresponding to the direct excitations to the con-
tinuum and the excitations to bound states followed by the
Auger emissions, respectively. Z=Zc -Z&, where Zc
is the core charge and ZI is the degree of ionization of
the target before the collision. All values are given in

nao units and the electron energy is 20 MeV. The solid
lines are the values for o", while the dotted lines are
foro .

co=1 keV:

so=10 keV:

E=20 MeV:

c =0.363
cr =0.396
o =0.087
o =0.483

a =0.053
oc =0.058
cr =0.013
cr =0.071

cr = 0.0049
o' =0.0083
o =0.0019
cr =0.0102

Expt. cr =0.35 0.43

Expt. cr -0.07
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where

1

1 I ~2m+ 1

(-,'+m —k)(-', +m-k),
(A2)2!(2m+1)(2m+2)

APPENDIX 8

The average excitation energies h~ and 6 in-
troduced in Sec. III may be estimated more accu-
rately if we write, by definition,

k = Zc/(E„, )"',
That is, the dominant part of V(x) near x= 0 is tak-
en to be purely Coulombic with the charge Zc. The
correction to the wave function coming from the
non-Coulombic part of V(s) is then included by in-
tegrating out with the finer mesh size A =0. lb. In

this way, the starting values of R„, and R„, at s = h

for further integration outward with hs = h are gen-
erated.

b. s large. Since the core charge Z~ is in gen-
eral screened by the Z& -ZI —1 electrons, we have
to modify the value of k in the region of large s, as

k - ~ = (Z, + 1)/(E„,)'t ', m = —,
' .

Thus, we have~0

R„,= Rc„(c)=c' 'c" (1+

0&E~ —ED& ~~&ED, E~&6 (B2)

The right-hand side of (Bl) may be evaluated using
the identity

ln — = ln +ln

= ln + dc P P

where the operator D is defined such that

D! P) =Ps~ P) (E~&0 for bound states),

(as)

and similarly for b.„where M~~~' is given by (3.13).
The range of the P sum is such that

K —
g m —K —

p

2t s~

Typically, the starting values are evaluated at
s= 27 in the rescaled atomic units.

c. Matching of logarithmic derivatives made at
s = sp = 20/l A = 0, 2, except sehee they axe very
small in this region. The value of E„",' guessed
initially is corrected by the formula

where

+f dc (o.
~

r, ~ nG, Dr', n~ n)], (B5)
0

[D, As] = 0= [D, Ac] .
Therefore, (Bl) may be rewritten as

In(4&, /b, ~,)

= (1/Ms ') [(o r& ~ nAsr ~ n~ o) ln(4& /E )

(0)Eni=Enr +&n»
where

Qg ds vg ds
(R„—cD] (a5)

I I

A5
'0

In (A5), u, and v, are the functions obtained by in-
tegrating out and in, respectively. With a reason-
able initial guess on E„',", the procedure converged
within five integrations to an accuracy of one part
in 10'. Note that the variable z is rescaled as E„,
is changed.

In view of the crudeness of the model used, the
eigenvalues E„, are not expected to be very accu-
rate, especially for the higher excited states. In

fact, the variations among the values obtained with

different models are substantial. Therefore, R„,
and E„, are calculated here only to the accuracy
which is sufficient to give a rough estimate of the
excited states involved.

As in Secs. II and III, we may now replace the A~
and Q by their semiclassical approximations.
That is, ~

1
As - z sinP(v)u

277 M
(av)

P(v)
1 p dp sinpu

m'u o 2E —cP —2c V(v)
(as)

where V(v) is the single-particle model potential
defined in Sec. II. Similar expressions can be de-
rived for 6, by replacing in (B5) the subspace label
Bby C.

We do not consider (B5) further in this paper,
since 6 and 6 appear in the cross sections only
logarithmically so that their effect would not be
expected to change the over-all estimate of o in any
serious way.
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Theoretical results are given for the application of the distorted-wave approximation to
electron-atom impact excitation for transitions from an L-S coupled initial state to an arbi-
trarily coupled final state. Expressions for the differential cross section and spin polariza-
tion of the emitted electrons are given for unpolarized electron beams incident upon unpolar-
ized atoms. These results are applied to excitation of helium from its ground state to the
1s2p P& excited state for incident-electron energies between 26. 5 and 300 eV. The results
are compared with previous theoretical and experimental works. It is found that the distorted-
wave calculation is superior to previous calculations in fitting the absolute magnitude and

angular distribution of the experimental data. The improvement over the plane-wave calcula-
tions is greater at large angles, where the plane-wave approximations fail by several orders
of magnitude.

I. INTRODUCTION

Until a few years ago, theories of electron-im-
pact excitation were judged principally on their
ability to predict integrated cross sections, while
today there is an increasing emphasis on the cor-
rect prediction of the angular distributions as well.
Recently there has also been an increasing interest
in the spin polarization of the scattered electrons.
This interest has been stimulated by the appearance
of reliable experimental polarization data for un-
polarized electron beams on unpolarized atomic
targets. We can expect in the near future that the-
ories of electron-impact excitation will be required
to predict not only correct integrated and differ-
ential cross sections, but also correct angular dis-
tributions of electron spin polarization. It seems
likely that those theories which predict incorrect
spin polarization, or which yield no information of
this type, can be expected to be of decreasing im-

po rtanc e.
For the past several years many calculations

have been made for inelastic electron-atom scat-
tering cross sections using the Born' and other
related plane-wave approximations. ' These ap-
proximations give fairly good integrated cross sec-
tions, at high energy, for allowed transitions. The
shape of the small-angle differential cross sections
is reasonably good for allowed transitions provided
the momentum transfer is small and the incident
energy is sufficiently high. '" However, the angu-
lar range over which the Born approximation gives
approximately correct results decreases with in-
creasing incident-electron energy. At a given in-
cident-electron energy, the breakdown at large
angles occurs rapidly once it has begun, so that an
error of many orders of magnitude is quite com-
mon. As for the plane-wave exchange approxima-
tions, there is no evidence that any of them give
even qualitatively correct angular distributions at


