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The feasibility of many-body perturbation-theory (MBPT) calculations with hole and particle
states expanded in a finite set of bound-type functions is investigated. The correlation energy
of atomic beryllium is used as a test case. Particle states with negative and positive energy
values are treated uniformly. We find that convergence of individual diagrams to better than
10 a.u. , and similar agreement with Kelly's numerical results can be obtained using basis
sets composed of 9s, 7P, 5d, and 4f Slater orbitals for intrashell correlation and a 10s 8p 6d 4f
set for the intershell effects. The total correlation energy calculated with these basis func-
tions is in good agreement with experiment. These results indicate that MBPT calculations
by the expansion method are indeed feasible. While this method may not be more convenient
than the numerical approach for atomic systems, it should be useful for molecular calcula-
tions, where finding a suitable complete set of numerical orbitals presents difficult problems.

I. INTRODUCTION

The many-body perturbation theory (MBPT) of
Brueckner and Goldstone was first applied
to atomic systems by Kelly. The method has
proved very useful and numerous calculations of
correlation energies and other atomic properties
have been carried out by Kelly~ and others. ' The
complete basis sets needed for diagram evaluation
were obtained in numerical form as eigenfunctions
of an appropriate Hartree-Fock operator serving
as a zero-order Hamiltonian, and included bound-
and continuum-type functions. The MBPT method
has recently been applied to molecules, ' where
finding a complete basis set presents a more dif-
ficult problem. H~' orbitals in eliptic coordinates
were used in the Hz calculation of Dutta et al. ""';
in the other cases quoted (Hz, '"' 'b' H&O, '" and
HF7'+) a one-center operator was employed to gen-
erate the basis orbitals. This choice of a zero-
order Hamiltonian leaves a rather large perturba-
tion and makes it necessary to calculate difficult
high-order diagrams. Corrections due to the hy-
drogen nuclei heavily outweigh usual correlation
effects even for H&O '" and HF, ""and it would

seem hopeless to apply the method to molecules
with more than one "heavy" atom (heavier than

hydrogen). The expansion method used extensively
in atomic and molecular calculations, whereby or-
bitals are expanded in a finite set of analytical func-
tions centered about the different nuclei, may pro-
vide a solution to the problem. The discrete or-
bital energy spectrum obtained by the expansion
method includes, in general, both negative and pos-
itive values, and this approach to MBPT calcula-
tions will have the advantage of treating bound and
continuum states on equal footing and avoiding
cumbersome integrations over continuum states.

The basis functions commonly used in atomic and
molecular calculations, such as Slater or Gaussian
orbitals, decay at infinity and are square inte-
grable, whereas the positive -energy orbitals used in
numerical MBPT work satisfy oscillatory boundary
conditions. Basis sets consisting of bound-type
functions only are routinely used for evaluating
correlation energies and other properties by vari-
ous methods (e. g., configuration interaction), and

they may be applicable to MBPT calculations too.
An attempt in this direction has been reported by
Schulman and Kaufman. They calculated the cor-
relation energy, polarizabilities, and electron-
coupled nuclear spin-spin interaction in the hydro-
gen molecule with a basis set consisting of 10s, 5p,
and 1d Gaussian functions on each atom, and ob-
tained reasonably good agreement with experiment.
Only diagrams of low order (up to second order for
the energy, first order for the other properties)
have been evaluated by Schulman and Kaufman, ~

and no equivalent work with numerical orbitals is
available for comparison. Further tests of the
feasibility of MBPT calculations by the expansion
method seem to be called for before it can be wide-
ly implemented. The beryllium atom provides a
useful test case, since detailed results obtained by
the numerical MBPT method are available. '

The adequacy of finite bound-type basis sets for
a MBPT calculation of the correlation energy of
Be is tested below in several ways. First, the
convergence of individual diagrams with respect
to the basis set is investigated (Sec. II B); next,
the converged results are compared with Kelly's
values 'o obtained with numerical orbitals (Sec.
III); finally, an additional test is provided by cal-
culating the total correlation energy of the atom
and the contributions of the separate electron pairs
and triples to it and comparing them with available
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experimental and theoretical results (Sec. IV).
Section V includes the conclusions drawn from the
calculations.

II. ONE-ELECTRON STATES

A. Zero-Order Hamiltonian

The Hamiltonian of a general N-electron system

Vs„= V" + (1 —P) Q(1 —P),
where I' is the projection operator

P=~ le) &V;I

VN-1 VN

(8)

(10)
is

H=Z h;+Z v)~

It is easily verified that the occupied orbitals are
Hartree-Fock orbitals, since

where h, is the one-electron part and p, &
is the

electron-electron repulsion. This repulsion may
be approximated by a one-electron operator V, and
a zero-order Hamiltonian

a, =Z (h, +V,.). (2)

is then written, with zero-order functions and en-
ergies satisfying

Ho 4'o = &o 4 o

The perturbing operator is

(3)

and terms in the perturbation series are calculated
with the help of a complete set of orbitals y„ob-
tained from

(h+ V) p„=e„y„.
The choice of V affects the convergence of the

perturbation series. Kelly' first used the poten-
tial

(6)

V"-' =Z (J, -K, ) (7)

yields both bound and unbound virtual orbitals and

greatly enhances the convergence of the perturba-
tion series for the 2s pair correlation in Be. The
occupied orbitals obtained using this potential are
not all identical with Hartree —Fock ones, and ad-
ditional perturbation corrections must therefore
be considered. The potential proposed by Silver-
stone and Yin and by Huzinaga and Arnau and
used for MBPT calculations by Miller and Kelly 3

combines the advantages of V and VN '. This
Silverstone-Huzinaga potential'4 is defined as

where J, and K, are the usual Coulomb and ex-
change operators, respectively. Equation (5) be-
comes with this choice the well-known Hartree-
Fock equation. The virtual orbitals are calculated
in the field of the nucleus and all N electrons and

usually lie in the continuum. Later, Kelly
showed' that the alternative choice

N-1

V~„y~= V y~, k- N

whereas virtual orbitals satisfy

V „y =(V —PQ)y„, h N (12)

with I'0 modifying V only slightly. In addi-
tion to V", two varieties of Vs„are made use of
in the present work: The potential obtained when

a 1s electron is left out of the summation in Eq.
(7) is denoted V», and leaving a 2s electron out

gives V». The zero-order Hamiltonian con-
structed with one of these potentials [Eq. (2)] is
diagonalized within the basis sets described below
to yield the hole and particle states for the MBPT
calculations.

B. Basis Oribtals

A finite analytical basis set is, of necessity,
incomplete, and care must be taken to assure
proper spanning of the function space. This prob-
lem appears in all calculations performed by the
expansion method, and the considerable experience
accumulated may be of help in work of the kind

presented here. Schulman and Kaufman's basis
set consists of Gaussian orbitals with a wide

range of exponents, covering different regions in
coordinate space. An alternative method used by
Nesbet is to employ Slater orbitals with differ-
ent ni values having the same exponent (the set of
all such orbitals forms a basis to the space of
square-integrable functions). A possible guide for
choosing the exponent is the overlap with occupied
orbitals. A related question, not answered in
the present paper which reports calculations of Be
correlation energy only, is the dependence of the
basis set on the property to be calculated. Schul-
man and Kaufman used the same set for calculat-
ing different properties of the hydrogen molecule
with encouraging results, but further research
into this point is needed.

The basis sets we used to expand Be orbitals
consisted of Slater functions. Clementi's double-
zeta set ' (1s with exponents 3. 3370 and 5. 5063,
2s with exponents 0. 6040 and 1.0118) was aug-
mented by s, p, d, and f orbitals with exponents
taken from Nesbet. Different exponents were
used for 1s and 2s intrashell correlation, since
the occupied orbitals are concentrated in different
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TABLE I. Second-order 2s~ correlation-energy diagrams as function of basis-set size (a.u. ). V~ potential. Diagonal
higher-order terms included by shifted denominators [Eq. (16)].

ns

—0.003 209
—0.003 164
—0.003 144

5
7

10

—0.050 010
—0.049 868
—0.049 798

nd~

—0.005 095
—0.005 077
—0.005 049

nf'
—0.001 314
—0.001 349

Number of basis orbitals with the relevant I values in the set. Basis sets are similar to the 2s set described in the
text. The p, d, and f terms are calculated with a basis set including 9 s orbitals, to assure consistent expansion of the
hole states.

regions in space. Basis orbitals were added until
satisfactory convergence Lbetter than 10 a.u. ,
(2 —5)x 10 ' a.u. in most casesj of second-order
perturbation terms was achieved. A typical ex-
ample is shown in Table I for 2s intrashell sec-
ond-order diagrams with diagonal contributions
of higher-order diagrams included as described
in Sec. IV. Convergence for the 18 set was slight-
ly faster.

The basis sets used to obtain the results re-
ported below were as follows: For 1s correlation,
the Slater orbitals 2s-6s, 2p 8p, 3d-7d-, and 4f-7f
with the exponent 7. 814 were added to Clementi's
orbitals to form a 9s 7p 5d4f set; a similar set was
used for 2s2 correlation, except that the exponent
was 1.419 and the additional s orbitals had princi-
pal quantum numbers from 3 to 7, inclusive. Both
exponents had to be included for 1s-2s intershell
correlation, and we employed a 10s 8p 6d4f set
consisting of Clementi's orbitals, 2s-4s orbitals
with the exponent 7. 814, Ss-5s with 1.419, and
2p-5p, 3d-5d, and 4f 5f orbitals wi-th both expo-
nents. Nesbet's atomic programs, modified
slightly to allow the application of the V» poten-
tial, were used to solve the Hartree-Fock equa-
tions and obtain integrals over Hartree-Fock or-
bitals for diagram evaluation. The orbital energy
spectrum of the basis sets described above is giv-
en in Table II. In addition, the third column of
the table shows eigenvalues obtained with a 2s set
of a different size. Comparison with Table I in-
dicates that convergence of energy diagrams is
achieved in spite of the considerable change in the
one-electron spectrum.

III. COMPARISON OF NUMERICAL AND ANALYTICAL
CALCULATIONS

Second-order and third-order diagrams contrib-
uting to pair correlation in the Be atom appear in
Fig. 1. Diagrams differing from those present by
electron exchange along one or more interaction
lines or by reflection in a vertical plane have been
suppressed. Fig. 1(a) is the second-order diagram

where

D = EP+ & —&k —Ek
2

(14)

ls set
9s 7p 5d 4f

2s set
9s 7p5d4f

2s set
(8s)10p 7d

ls-2s set
10s 8p 6d 4f

s orbitals

—4.732 69
—0.309 24
—0.061 44

1.18118
6.052 66

17.421 8
44. 029 3

122.337
561.266

—4.732 59
-0.30927
-0.090 89

0.01608
0.25810
0.800 80
2. 143 07
6.821 84

38.045 5

-4.732 53
—0.309 26
—0.088 98

0.05214
0.421 09
1.383 29
4. 84270

30.1712

-4.73264
—0.309 26
—0.086 01

0.10715
0.669 02
2.35152
7.379 66

21.7150
67.224 2

328.588

p orbitals

0.565 51
4.218 04

11.562 2
25. 606 6
54. 673 1

128.050
421.329

—0.17939
—0.044 62

0.13047
0.484 88
1.209 35
3.045 43
9.943 81

-0.17941
—0.064 08

0.01910
0.163 65
0.403 95
0.804 61
1.52018
2. 934 75
6.467 43

19.999 8

—0.17739
0.045 59
0.55391
l.940 84
6.38109

18.7141
52. 9313

192.878

d orbitals

3.11780
10.734 8
26. 721 6
64. 364 0

189.712

—0.022 68
0.177 11
0.610 76
1.63480
4.988 48

—0.043 91
0.06674
0.276 81
0.66113
1.406 84
3.11322
8.660 94

0.037 91
0.487 34
l.861 09
8.705 69

28.845 5
98.8624

5.899 46
17.425 9
43.3157

119.976

f orbitals

0.077 24
0.403 53
1.145 43
3.322 26

0.265 96
1.324 64

13.938 8
53.752 1

TABLE II. Orbital energies, in a.u. , of different basis
sets described in Sec. II B. V~~ potential.

l(pql vlkqka) I2-
k~k2

D (13) The p and d orbital energies obtained with a 9s10p7d
set.
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FIG. 1. Second- and third-order
energy diagrams. Diagrams ob-
tainable by electron exchange or by
interchanging p and q are omitted.
Cross represents interaction with
the one-electron potential V.
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Exchange terms are assumed to be included in Eq.
(13) and throughout this paper. The hole-potential
diagram l(d) cancels 1(c) for all choices of V con-
sidered here, and the remaining hole-hole interac-
tion l(b) may be included to all orders in the sec-

ond-order term of Eq. (13) by a denominator shift

(16)

Diagrams 1(h) and 1(i) cancel mutually when V of
Eq. (6) is used as the one-electron potential. The

TABLE III. Second-order and third-order correlation terms of beryllium. V potential. Unless noted otherwise, all
terms include higher-order hole-hole interactions by the denominator shift of Eq. (15). Energies are in a.u. (Be).

Present
work

1s2 terms

Ke]]y
Present

work

2s2 terms

Kelly

Second order,
unshif ted

Second order

Third order
Fig. 1(f)

Exchange
of Fig. 1(f)

Fig. 1(e)

s
p
d

d

f
s
p
d

s
p
d

s
p
d

—0.01248
—0.02249
—0.003 50

—0.01149
—0.020 72
—0.003 35
—0.000 90

—0.000 815
-0.001417
-0.000 111

O. 000 207
0.000 274
0.000 008

0.000 902
0.001 816
O. 000 163

—0.022 55

—0.01152
—0.020 77
—0.003 45

(-0.000 884)
(-o.oo1581)

(0. 000 210)
(0.000 270)

(0.001 012)
(0.002 120)

—0.00240
—0.022 20
-0.00378

—0.001 92
—0.016 03
—0.003 20
—0.001 00

—0.000 324
—0.004 512
—0.000 467

0.000 055
0.000 983
0.000 046

0.000 354
0.006 124
0.000 709

—0.002 41
—0.022 28
—0.003 83

—0.001 92
—0.016 05
—0.003 26

(-0.000 352)
—0.004 569
(-0.000 527)

(o. ooo o53)
0. 000 987

(o. ooo o46)

(0.000 317)
(o.oo5 8o3)
(0.000 676)

1s-2s
Second order

p
d

f

—0.002040
—0.004 736
—0.000 568
—0.000 085

Fig. 1(a)"
—0.002 033
-0.004719
—0.000 612

Exchange of Fig.
0.000 994
0.001 106
0.000 194
0.000 035

1(a)
0.000 990
0.001 108
(o. ooo 3o)

Reference 3. Terms calculated approximately are
shown in parentheses.

"Summed over the four ls-2s pairs.
'Summed over 1s& 2sn and 1sP 2sP pairs.
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only third-order energies to be calculated in this
case are therefore represented by the ladder dia-
gram 1(e) and the hole-particle interactions 1(f)
and 1(g). Table III lists second-order and third-
order contributions to 1s and 2s pair-correlation
energies in Be, as well as second-order 1s-2s
terms. These values were obtained using the U"
potential and including higher-order hole-hole in-
teraction by shifting the denominator [Eq. (15)].
Kelly's corresponding numbers calculated with
numerical orbitals are included for comparison.
The largest deviation from diagrams evaluated ex-
actly by Kelly is 10 a.u. , and the average dif-
ference is 3& 10 a.u. , which is quite satisfactory,
coinciding with the convergence of the diagrams.
Larger disagreement appears in Table III for terms
calculated by Kelly with the help of the geometric
approximation, particularly for the ladder dia-
gram [Fig. 1(e)], but we believe that these differ-

ences reflect the inaccuracies of Kelly's approxi-
mate results and not expansion errors.

IV. CORRELATION ENERGY OF THE BERYLLIUM
ATOM

A. Denominator Shifts

D = D+ 6+ 6 co~~

in Eq. (18), where

(16)

Vfe proceed now to calculate the correlation en-
ergy of the beryllium atom. Kelly has shown ' ' '
that hole-hole and hole-potential interactions [Fig.
1(b)-1(d)], together with diagonal contributions to
third- and higher-order corrections [Fig. 1(e)-
1(i) with k, = k~ and ka= k4] and terms he called "re-
arrangement diagrams, "may be included in the
second-order diagram by substituting the shifted
denominator"

q= -&pql vlpq& -&&aaqal vl»qa) v&pp.
l vlppa& a & qqal vl qqa&-I 5 (vqal vlvqa& -&&aal ql &aa))

(
En&P

—Z (v&aalvlv&aa) ()aalvlqa&+ 5 &vpl" I"p& (pl vip) + E&vqlvlvq) —(qlvlq&) (aq)
nial'-q n n

with exchange terms included, and

~..„=E„„(p,q)+Z E,.„(p, r)

+Z E„„(r,q)+E'„„(k„k,) . (18)
w&P

E„,„(p, q) is the correlation energy of the pq pair,
and E„„,(p, r) and E„,„(r, q) have a similar mean-
ing. E'„„(k&,ka), the sum of diagrams with par-
ticle lines kz and k~ and hole lines other than p
and q, is rather awkward to include in our form-
ulation, since not all pair correlations are cal-
culated with the same particle states. This term
is small relative to the total denominator, and we

therefore neglected it. The other terms of Eq.
(18) make it necessary to calculate correlation
iteratively, since they appear in expressions for
individual diagrams and are in turn modified by
these diagrams. This does not present a serious
problem, as 6„„is only a small shift. All the
results quoted in this section were calculated with
the shifted denominator of Eq. (16).

B. 2s2 Correlation

The advantage of using U» or U" in the ex-
pression for the zero-order Hamiltonian [Eq. (2)]
is that diagrams 1(f), 1(h), and l(i) cancel out
when p and q are 2s states. The third-order ef-
fects E,(l) not included in the second-order terms
Ea(f) by denominator shifts consist of the nondi-
agonal diagrams 1(e) and 1(g), with the latter

counted twice to allow for the two possible inter-
actions between hole and particle lines. Only di-
agrams with all particle lines having the same l
value are considered here. E2(l) and E~(l) cal-
culated with the U» potential for 0 &l &3 are pre-
sented in Table IV. Following Kelly, ' we define
enhancement coefficients

C, = E~(l)/Ea(l)

and approximate nondiagonal higher -order effects
by assuming they form a geometric progression.
This progression is then summed to

E(l, I') = E (I, I')/[(I - C, ) (1 C, , )] . (21)

Ladders with two 1 changes may be approximated
by

E(l, I, I ) =E(l, l ) C, ,",
where

(22)

Unlike Kelly, who applied the geometric approxi-
mation to most third-order terms, ' we use it for
fourth- and higher-order corrections only. These
corrections are rather small, and our E(l) values
should therefore be more accurate than Kelly's.

Other contributions to 2s correlation come from
ladders [Fig. 1(e)] where the intermediate interac-
tion changes the l of the particle lines. These
Es(l, I ) terms are corrected for higher-order ef-
fects by
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TABLE IV. 1s and 2s correlation energy (a.u. ). VSH potential. Denominators shifted as in Eq. (16).

E2(l) s
p
d

f
sum

Present
work

—0.013 144
—0.023 786
—0.003 631
—0.000 945
—0.041 506

]s2

Kelly
Present

work

—0.003 144
—0.049 868
—0.005 077
—0.001 349
—0.059 349

2s

Kelly

s
p
d

f
sum

—0.000 686
—0.000 904
-0.000 012

0.000 004
—0.001 599

—0.000 194
0.007 963
0.000 391
0.000 090
0.008 250

s
p
d

f
sum

—0.013869
—0.024 726
—0.003 642
—0.000 942
—0.043 179

—0.014 08
—0.025 18
—0.004 14

—0.003 352
—0.043 002
—0. 004 714
—0.001 265
—0.052 332

—0.003 704
-0.043 57
—0.005 321

Z(l, l') SP
Sd
pd
sf
pf
df

sum

0.000 278
0.000 050
0.000 296
0.000 013
0.000 075
0.000 034
0.001 492

0.000 412

0.000 226

0.000 954
0.000 132
0.003 277
0.000 040
0.000 809
0. 000 267
0.010 957

0.002 03

0.00282

S(l, l', l")
Three and

four l
changes

Total

—0.000 081

—0.041 767 —0.042 12

—0.004819
0.000 810

—0.045 374 —0.044 88

References 3 and 10. Most third-order terms approximated. "Including terms with l &l'.

C, ,"=E(l, l )/E(l ) . (23) C. 1s Correlation

The sum of these. terms is -0.004819 a. u. , with
the largest contribution coming from E(p, d, p)
= —0. 0022VS and E(p, f, p)= —0. 000517 a. u. E(p, d,

p) was also calculated directly to check the validity
of Eq. (22); agreement was within 5x10 ' a. u.
The same approximation was used to evaluate lad-
ders with three and four l changes; they gave
0. 001301 and —0.000491 a. u. , respectively.

There are several sources of errors in the cal-
culations reported above. The contribution of par-
ticle states with l & 3 is estimated to be (-4 + 2)
0&10 a. u. The expansion error due to incom-
pleteness of basis sets is put at 3x'10, and the
error of approximating high-order corrections
should not be greater than 4x10 a.u. The cor-
relation energy of the 2s pair of beryllium as cal-
culated by us is therefore —0. 0458 +0.0009 a. u.
This should be compared with Kelly's corrected
value ' of —0. 04488 a. u. and Nesbet's ' —0.04535
a. u.

Contributions to the 1s intrashell correlation
calculated with the Vs„potential appear in Table
IV. The third-order terms include the diagrams
1(e), 1(f) and its exchange, 1(g) [numerically equal
to l(f)], and 1(h) and its exchange with 2s on the
hole line n. All these diagrams, except 1(e), are
counted twice. Another calculation of the 1s en-
ergy was carried out with the V» potential. Only
1(e) and 1(g) contribute in this case to the third-
order diagrams, which turn out to be an order of
magnitude lower than the value shown in Table IV.
The total 1s correlation-energy values agree how-
ever within 10 a. u. Particle states with l & 3 are
believed to contribute (-3+1)x10 4 a. u. The ex-
pansion error is put at 3x 10 a. u. , and the error
of approximating high-order effects is negligible
since these effects themselves are small. We ob-
tain therefore a 1s correlation energy of —0.0421
+ 0.0004, compared with Kelly's —0. 04212 a. u.
and Nesbet's" -0.04183 a. u.
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D. 1s-2s Pair Correlation

The intershell 1s-2s pair correlation is an order
of magnitude lower than 1s and 2s energies. Only
the second-order terms of Fig. 1(a) and its ex-
change were therefore calculated, with some high-
er-order effects included by denominator shifts.
Results obtained with the V» potential are pre-
sented in Table V. The 1sn2sn energies are
smaller than 1sa 2sP ones because of partial can-
cellation of direct and exchange diagrams for the
former. These values, multiplied by two to ac-
count for the lsP2sn and lsP 2s P pairs, give
-0.00592 a.u. Estimating higher-order effects
not included in Table V, we put the total 1s-2s
pair correlation at —0.0054 +0.0004 a.u. , com-
pared to Kelly's' —0.00497 a. u. (only hole-hole
interactions included in the denominator shift) and
Nesbet's —0.00586 a.u.

E. Three-Body Terms

Three-body contributions to the correlation en-
ergy are described by the ring diagram of Fig. 2

with p, q, and r all different, with all diagrams ob-
tainable therefrom by exchange along one or more
interaction lines included. Results for 1s 2s and
1s2s electron triples obtained with the V» poten-
tial and shifted denominators are collected in Table
VI. Accounting for the four electron triples of Be
and correcting for nondiagonal higher-order terms,
we estimate the three-body energy at 0.0011
+0.0002 a. u. , compared with Kelly's3 0.0005 a. u.
and Nesbet's" 0.0009 a. u.

F. Total Correlation Energy

The separate contributions of electron pairs and
triples to the correlation energy of Be are summed
in Table VII. The total of —0.0922 + 0.0019 a. u.
is in good agreement with the "experimental""
—0.0939 a. u. Kelly's corrected value, " obtained
by numerical MBPT calculations with s, p, and d
orbitals only and approximating most third-order
diagrams, is —,0. 092+0.004 a.u. and Nesbet's
Bethe-Goldstone calculations give —0.0921 a. u.

V. CONCLUSIONS

The purpose of this paper is to investigate the
feasibility of carrying our MBPT correlation-en-

FIG. 2. Three-body
diagram. p, q, and x
represent different hole
states. There are seven
other diagrams [e.g. ,
Fig. 1(f) and 1(g) vrith hole
states all different] ob-
tainable by electron ex-
change along one or more
interaction lines of the
pictured ring diagram.

ergy calculations by expanding the particle and
hole orbitals in a finite set of bound-type functions.
Three tests are applied, with the Be atom serving
as a test case: convergence of individual diagrams
with respect to basis set size, their agreement
with values obtained by the numerical method, and
agreement of the total correlation energy with ex-
periment. The first two tests are satisfied within
10 a.u. by 9s 7p 5d4f Slater-type orbital sets for
intrashell correlation and a 10s 8p 6d4f set for the
intershell effects. The same sets satisfy the third
criterion, too. These results indicate that MBPT
calculations by the expansion method are indeed
feasible. A point that remains to be investigated
is the dependence of the basis orbitals on the
property to be calculated.

The use of finite, bound-type basis sets for
MBPT calculations has several advantages over
the more common numerical method, such as the
uniform handling of particle states with negative
and positive energies and the elimination of cum-
bersome integrations over continuum states. The
most serious disadvantage of the expansion method
is the need to search for satisfactory basis sets.
The considerable experience gained in variational
calculations with finite basis sets should provide
useful hints (see Sec. II B), and our results indi-
cate that such criteria as the spatial distribution
of excited orbitals and their overlap with occupied
orbitals may be applicable here as they are in
variational work. Thus, the set used to describe
the 2s correlation is much more diffuse than the 1s
set. In general, it cannot be expected that a single
basis set of reasonable size will be adequate to de-
scribe the different correlation effects. (A related

TABLE V. 1s-2s pair correlation (a.u. ). V2sm potential.
Denominators as in Eq. (16).

TABLE VI. Three-body correlations (a.u. ). V sH
potential. Shifted denominators. The ring diagram (Fig.
2) and all its exchanges are included.

s
p

f
sum

1su 2so'

—0.000 015
—0.000 753
-0.000 051
-0.000 004
—0.000 823

isa 2sP

—0.000 571
—0.001 385
—0.000 158
—0.000 023
—0.002 137

s
p
d+f

SUQl

1s~2s

—0.000 019
0.000 083

10
0.000 062

1s 2s2

-0.000 006
0.000 593
0.000 005
0.600 592
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TABLE VII. Correlation energy of Be (a.u. ).

1s
2S
1s-2s

Total pair
correlation

Three-body

Total

—0.0421 + 0.0004
-0.0458 + 0.0009
—0.0054 + 0.0004

—0.0933 + 0.0017

0.0011+ 0.0002
—0.0922 + 0.0019

phenomenon is encountered in Kelly's Be calcula-
tions, where different continuum orbitals are used
to calculate ls and 2s correlation. ) Each elec-
tron shell will probably require a different basis
set, with intershell effects (usually smaller
than intrashell ones) calculated in a mixed set,
comprising the most important orbitals of the rele-
vant intrashell sets.

The necessary search for adequate basis sets
will probably make the application of the expan-
sion method to atomic systems less convenient than
the conventional numeric MBPT. The potential
of the method lies in the realm of molecular cal-
culations. An acceptable zero-order Hamiltonian
must have easily obtainable eigenfunctions, while

not leaving off too large a perturbation. No such
Hamiltonian suitable for numerical MBPT calcula-
tions on a variety of molecules has been proposed.
The use of a one-center operator has adverse ef-
fects on the convergence of the perturbation series
even for the HzO molecule, '" and a similar ap-
proach to molecules with several atoms heavier
than hydrogen is hopeless. The application of the
expansion MBPT method to molecules, on the other
hand, is not very much different from the atomic
application presented above (except for such prob-
lems as the calculation of many-center integrals),
and investigations in this direction are now in
progress.
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