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In addition, the values of [Cs] [Ar]L were divided by the
[Ar] values as determined from the filling pressure of
argon to yield values of [Cs]L appropriate to each mea-
sured value of A.&. The ratio of A& for the lines of the
second doublet to [Cs]L was then used to calculate the re-
spective oscillator strengths. The accuracy of these os-
cillator strengths is directly proportional to the accuracy
of the [Cs][Ar]L values of Fig. 7 and, therefore, to the
assumption of an equilibrium vapor pressure in the ex-
periments using the sealed-off absorption cell. Because
of the numerous sources of error present in this com-
parison, e.g. , drift in cesium density and errors in plani-
meter determination of A.& values, we do not regard this
as a measurement of the cesium density, but only as a
consistency check on the assumption of an equilibrium
vapor pressure.
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Spin-dependent perturbations from intermediate P states are calculated by expanding the
perturbations to the wave function in terms with one negative power of one of the electron or
interelectron coordinates, in addition to standard Hylleraas terms. The nonstandard terms
reflect singularities of the Breit operators. A method for solving linear equations with "al-
most-singular' coefficient matrices is devised. Significant improvement in accuracy is
achieved for five contributions, but the procedure does not work well in all cases where the
coefficient matrix is unsymmetrical.

I. INTRODUCTION

In an earlier paper, ' referred to as I, the con-
tributions to the fine structure of the 2 I' level of
helium from second-order perturbation theory with

intermediate 3I' states were calculated, and in a
subsequent paper, referred to as II, the contri-
butions from 'I' and D intermediate states were

also calculated. However, many of the results of
I did not have the desired numerical accuracy,
which was to match the absolute experimental pre-
cision of the two fine-structure separations of the
2 sI' level (10 cm for the large interval and 10 '
cm ' for the small interval). In this paper, we
present a method which dramatically increases
the accuracy for those contributions that come
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from the square of a spin-dependent Breit operator
or from the mixture of two operators that are
singular in the same region. In practice, this is
when r»-0, i. e., when the two electrons come
close together. The method was extended to two
other caseswherethe two operators mixing in sec-
ond-order perturbation theory have different sin-
gularities; but satisfactory results were obtained
for only one such case. This is probably because
one has to handle unsymmetric, "almost-singular"
matrices, and this seems to be plagued with nu-
merical roundoff difficulties. The calculations
reported here were done on CDC 6600 computers
(at the Lawrence Berkeley Laboratory and in
Sockholm) in single precision corresponding to
about 14 decimals (48 bits) accuracy.

The results of this paper are included in a re-
cent Letter, which summarizes the various the-
oretical contributions to the fine-structure sepa-
rations and compares the results with the experi-
mental values.

II. METHOD: EXPANSION OF BASIS

In this series of papers, the second-order en-
ergies are calculated numerically using the method
of Dalgarno and Lewis. The equation

(H, -E,) 41«&= -(Hl&'& -E,"&) eo

is solved for 41". The wave function and energy
for the unperturbed 2 P state are C0 and E0, re-
spectively, and H0 is the nonrelativistic Hamilto-
nian H040=E040. H1" is any Breit operator, and
E1" is its expectation value in the 2'P state. The
operators that will be used in this paper are the
following (in atomic units):

2 2 2 1
H = ——V; ——V ————+—0 2 1 2 2

+1 +2 +12

H(1) ) 2( )
1 Pl 2xP2
+1 +2

2 3 2
Hl = —3 Q (gl + o2) ~ [(rl —r2) x (pl —p2)] 3

+12

(3) x 2 3(ol ' r12) (o2 ' r12)= 4 & &1'O2 2 3
+12 ~12

2 - - (r12 pl)(r12 p2)
H1 2 + p1' p2+.

F12 ra2

H&3) —2(22 [6 (3&(r ) ~ 6 (3&(r )]

where n is the fine-structure constant. Once the
solutions of (1) have been obtained, the second-
order energies are given by two different inte-
grals:

E2"' &4'2 I@o &
= —&+1"'

I
Ho —Eo

I
@1"&

IH&&& E&() I@(/»

U, „= ~" T,"'(r,)u, „„(1,2) (3)

(I 2) e-gar)/2 -2r2/2 r 1 r mr n

T,"' (r, ) = —(x, + iy, )/)/2 .

When co increased from I to 8 so that the number
of terms

N(~) =
2 (o) + 1) (&d + 2) ((u + 3)

in the expansions (2) increased from 4 to 165,
some of the results of I were rather poorly con-
verged. We believe that the cause of this is pri-
marily the singularities of the operators H1",
i. e., that —(H,"' —E,"')4o is not well approximated
by (Ho —Eo) @,«& when only standard terms [E(I.(3)]
with l =0, m ~ 0, and n = 0 are used in the expan-
sions for @1"'.

Let us first look at a simplified problem. Take
)1&o to be just a (2p, Is) product wave function, and
let H1" act on it and pick out the P part:

P part of H1 '40=const+11 40,
where

4'o ——(2(1) (2(2) Tl (rl) e "1 e

There is thus the pole term proportional to
T,'"(r,)r, which will be reproduced by Ho@'1(') if

@,"'= (1/r, ) @, . (4)

But with this expression for 4,"', H0C1" will in-
clude other, less singular terms such as Tl"'(rl)
x e ~/r" with n = 1, 2 [and also a term T1"'(r, )6 '3'(r 1)
=0] which do not have any counterpart in H,' '4'o .
The solution 4,") of (1) might thus be a power se-
ries starting with a term like (4), but also includ-
ing terms like Tl( '(rl) Inre, Tl '(rl)rlnre, and
so on; so that an exact solution for 41 ' (which
could exist if the 1/r12 terms is dropped from Ho)
would be very complicated, even in this simplified
case.

Turning now to the actual problem, the P part
of H1 4'0 is

p t+m+n$O

Z C,„„U, (1 2),
f, m, n=0

where U) „(1,2) is given by the expression in E(I.
(B4) of I [hereafter denoted I(B4)]. When m =0,
the first term of I(B4) gives Tl&"(rl) u)o„(l, 2)/rl.
Looking at I(B2), one sees that this pole term

and by similar expressions for E2~"= E2'~'. In
I and II, wave-function perturbations 41" were ex-
panded in standard Hylleraas terms with non-nega-
tive powers of x1, r2, and r12.'

l+m+tl=Q

(2)
f 2mon"-0

where U, „ is given by
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in I(B4). [Use r1 ~ r2=-, (r&+r& —r12).] The two
remaining terms in I(B4) cause trouble when n = 0,
in which case they are

2 3 2 [Tl (r1) r1' r2 Tl (ro) r1]u& o (1
r2r12

The first of these can be obtained with n= —1 in
I(B2). However, this gives terms proportional to
(1 —P,2) T,' '(r, )/ro in the expansion for q1 ' which
would lead to an infinite value of E2'" if we use
the algorithm of the earlier sections, since
(4,"'I Ho I@1"') includes integrals with r2 in the
integrand, coming from the —2/r2 term in Ho.
Finally, to obtain the second term of (5), one
would need terms such as (1 —P,2)T,"'(ro) u&~.,(l, 2)
in the expansion for 41'". Thus it would be a
rather hopeless task to reproduce all the terms
of H1 '40 by adding more and more special terms
to the expansion for 4,' '. Even if one managed to
do this, there would be very many terms in H0 41 '

without counterpart in H,"'C 0. Now all but the
first term in I(B4) are proportional to r, &&(r&xro)

and only contribute an exchange part to the matrix
elements of H1 ', and this is generally smaller
than the direct part because the latter involves
folding radial functions (such as r1 e "1~ and r1
&&e "1~') with coinciding peaks, whereas the former
involves folding of functions (such as r1 e ~1~ and

e "'"1
) with maxima occurringfordifferent val-

ues of the argument. Therefore we shall only in-
clude terms in 4,"' which will give the leading
singularities in H1"40, which are the terms pro-
portional to T,"'(r,)/r', . Then the conclusion is
that the most important singular part of 41"will
be included if the following extended expansion is
used [see Eq. (8)]:

Q t+ffi+n&CO
(1&

nK !,mon=0
(6)

Powers of r» in the new terms have been dropped,
their inclusion would increase the number of new
terms from o&+ 1 to —,

' (i~+ 2) while adding little
more flexibility. The new terms approximate the
behavior of q,"& as r, -0 (r, -0), in which case
r,2- r, (r,o- r,). The expansion (6) does not lead to
many new integrals, beyond the integrals whose
evaluation were described in Appendix A of I.

It follows from the work of Schmartz' that the
convergence of the second-order energies should

would result from [fourth term in I(B2)]
H,T,"'(r,)u, ,„(1,2), along with many other singular
terms. This nonstandard term in the expansion
for 4 1"', proportional to (1 —P12) T1 '(r1)/r1, would

also reproduce the terms

T&"(r,) r, ~ ro „(1,2) and
I T,"'(r,)

r 1 r 12 r1

improve when additional trial terms, reflecting
the singularities of H1", are introduced in the ex-
pansions for 4 1". If one tries to fit a function
F- r ~ as r-0 with functions that are regular at
the origin, corresponding to fitting 41 ' with stan-
dard terms, the convergence rate for the one-di-
mensional model problem, where the volume ele-
ment is dv = r'dr, is' (see Sec. V of I)

2 I/ a-22+2
tl

The additional terms in (6) should change d from
1 to 0, so that a significant improvement of the
convergence of E2" ' should occur. However,
there may still be singularities, possibly logarith-
mic ones, to slow down the convergence.

Denoting the nonstandard terms in (6) by V„and
the standard ones by U~, the system of equations
for 41" is now

fo)+1 N foj)

~ &n ".' + ~ &2 +2" = H 1"
~

I —i(i 2)i ~ )I N(&o) + Q& + 1
p (7)

where the three indices in (6) have been mapped
into one. %e have

a~«& = —( V,
~

H1&'& —E1&'&
~
eo), t= I, 2, . . . , ~+ I

a11d

HI" = -(U&-~-1IH1"' -E1"'I@o) ~

$=&d+2 &d+8, . . . , N(rz)+ o&+ 1

Expbcitly, the matrix A in (7) is

( V„. I Ho Eo I Vn) ( Vn' I Ho Eo I Uo)

(U ~ IH —E I V„) (U, IH E I U„)—
n, n=l, 2, . . . , &v+1, )'2', )3=1, 2, . . . , N(o&) . (10)

We first tried to solve the system (7) as it
stands, without deleting any of the equations. In

principle, the matrix A is nonsingular; E0 has a
value which makes the lower right-hand block in
(10) singular, but this should not stop A from hav-
ing rank equal to its dimension N(&d)+ o&+ 1. How-
ever, this leads to quite unreasonable results;
the second-order energies came out as huge num-
bers. The reason for this is probably that A is
quite close to being singular.

After some experimentation, it was decided to
adjust Eo in (10) to the lowest value which makes
A singular. This number —call it E0—is of course
the smallest eigenvalue of H0 in the enlarged basis
(V1, . . . , V„,1, U1, . . . , U„&„&). An adjustment of
E1"' in (8) and (9) must also be made, otherwise
Eqs. (7) will be overdetermined after Eo has been
changed to E0. The elements of the eigenvector
4'0 of A corresponding to E0 demonstrate the lin-
ear dependence among the rows of A (see Sec. IV
of I); thus E&&' must be adjusted to Ej&&determined
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0=(4, H,&'&-E&&'& e, ),
so that, explicitly,

N ~) +1

E&"' (4o
l
40 ) = C„c„(V„

l

H]"
l U„)

m=1 n=i

and a similar expression for (io140). Here
(c, , . . . , c„„,C„.. . , C„&„,) is the eigenvector
40, and (C, , . . . , C„&„&)are the coefficients in the
expansions of 40into standard terms [Eq. (3)]. One
can now delete anyone of the N(&d)+ran+I equations
[Eqs. (V)], but we choose to put X &&" = 0 and drop
the (&+ 2)th equation in (7), so that the (&d+ 2)th
row and column of A in (10) are deleted. This
choice is made for the reasons stated in Sec. IV
of I; the first standard term in the expansion for
4'0 is the most important one, corresponding to a
(Is, 2P) wave function. Finally, E2&"~& is now given

by

E«J&(@ l@ ) (@ lH«& E«&l@g&)

I\I

(y &&&

l
H E y&/&) (12)

where Ez" must be used rather than E&" because,
if E&" is used, E~"' ' will change if an arbitrary
multiple of 40 (the solution of the homogeneous
equation corresponding to the inhomogeneous equation
for 4]") is added to 4P'. Using E&", the result-
ing E~"'~' are unique in this sense.

This provides an algorithm resembling the one
used in Secs. IV and VI of I; but, in addition to C0
(E, is not required), one also needs Eo and 40 as
input. This eigenvalue problem was solved by the
iterative method used to determine 40 and E0 in
I. However, the search for eigenvalues and eigen-
vectors consumes much computer time; so the
need to know E0 and 40 is a serious drawback of the
present method.

III. CALCULATIONS AND RESULTS FOR SYMMETRIC
CASES

In this section, we give the results obtained by
this method for the cases where the same expan-
sions (i. e., the same additional terms) could be
used for both 4'&" and 4 z~' when calculating E&'~'.
The results for E~"' ', using the expansion (6) for
4&", are given in Table I. The numbers calculated
according to the different expression in (12) did
agree to the digits quoted, a convention used in
all the tables of this paper. The eigenvalues E0
were rather close to Eo (for the same rz); they
agreed to four digits for ~ = 1 and 2, to six digits
for ~=3, 4, and 5, to seven digits for i~=6 and 7,
and to eight digits for ~ = 8. The differences be-
tween E& ' and E& ' were greater, ranging from
two digits of agreement for ~ = 1-6 to four digits

TA BLE I. Second-order energy E2" calculated with
expansion (6) for 4'&d .

No. of terms in 4'& ~

6
13
24
40
62
91

128
174

g(f~ 1) (1 2~)12G gQ

—0.511973 988 24
—0.568 854 763 28
—0.616 881 834 82
—0.640 110546 2
—0.652223 2
—0. 658 084
—0.660 772
—0.662 040
—0.6632(2) fast

for (d = V and 8.
Table I represents an impressive improvement

over the corresponding results in Table IV of I.
With 24 terms in the expansion (6), the value of
E2 '" was closer to the final extrapolated value
(of this paper) than the results obtained with 165
standard terms [Eq. (3)] in Table IV of I. The
ratio of successive differences of computed values
for Ea' ' ' was fairly constant (ranging from 0.45
to 0. 52 for 2~ ig $6); so the results have been ex-
trapolated according to the "fast" scheme, where
the differences between computed energies for
successive variational calculations, labeled by i&,

are assumed to be proportional to n", where
I o. l

& 1 (see Sec. V of I). Note that the results for
E~ ' ' from Table IV of I came closest to the pres-
ent results when the "slow" scheme of extrapola-
tion was used, i. e., when the differences are as-
sumed to be proportional to ~ ~ with p & 1. This is
a qualitative confirmation of Schwartz's theory of
convergence of variational calculations. '

Next, we try two different expansions for 4& '

and 4 z '. The operators H& ' and H&
' are singular

when rqz-0, and from I(B5) and I(B6) it is seen
that H&" 4 o contains terms proportional to I/xqz
when I = 0 (i = 2, 3). Sim'lar terms are obtained
from Ho 4'»" if functions proportional to I/x, 2 are
included in 4,'". This should take care of the
dominant singularities that slow down the conver-
gence of E&( ' ' E ' ~ ' and Z "~ ' although terms
with lnx, z should probably also be included. Ne
try two simple expansions:

l+m+n- co

n=0 lcm, n=0

40 l+m+n= e

m=0 l &m&n=0

(14)

A better expansion would include terms U, „with
m=O, n~O, and m+n~ ~, but it is desirable, from
a practical point of view, to keep the number of
extra terms small. The operator H& ' is also sin-
gular when r~~ = 0, but from I(BI) it is seen that
all terms in HP'4'o with I/r&z are proportional to
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TA BLE II. Second-order energies calculated with
expansion (13) for 4~'', g=2, 3.

E(2,2)(i Q)& 2

1 —0., 885 763 807 0
2 —0,. 992 239130 6
3 —1.054458 292 2

4 —1.087 089128 7
5 —1.104 900 2
6 —1.11637
7 —1.12170
8 —1.12623

—1.143(5) slow

E (3,3)(1 2g)1 2
2A g(X

—0.005239656190
—0.005 741438 702
—0.005 931330644
—0.006 006 971 263
—0.006 033 454
—0.006 04915
—0.006 056 81
—0.006 06316
—0.006085(5) slow

E(2,3)(l 2g)1~2

0.067 865 863 045
0.074 763 980404
0.078126 662 368
0.079 6813108
0.080 365 93
0.080787
0.080 985
0.081148
0.0817(2) slow

(r' —ro)/x'o when /=0. The angular average of

(rz —ro)/r&o is equal to that of 1/r&o, so that an
expansion such as (13) or (14) is not required for

Nevertheless, we calculate Eoo'4', Eoo'4)'

and Ez ' ' along with Ez ' ', Ea ' ', and Ez ' ' with
both the expansions (13) and (14) for 4''"', i=2, 3, 4.
No more work (calculation of integrals) is involved
for the three energies E'" ' (i = 2, 3, 4) once Eo ' ',
E,"",and E2""are done. These six second-
order energies are computed by the same algorithm
that was used to compute Ez ' '. One could also
use a mixed representation —say, (13) for ~~"' and
(14) for CP' (i, j.=2, 3, 4) —and compute Eo'~'by
the method described in Sec. IV. Some additional
integrals are required for the matrix element of
Hp and H&" between standard terms and the func-
tions with 1/r, o and of Ho with new terms on both
sides. Great care is required in the evaluation of
these integrals, since they are divergent unless
certain combinations are taken. This is described '

in the Appendix. It is interesting to note that the
matrix of Hp is no longer automatically symmet-
ric; denoting the additional terms in (13) or (14)
by V„, we have

f d'r, (v„*v, ' v„- v*„v,'v„)

= f d(rg (V„*VIV —V*VIV„).

The surface(s) integral over the faraway surface
vanishes as usual, but there is also an integral
over a small spherical surface of radius &, say,
surrounding the singularity at x»=0. It turns out
that this contribution vanishes because of the an-
gular integration, but the integrand does not go to
zero as e-0. For the same reason, there is
never any contribution to the matrix elements of
Ho from a, 8 function 5' &(r») resulting from the
action of Hp on V„.

In Table II, we give some of the results of these
calculations. For the unmixed energies E,"",
what we compute is always an upper bound (see
Appendix C of I for a formal proof of this state-
ment); therefore we have only quoted the results
for E,""(i=2, 3) when the expansion (13) was used
for 4,"', since these were slightly smaller (larger

in magnitude) than the values obtained mth (14).
The extrapolated results from both sets of cal-
culations [using (13) and (14)j were the same for
E' '" E' ' ' and Ez ". In the latter case, the
calculated numbers obtained with (13) were slightly
closer to the extrapolated results than the ones
from (14) for the higher values of r", so again
only the results from (13) are quoted. For ~=8,
the values obtained using(14) were Eo ' '--—1.12280, '

E,"'"=—0. 006057, and E,"' ' = 0. 08100. For
these three sequences of numbers, it was found

that the successive differences were better fitted
by a slow convergence scheme. Again, the results
of Table IV of I came closest to the results of
Table II of this paper when the slow extrapolation
was used.

The results obtained for Ez ' ', E2 ' ', and E~ ' '

(which does not contribute to the fine structure),
using both expansions (13) and (14) for +'"' (i= 2,
3, 4), were rather close to the results of Table IV
and VI of I. Some of these results are given in
Table III; since they do not represent a significant
improvement over the results of I, they have not
been extrapolated. The differences between Ep
and Eo, as well as between E,"' and E,"'

(i =2, 3, 4),
wereof the sameorders of magnitude (for &= 1-8)
as the corresponding quantities used in the calcu-
lation of E& ". It is not surprising that the ex-
pansions (13) and (14) should give essentially the
same results, since the nonstandard terms approxi-
mate the behavior of 4'1" at ~»=0, where ~, =~, .

One could probably not expect any significant
improvement over the accurate values for Ea '4'

and Ea ' ' obtained in Table IV of I. This is be-
cause in

Eo"'= —&+i"'~Ho —Eo~+i"')/&+oI+o) (&=2» 3),
4", ' or 4", ' is improved when the expansions (13)
or (14) are used rather than just standard terms;
but this is not true for 4'1 '. Since one of the two
perturbed wave functions is improved, one might
anticipate a slight improvement, and this seems
to be the case; i. e. , the differences between the
results for &= 7 and 8 in Table III are smaller
than the corresponding quantities in I.

The results of this section are in excellent
agreement with the corresponding results from I,
and we have achieved a significant improvement
in accuracy with only a few extra trial functions.
In fact, E2 ' ' and E2 ' 'were improved by two or-
ders of magnitude, and E2 ' ' and E& ' ' were im-
proved by one order.

IV. EXTENSIONS TO NONSYMMETRIC CASES

When different nonstandard terms —say, V„and
W„,—must be used to reflect different singularities
in 4&" and 4'&~', the method described in Sec. III
must be modified. The matrix A of Hp —Ep used
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TABLE IIl. Some second-order energies calculated with
expansion (14) for 4&', )=2, 3, 4.

1
2
3
4

7
8

g(24) (1 2g) 2

0.120 544 656 05
0.162 973 502 22
0.171402 524 33
0.178 467 714
0.182 135 04
0.184 026
0.184 86
0.185 34

.g Q, 4) (1 2g) 2

—0.009 245 201 190
—0.012 177 821 040
—0.012 633 621 644
—0.012 955 451 55
—0.013079 891
—0.013 143 19
—0.013 170 5
—0.013184

Z2&4 4) (2&'~)

—0.022 694 206 586
—0.032068 331173
—0.034 825 336 001
—0.036 706 560 7
—0.037 762 334
—0.038 252 80
—0.038 432
—0.038 523 9

H,"4,= Z
l, m, n=0

(6)C )~„H1 U

3 1 —p)~
6 (ro)

T(1)( )~w+ " "1 2

t, m=p

we see that additional terms in 4&
' proportional

to T'(r, )/x woill produce 6' '(ro) when acted upon

by HO. There will also be other, less singular
terms produced which are undesirable but unavoid-
able. So the extended expansion used for 41 ' is

l+ m+ n ~co

x~ U@„-g + ~ X)~„Utfttn
(6) 7 (6) (6)

m=o l, m, n= 0

The results for E,' ' ' are given in Table IV. There
is no result for ~= 1 because the iterative solution
for Ep +() and 4'0 did not converge for the six-
dimensional matrix in this case. The difference

when solving (Ho —Eo)4&"= —(H,
"' —E&")4'o is no

longer symmetric. The two lower blocks in (10)
are unchanged, but the upper-left block is
(W„. IHo —Eo I V„) and the one at the upper right is
(W„. IHo —Eol U„). One must now distinguish be-
tween the left and right eigenvectors 40 and 40,
corresponding to Ep, in this extended mixed repre-
sentation. In (11) the value of E,"' was determined
by multiplication from the left, so that

Ei"'= &~oiHi"'
~

+o&/&+ol +o&

Note that the matrix elements of H&" (HP') between
the new and the standard terms are (W„IH,"'

I U,)
((U, IH& 'I V„)), where W„(V„) reflects the singulari-
ty of H,'~'(H,'"). The algorithms for calculating
Ea'~' and E~~"' are now slightly different. Vfhen
one solves for 4'&~', the matrix A is the transpose
of the one used in solving for 4&", and furthermore,

Ei"'= &~olHi"'l~o&/&~ol~o)

When the eigenvalue Ep and eigenvectors 40 and

40 are determined iteratively, one must solve for
both 4& and 40 at each stage of the iteration, and
this further increases the computer time required.

The second-order energy E~"' ' was calculated
by this method, with some success. Since

l+fft+n~X

between calculated results were not regular enough
to permit extrapolation; so we just guessed at the
final value. For &= 8, the calculated values for
E' ' ' and E' '" were 0. 272 78 and 0. 272 90. For
co= 2 and 3, Ep and Ep agreed to three digits, for
~= 4, 5, and 6 to five digits, and for ~= 7 and 8 to
six and seven digits, respectively.

Similar calculations were carried out for E2' ',

Eo' ', and Ez' ' using expansions (6) for ii,"' and

(13) for 4',"' (i= 2, 3, 4). The results were quite
unsatisfactory. The numbers obtained agreed
roughly with the corresponding results in Table IV
of I, but roundoff errors increased rapidly with

w; i. e. , the agreement between the four different
values for Ez'"' calculated according to (12) fell
off sharply with increasing &. Furthermore, the
three sequences of (eight) numbers were no longer
monotonic, as they were in I. The final extrapo-
lated values of E& ', E2 ' ', and E2 ' ' obtained
from these calculations would then have much
larger uncertainties than the values given in

Table V of I, even though they are consistent with
the results of I.

It was assumed that these anomalies were caused
by serious numerical roundoff errors, occurring
when systems of linear algebraic equations are
solved, which is done both when 4'0 and 4() are de-
termined iteratively and when the +&"'s are ob-
tained. This suspicion was confirmed by an acci-
dental discovery. The eigenvector program was
used with two different FORTRAN compilers (FTN and

RUN). The results produced after just one iteration,
using Ep from Table I of I as input, were radically
different. For &= 8, the first 20 elements of the
eigenvectors produced by the RUN code agreed with
those produced by the FTN code to no more than one
digit, and the remaining 154 elements were totally
uncorrelated. This was true for both 4z and 4'0.
The two compilers generate different machine codes
from the same FORTRAN program. Since the matrix
A in (7) is "close" to being singular, even with one
row and column deleted, different sequences of
arithmetic operations might make a big difference.
When solving linear equations we used Gaussian

TA BLE IV. Second-order energy E2 '6 calculated with
expansions {6) for 4'& and {15)for 4'&

E(i 6) {I Q) 2

0.234 99
0.258 032
0.268 858 5
0.270 082 967
0.27251
0.272 80
0.2728Q)
0.2728{2)
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elimination with pivotal condensation.
From the results presented here it is evident

that these roundoff errors are much less serious
for symmetric matrices. We do not fully under-
stand why the method worked fairly well for E2"' '

bui failed for E2 '", E2 ' ', and E2 ' ', except that
the matrix used to calculate E2 ' ' was "less close
to being singular" than the one used to obtain E2""
(i=2, 3, 4).

V. CONCLUSIONS

TABLE V. Contributions of the improved results to
the fine-structure intervals. E23&, E2 ~ 6, E2 2, and

E& ' were taken from Table IV of I.

Final value from
Tables I-III

Contribution to Contribution to
Ave& in 10 cm ' Dv!2 in 10 cm '

Second-order
energy

E ta, 1&2'
E&2, 2)

Et2, 3)

E (3, 312'

E \1 ~ 8)
2

—O. 773 8(2)

—l.333(6)

—l.589(4)

—0.177 5(1)

—0.8488&6)

0.660(7)

0.694(3)

—O. 663 2(2)

—1.143(5)

O. O817(2)

—o. oo6os5(5)

O. 272 S(2)

O. 254 2(6)

o.o56 so(5)

—1.698(1)

—0.264(3)

1.3ss(6)

764. 260 6 (17)

2 (E ~ «+E 3& )) 0.028 3 (3)

2(E2 ' +E2 ' —0. 1745(7)

Experimental values for separations 9879 ~ 121(12)

In the absence of further calculations, somewhat
improved accuracy was obtained by extrapolating
the sums E2'" E ' ' ' and E "'"+E ' ' ' rather
than the ind'ividual energies —as was done in Table
V of I. The results, using the second-order ener-
gies of I, together with the improvements of this
paper, are listed in Table V. We also tried to use
formulas like I(38) for each value of ~ and to ex-
trapolate the fine-structure intervals 4vp& and ~v»,
but this did not prove profitable. The results of
Table V of this paper and of Table V of I were
collected to give the total I' contributions to the
fine-structure intervals given in Ref. 3.

Since at present all the uncertainty in the theo-
retical values comes from the second-order sums,
a major effort to increase the accuracy of these
contributions is now an urgent project. In view of
the difficulties associated with the methods of this
paper, it appears that the easiest way to increase
the accuracy is to use the straightforward method
of I. The number of terms in the expansions for
the 4& 's will have to increase drastically, and the
calculations must be done in double-precision
ar ithmetic. Since the agreement between the theory
and experiment already is quite impressive, the
amount of computer time required for such a pro-
ject is eminently justified. A new value for the
fine-structure constant, good to one part per mil-
lion, is within reach. This work is in progress.

where

= —G(M, N; a, b)+ G(N, M; b, a), (Al)

G( ddN; a, )dfdr=e" dse s" '(s —v) '
p 0

1 (M+N —3)! du (1-u)" '(1+u)"
2 n"'»', u [1-u+P/n(1+u)]"'"'

(A2)
C integrals are only calculated for M+K &3; they
are logarithmically divergent at the lower limit
(r = s or u = 0). Writing

(1+u)" '=u(1+u)" + (1+u)"

we obtain after one partial integration

1 (M+N —3)! ' dx x
( y ! y p) 2 nM+N-2 1 ( p/n)M+ N-2

+div(M, N)+ —,
' [- (M —1)F~(M —l, N —1; n, P)

+ (N —2)F2 (M,.N —2; n, p) - (p —n)F 1,(M, N —1)],
(A3)

where the logarithmic I'I. integrals are defined in
Appendix A of I. The first integral is convergent
and is evaluated by the numerical method of
Schwartz, the I' I integrals are tabulated, and the
divergence is contained in the surface term

1 (M+N —3)!

„.p [1 —u+ P/n(1+ u)]"'":
1 (M+N —3)!

N 2 11111 lnu

Thus the logarithmic divergences will cancel be-
tween the two G integrals in (Al) if u goes to zero
at the same rate in the divergent parts div(M, N)
of the two G integrals, i. e. , if the principal value
of the integral on the left-hand side in (Al) is taken
at x& = x2.

Looking at the expression for a typical matrix
element,
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APPENDIX: DIVERGENT INTEGRALS

When the expansions (13) or (14) are used for
, or +&, one runs into integrals with

(2) (3} (4)

(x, I2-)/1, 2 in the integrand when calculating the
matrix elements of Hp H$ H1, and H1 '. So a
new type of integralG(M, N; n, p) must be introduced,
defined by

f
2 2d

1
d~2 &I —&2 M-2 N 2--ar1 e -ar2e e
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T( (r, )u, „.(1, 2) H T, (r, )u, „(1,2)),
l -&ia (i) - &-&~3 (~)-

where H is Ho or H&", it is seen that the principal
value should in fact be taken. Writing out this
expression without commuting 1 —P» through H,
one gets two direct and two exchange parts. These
occur under the same integral signs and are equal,
except that x& and x2 are interchanged. So, if we
put u= e, in one of the G integrals in (Al) and u= e2

in the other, we get a term proportional to
In(e~/ez) from the lower limit, but then from the
other integrals with exchanged variables we get
another term proportional to In(e~/e, ); so we are
justified in taking the principal value.

Formula (A3) cannot be used for N= 1, but a
similar formula, valid for N= 1 (but not for M = 1),
can be obtained by using

(1 —u) ' = —u(l —u)" + (1 —u)"

in (A2) and doing the partial integration. The G

integrals are only evaluated by these formulas along
M + N = const; a backwards recursion formula
[similar to I(A7)] is used for M+N & const. There
is a formula similar to (Al) for the case where
there is a factor cos6» in the integrand on the left-
hand side of (Al); this formula contains four G

integrals and two A integrals (see Appendix A of I
for the definition of A integrals). Again, the di-
vergences cancel among the G integrals. In all
cases where G integrals are required, the diver-
gences cancel for the exchange and direct parts
separately, except for the matrix element of I/r, ~

in Ho with functions with I/x&z on both sides, when
the divergences cancel between the direct and ex-
change integrals. If the functions 4&" had been
symmetric (singlet intermediate states), this can-
cellation would not have taken place.

To evaluate the matrix elements of H&
' and H&

'

between standard terms and functions with 1/x, z,
we have to define yet another class of divergent

I

integrals

H(M N; n, p)= f Che ""J dse 's" '(s~ —y )

which are calculated along M+N= const, after
which a backwards recursion formula is used.
These integrals are evaluated by doing the same
tricks as for the G integrals, but two partial inte-
grations are required. The surface terms now

give a pole-type singularity as well as a finite
contribution. After some algebra, we find

dx ill -2
x

(( ) ( ~( ), div(M, N; Q.
, l3))"0

+ (gN —1)G(M —1,N —1; o, P)

——,PG(M —1,N; o, P),
where the first integral is done numerically and
the surface term is

x lim —+N -M+ M+N —4 . A4
1 n —p.-o u o. +p

By looking at the actual combination of integrals
involved in the matrix elements, one finds that the
logarithmic divergences included in the G integrals
cancel separately for the direct and exchange in-
tegrals whenever H integrals are used, and that the
pole divergences in (A4) cancel between exchange
and direct parts. The finite part of (A4) is impor-
tant and should of course be included. The H inte-
grals are only evaluated for M &2, N &2, and
M+N &5.
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