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The Hamiltonian for a many-particle system in a homogeneous magnetic field is constructed by a
straightforward extension of previous work on hydrogenic atoms by Grotch and Hegstrom.
Relativistic-correction terms of order a p,~H are identical to those obtained many years ago by Abragam
and Van Vleck and by Perl and Hughes. In addition, higher-order terms due to the anomalous moments
and to nuclear motion are explicitly formulated in the present work. These terms are of orders a'JLt, ~H and
a'(m/M) p,~H, respectively, and are coming to be within the range of present experimental measuremerlts.

I. INTRODUCTION

Increasing precision in the measurement of the
Zeeman effect in atoms' has led to a revived in-
terest in the theory of the interaction of atomic
systems with external electromagnetic fields. The
theory of the interaction of hydrogenic atoms with
a constant magnetic field has been discussed in de-
tail recently by Grotch and Hegstrom. The pur-
pose of this paper is to extend the latter work to in-
clude many-electron systems, and thus to refine
the earlier theoretical treatments of the Zeeman
effect for these systems. There is presently a
need for such a refinement, since workers are now
measuring atomic g factors with a precision of one
part in 10 and higher. '

An atom is treated as a system of Dirac particles
with anomalous magnetic moments. The system
is governed by a generalized Breit e(equation (Sec.
II). The anomalous moments, which arise owing
to virtual radiative processes, are introduced via
the Pauli interaction. ' In Sec. III, the part of the
wave function which depends on the usual center-
of-mass (c.m. ) coordinate is found explicitly for a
neutral atom. This separation leads to a Hamilto-
nian which depends only on the internal coordinates
and greatly simplifies the calculation of the higher-
order corrections. A similar simplification occurs
for ions, although the Hamiltonian for an ion must
contain terms which depend on the c.m. coordinate.
For both cases, the simplifield Hamiltonian is re-
duced to nonrelativistic form plus relativistic and
magnetic terms (Sec. IV). Writing the Hamiltonian
in this final form makes it suitable for perturbative
calculation of the magnetic corrections employing
the usual nonrelativistic wave functions.

II. EXTENDED BREIT FORMALISM

The desirable starting point for a treatment of
higher-order corrections is, of course, the fully
covariant quantum field theory. However, the cor-
responding calculations are much more difficult
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than those presented here. The starting point for
the present work is the Breit equation extended to
include the anomalous-moment interactions. In
the case of hydrogenic atoms, this simpler for-
malism has been shown to lead to the same results
for the magnetic-field-dependent energy as those
obtained from the fully covariant theory, except for
terms of order o ~(m/m, )y, s H, where n is the fine-
structure constant, m is the electron mass, rn, is
the nuclear mass, p, ~ is the Bohr magneton, and H
is the magnetic field strength. We expect that the
Breit formalism also describes the Zeeman effect
accurately for a many-electron atom [including
corrections of orders c( i(,sH and o( (m/m, )ps H
considered here), but proof must await either com-
parison with a covariant field-theoretic treatment
for the many-particle case, or (ultimately, inany
case) comparison with precise experimental mea-
surements.

Without further justification, then, I adopt as a
starting point the extended Breit equation

X@(r„r„.. . ) =E@(r„r„.. . ), (1)

where, in natural units (I= c = 1),

x=2 x(i)+2 v(i, q),
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In the above equations m, is the mechanical mo-
mentum for the ith particle, A, is the magnetic
vector potential at position r, in the laboratory
frame, H is the constant external magnetic field,
H,. and Ei are the magnetic and electric fields ex-
perienced by particle i, and other symbols have
their usual definitions. The anomalous magnetic
moments ~, , which arise from virtual radiative
processes, are

r, = R —E (m, /M) r„,
r, =R+r;, —2 (m&/M)r&, (isa),

jan

p, = (m, /M) P —Q p„,
jAa

p,. = (m,./M) P+p,. (i+a) .

Note also that r;& depends only on internal coordi-
nates:

x, = —(e/2m, ) (n/2m —O. 328o /m + ~ ~ ~ ),

x~ = 1.793 (e/2m'),

g„= —1.913 (e/2m&)

I next define

q=Z q, —=Z (p, +e, X,)=P+Z e;A, ,
i i

(8)

The first simplification is the elimination of the
dependence on the c.m. coordinate, as was done
for the two-particle case. The method was ap-
parently first used by Lamb'; here I present a
slightly different formulation of Lamb's method.
I use conventional definitions'3 of the c.m. coordi-
nate R and the internal coordinates r„:

R=Z (m,. /M) r, ,

r,,=r,. —r, (i&a") .
The corresponding conjugate momenta are

T=Z; p, ,

(3)

for the electron, proton, and neutron, where ~ is
the fine -structure constant.

Not included in the above Hamiltonian are addi-
tional perturbations which also arise from virtual
radiative processes and, for example, provide con-
tributions to the Lamb shift in atomic hydrogen '

and helium' and to the helium fine structure.
These additional radiative effects also give rise to
magnetic-field-dependent terms of order cy p.~ H.
Except for S states, for which they vanish, these
terms must be evaluated for each particular atomic
state and added to the results from the Breit equa-
tion in order to obtain final results complete to
order z p~ H. These corrections appear to be
quite difficult to calculate and are discussed further
in Appendix A. We now proceed to a simplification
of the extended Breit equation.

III. SEPARATION OF c.m. COORDINATE

[Se, q] = Z [X (i), q]+ X [U(i,j ), q) . (8)

The first summation in Eq. (8) is zero, since it
reduces to

-«[«A~ pjk=o (9)

Each term in the second summation is also zero,
since U(i, j) depends only on the internal coordi-
nates. Thus q commutes with the Hamiltonian and
is a constant of the motion.

We next evaluate the commutators

[e„e.]=K Z [q~„q,.l = - i~,.&~ Ze
i i

(1O)

If the total charge of the system L. e,. is zero, the
components of q commute. In that case K and the

components of q formasetof mutually commuting
operators, and the wave function can be chosen to
be a simultaneous eigenfunction of these operators:

K4'= E4,

qC =K%,

where the eigenvalue K is a constant vector. The
latter equation may be rewritten

where q is the 7r used in Ref. 2. In classical me-
chanics the variable corresponding to q is a con-
stant of the motion. ~ One expects that q may also
be a constant of the motion in the quantum-mechan-
ical case. That this is indeed so is shown by
computing

p„=p, —(m, /M) Z p, (i&a) .
(4) —jVg4= K — e,. A,. 4 =—II% . (12)

Here M = pm& is the sum of the rest masses of the
particles. The subscript a refers to any specific
particle, but the most natural choice is the nucleus.
The inverse relations to Eqs. (3) and (4) are

It can be easily shown (see Appendix B) that, for a
neutral system, L e; A, is independent of R. Thus,
Eq. (12) may be easily solved for 4:

iB ~R4(R, r~, , r3, ~ ~ ) = g(r&, , ra, ~ ~ ) e (13)
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By allowing K [Eq. (2)] to operate on Eq. (13), a
corresponding equation for g is obtained. It has the
form

K g=Eg,

where 3C has exactly the same form as 3C, but with

the mechanical momentum m, of a particle g re-
placed by

p~ —2 8)A;~ ~
(i5)

and with the mechanical momenta m, of the other
particles (isa) replaced by

p~ -«A~.
where

p. =(m./M)K-2 p...

p&
——(m;/M) K+ p;, ,

1
Ajg H+ g rgb ~

The transformed Breit equation, Eq. (14), thus de-
pends only on internal coordinates.

This procedure of finding the simultaneous eigen-
functions of R and q is similar to a gauge trans-
formation, and is equivalent to a unitary transfor-
mation of the original Breit equation, Eq. (1). In

fact, a system with nonvanishing total electric
charge may be treated similarly by making the uni-
tary transformation

O' =UC

3C =U XU,

U=exp -i «A, ~ R

Then the mechanical momentum of each particle
transforms into

I = -1
w,. =- V w, V= p, —e, [A, —A(R)] —(m, /M) Z e, A, ,

(19)
A(R) =Hx-, R,

where p, is given by Eq. (5). In Ref. 2 it is shown

that, even though the unitary transformation does
not eliminate the c.m. coordinate from the Harn-

iltonian of a system with nonzero total charge, it
does greatly reduce the contribution of R to the en-
ergy. Also note that Eq. (19) reduces to Eqs. (15)
and (16) for a neutral system.

The importance of a careful treatment of the c.m.
coordinate has been discussed previously. In par-
ticular, setting R and P equal to zero (unless the
unitary transformation is first performed) leads to
the omission of contributions to the Zeeman energy
of order n'(m, /M)poK

IV. REDUCTION TO NONRELATIVISTIC FORM

The second simplification of the extended Breit
equation, Eq. (1), is its reduction to a nonrelativ-
istic form (the Schrodinger equation) plus relativ-
istic and magnetic terms. In one way this is not
really a simplification, since numerous terms are
generated in the reduced Hamiltonian. For prac-
tical computations, however, the reduced form is
desirable, since nonrelativistic atomic wave func-
tions [approximate eigenfunctions of Ko in Eq. (21)
below] are relatively easy to obtain. Furthermore,
the magnetic and relativistic terms in the reduced
Hamiltonian are usually quite small compared to K0
and thus can be treated perturbatively using non-
relativistic zero-order wave functions.

The Hamiltonian of Eq. (14) is transformed
to nonrelativistic form using the methods of
Chraplyvy and Barker and Glover' as was done
for the two-particle case. Dropping the prime
in Eq. (19) so that in Eqs. (21) below

w, = p) - e) [A) -A(R)] —(m)/M) Z e, A~, (20)

one obtains for the reduced Hamiltonian

K=X,m, +Q K„,

Ko=l (w) /2m, )+2 (e)e,/r), ),

K, = -Z (w, '/Sm, '),

Ko= -~ ~ (weg/m&) (gg pop —e /2m ) 0 (r )
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where

g, go, =2(e,/2m, +z, ) (22)

defines the g factor of particle i; p.0, is taken to be
the Bohr magneton (e/2m, ) for electrons or the nu-

Ko=-Z Z (e&/m, )(g, Po; —e;/2m;)r, &
oS; ~ r,&xw, ,

(2i)
K4=E Z (8y/mg) g) po) rgg Sg ~ rg~xw~,
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clear magneton (e/2m~) for nuclei; S, is the appro-
priate spin operator for particle i. Strictly speak-
ing, the above result applies only to spin--,' par-
ticles, and thus excludes nuclei which do not have
S= —,'. However, Bethe and Salpeter have examined
this and concluded thai the Dirac theory for nuclei
with SW-,' gives correct results at least to order
m, , where m, is the nuclear mass, provided the
observed nuclear magnetic moment and spin are
substituted for the corresponding Dirac values in
the Hamiltonian. This procedure can be followed
for the nuclear-spin terms in Eq. (21).

Each of the terms appearing in the reduced Ham-
iltonian has a simple physical interpretation, and it
seems appropriate to review them here. K0 is the
nonrelativistic Schrodinger Hamiltonian, K~ is a
relativistic correction to the kinetic energy, 3C3 is
the Darwin term due to the Zittexbemegung of the
particles, ~ describes the spin-orbit coupling,
$04 describes the spin-other-orbit coupling, 3C5 de-
scribes the coupling of the spins to the external
field (plus relativistic-mass corrections), 3C6 de-
scribes orbit-orbit coupling, and Xv describes the
spin-spin coupling. Higher-order terms, which
are important only for very heavy atoms, are
neglected here. It is interesting to note that in
Kp X3 and K5 the anomalous part of each mag-
netic moment behaves differently from the Dirac
part. This means that for very accurate work (in
order n go H) the radiative corrections to the mag-
netic moments cannot be accounted for simply by
replacing, in the nonrelativistic Hamiltonian, the
Dirac g factor g = 2 with the experimental value.

The usual magnetic properties may be calculated
from Eq. (21). For example, the lowest-order dia-
magnetic susceptibility is calculated from the
magnetic part of $C0, and the nuclear magnetic
shielding of NMR spectroscopy from $04. The
lowest-order contributions to atomic magnetic mo-
ments come from Ks and (for non-S states) ~, and
higher-order corrections are obtained from K3,
JC4, and X~, and (for non-S states) R& and RB.

For the purposes of calculation, it is convenient
to expand the Hamiltonian in terms of internal and
(if the system is charged) c.m. coordinates. For
a neutral atom, for example, X0 becomes

K 1 -. - z Ze e

where a denotes the nucleus, p, is the reduced
mass m, m, /(m, +m, ), and the summations are
over electrons. Note that Eq. (23) contains nu-
clear-mass corrections to the Zeeman energy (for
non-S states) of order (m/M) p, e H obtained by Phil-
lips many years ago.

The magnetic-field-dependent part of the re-
duced Hamiltonian, except for the definition of p,.
and the appearance of anomalous-moment terms,
is identical to that of the early treatments. Thus,
for the calculation of atomic magnetic moments,
for example, the present treatment will give the
same results as the older treatments to order n~.

However, additional corrections of order o.~m, /M
and n can be calculated from Eq. (21). Experi-
mental methods are now capable of measuring
these small corrections. '

Finally, although the present treatment finds its
most immediate application to the Zeeman effect
in electronic atoms, we note that the results
should also be applicable more generally, for ex-
ample, to muonic atoms or even to molecules. To
emphasize this generality I have employed a sym-
metric notation in Eq. (21).

ACKNOWLEDGMENT

I am grateful to Howard Qrotch for helpful con-
versations and for communicating results prior to
publication.

APPENDIX A

The magnetic field dependence of the radiative
terms discussed in Sec. II is contained in the en-
ergy shift for the nth level,

3wm Jo 1+2&/m

xgi (n Ig; n;In ) ~ (n''Ig, w,. In) (E„.—E„)
gl 0+Eg —E„

which arises from self-energy and single trans-
verse photon exchange in a nonrelativistic pertur-
bative treatment. Here the m, = p; —e X,. are
summed over the electrons in the atom, and I n)
and E„are the eigenfunctions and eigenvalues of the
usual nonrelativistic Hamiltonian

R„a= (1/2m) Xi P; + V+ p. e H ~ Zi(L;+2S;)

+2 X Z p;. ~ p, , +—K&H Zr;,

+—1 —~ ZiA„~ p;, ——2 ZA„~ pq,
e mQ f mg f jgf

+ Zi A„+ 2 ZA;, ~ Aq, , (23)
2p 2m

(A2)(0)
KNR +Xm gg

I now outline a proof, due to Grotch and gen-
eralized here to the many-electron case, that the
magnetic field dependence of bE„vanishes for S
states in order n p, ~ H. This magnetic field de-
pendence may arise from two sources: (a.) the
magnetic field dependence of the operators m,. and
(b) the magnetic field dependence of the energies
E„.. Considering first terms of type (a), employ
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commutator identities such as

p n E„.-E„=zZn n' ~3 n

(1)
Q„& =+~

one obtains

(As)

to write AE„"' as
p OO

~@(~)
- zZn e ~H dk

»m' „» 1+2a/m
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n ZeH ' a+E -E, -'

»m2 1+2k/m

x(&nl T~&'& ln') &nl q~&'& ln'&+

+, & nip, r, ln'&&&&n Ig, (r, /x, )In)
n' k+E„. -E„ ~ A4

Then, choosing H to be in the z direction and de-
fining

ef (1& ~Q X& 2$&
p&

i

-&nl 7'-'l'ln') &nl ~%In'&*) (A8)

Now T' ' and Q' ' are irreducible tensor operators
whose matrix elements may be evaluated using the
Wigner-Eckart theorem. In an L,-S coupling
scheme one obtains

~z„",'„,=- ', , „'/ ~ (I +E;; -E~) '&«l l1'"'I ln'I'& &nL
I

I@"'I ln'I'&*

For an S state, I.=M~ =0, L'=1, and the differ-
ence of squares of the 3-j symbols vanishes.
Thus, &E oo= 0 in order & @AH

Now consider contributions of type (b). In this
case, ~E(b~ is

(b) 2Q
8~m'„1+ 2u/m

&n I Z; p; I
n') ~ &n' I Z; p& I n) (E„-E„)

k+E„.—E„

Denoting the magnetic-field-dependent part of E„
by &„so that E„=E'„' '+ &„, and expanding the energy
denominator of Eq. (A8) in powers of H, we obtain
for the term linear in H

(y) 2Q

37rm "o

„ge&nlrb, p, In') ~ (n'
I 2; p, ln) (8„",' —E„' ') (6„.—6„)

(y+ E(0& E(0&)8

(AO)
Performing the 0 integration, one obtains

~z„'"& = —, , 2'&nlrb p, ln'& ~ &n'lZ p, l n&(~„, —~„).
71I ftl i i

(A10)

Then evaluate

(r/leap, ln)(e. —e&= n' er.„,r p, n)

=be/p ) (n' rex' fi, n)
i

(A11)
and use closure to finally obtain

nptn= —(~ne/pe ')rr (n Zp, xZp, n)=O .

(A12)
Therefore, ~E„'"'=0 in order z p, ~II for all states
in general, and for S states in particular.

APPENDIX B

I show that, for a neutral system, the sum

Ze, A,

is independent of R. Using the definition of X, and

Eq. (5), the above summation becomes (note that
r„=A„=0 in the following equations)

nnl

E e, -',Hx Rer„—E ~) rn
Jf

= Z e, X(R)+Z e,X,, —
l
Z e, Z —'~l X„.

&~i ~)
If the sum of charges is zero, we ha.ve

Z e&X& =Z e)A&p
i
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The linear polarization of bremsstrahlung from thin targets (~ 50 pgjcm') of Al, Cu, Ag, and Au was

measured for incident electron energies of 50, 75, and 100 keV. The polarization was measured as a function

of photon energy at four emission angles (8 = 22.5', 45', 90', and 135'). Data presented were obtained with

a Compton polarimeter having a large asymmetry ratio (from 35 to 150) and high resolution. The results

have been found to be in general agreement with the predictions of various bremsstrahlung calculations.

I. INTRODUCTION

Bremsstrahlung exhibits linear polarization.
Several calculations ~ of the polarization of elec-
tron bremsstrahlung have been carried out since
the original nonrelativistic theory of Sommerfeld'
was published. The most recent work is the rela-
tivistic calculation by Tseng and Pratt, 6 which
covers the incident electron energy range of 5 keV
to 1 MeV. Most calculations have been for single
electron interactions and must be comyared to ex-
perimental results obtained using very thin targets.
Most measurements of linear polarization at low
energies have been made using relatively thick
targets. Furthermore, when thin targets were
employed, quantitative data were obtained only in
limited spectral regions because x-ray detectors
of relatively poor resolution were used.

For bremsstrahlung, the linear polarization P is
defined by the expression

where I, is the bremsstrahlung intensity component
with polarization perpendicular to the reaction

plane (the plane containing the direction vectors of
both the i.ncident electron and the photon), and I„ is
the bremsstrahlung intensity component with polar-
ization parallel to the reaction plane. I„ I„and,
therefore, P are functions of electron energy To,
photon energy 4, emission angle 8, and target
atomic number Z.

This payer reports measurement of the linear
polarization of low-energy bremsstrahlung as a
function of k for (a) incident electron energies of
50, 75, and 100 keV, (b) emission angles of 22. 5',
45', 90', and 135', and (c) target atomic numbers of
13, 29, 4'7, and 79. The measurements were ob-
tained using thin solid targets and a high-resolution
Compton polar imeter.

II. EXPERIMENTAL

Apparatus

Part of the experimental arrangement is shown
schematically in Fig. 1. The electron beam from
a 150-kV accelerator was momentum analyzed and
focused to a 5-mm-diam spot on target. The tar-
get chamber was a hollow right-circular cylinder
of Al, 15 cm long and 10 cm in diam. A 2. 54-cm-
high Be x-ray port 47 mg/cm thick, subtended


