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have computed a value of —1.76098 a. u. for the
relativistic energy, and Clementi'6 reports a value
of —526. 81705 a. u. for the HF energy. The total
experimental energy of neutral argon is not known.
Moore' gives only the first eight ionization poten-
tials, the sum of those potentials being —21.204071
a. u. Sherr, Silverman, and Matsen have calcu-
lated a value of —508. 069 09 a.u. for the total
energy, nonrelativistic plus relativistic, of Ar '.
Adding the theoretical results of Scherr gt gl. , to
the experimental results from Moore, we obtain a
value of —529. 309 80 a.u. as the total energy of
neutral argon. Subtracting the relativistic energy
and the HF energy'6 from the total energy yields a
value of —0. 73 a. u. for the correlation energy of
argon. Clementi' uses the correlation energy of

neon as a basis to estimate the correlation energy
of argon and reports a value of —0.692 a. u. We

note, however, that in a later work, Clementi'
reports an estimate of the correlation energy of
argon as —0. 79 a. u.

Several other properties of argon can be inves-
tigated using the basis set of single-particle states
used in this calculation. Simons has calculated
the dipole polarizability of argon and the London
dispersion forces between argon atoms. Further
investigations are being carried out.
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Effect of correlation between the two participating electrons is investigated for KLL Auger
transitions in the region 12 &Z & 21 using a simple ansatz for the correlated two-electron wave
function. For simplicity, the screened-hydrogenic model is used for these wave functions in

the limit of no correlation. Our results for relative intensities are compared with the un-
correlated hydrogenic intensities and with the results of earlier hydrogenic calculations. An

enhancement of these intensities is observed in the right direction.

I. INTRODUCTION

The object of this paper is to investigate the
importance of correlation effects between the two
participating electrons in a KLL Auger transition,
particularly for low atomic numbers. It is well
known that Auger line intensities are extremely
sensitive to the detailed nature of the wave func-

tions used. Ideally, the recent nonrelativistic cal-
culations' with Hartree- Fock-Slater (HFS) wave
functions should provide one with a logical basis
for introducing the features associated with cor-
relation into the problem. However, because of
the relative simplicity of the screened-hydrogenic
model, in this paper we shall try to consider the
effects of correlation within the framework of this
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model by using a simple ansatz for this correlation.
Our object in doing this is to try to see how far
electronic correlation effects could contribute to
the relative line intensities in the ELL series(i. e. ,
ratio of the intensities of the individual lines to
that of the KL,L, line) for the region 12 & Z & 21.
The reason for choosing the low-Z region will be
made clear in Sec. II. It is hoped that even a sim-
ple study of this kind may later on motivate further
work on correlation effects based on a more real-
istic model.

While the scope of our discussion is necessarily
restricted by the use of the hydrogenic model, we
would like to point out here that even the more
sophisticated and successful models often implicit-
ly neglect details of the electronic repulsions.
For example, in a self-consistent-field (SCF) cal-
culation, the wave function for each individual elec-
tron is determined by (i) the potential of the nucleus
and (ii) the potential due to the probability density
of the other electrons. Qn the whole, this allows
electrons to come close together more often than is
actually the case. Since the Auger process arises
basically from the interaction between the two par-
ticipating electrons, in addition to the fields (i) and

(ii) above, the repulsive influence of each of these
electrons on the other should play a crucial role in
this process. In other words, one should try to
construct a wave function here in which the inter-
acting electrons avoid each other more strongly
than in the usual S{."F formulation. This is the ap-
proach we shall try to use in this paper on the much
simpler hydrogenic model.

II. THEORY

A. Correlation Energy and Correlated %lave Function

As outlined above, details of the electronic re-
pulsions should have an important bearing on this
problem. The energy of this interaction should
therefore enter into the over-all energetics of the
system. Effectively, this gives rise to a correc-
tion in the total Hamiltonian of the system which
is commonly called the correlation energy. 3 This
correlation energy is quite appreciable for two elec-
trons in the same spatial orbital, particularly so, if
they have opposite spins. Incidentally, this is the
case with the KL&L, transition. Since the intensity
of this line is usedas the basis for computing relative
intensities, we should like to note here the particu-
lar relevance of correlation effects in our discus-
sion of the KLL transitions.

That the correlation term should be relatively
more important in the lighter atoms is readily
understood. The over-all averaging effect of the
other "spectator" electrons may not be quite so
smooth in these atoms as to give rise to a central
field. Viewed against the background of this some-

what weak noncentral field, the two-electron inter-
action assumes the role of a substantial perturba-
tion with a dependence on the interelectron dis-
tance mfa' )r& —r~[,

In looking for a wave function gc for such an
interacting pair of electrons, we can start out by
writing

where f„is the antisymmetrized two-electron hy-
drogenic wave function and y(x,2) is the correlation
function. In writing Eq. (1), we note that the atom
subjected to an Auger transition has a nearly-
closed-shell configuration which can be described
in terms of a completely-closed-shell configuration
together with the correlated two- electron configura
tion. Since the completely-closed-shell configura-
tion may be treated for all practical purposes as a
vacuum, t/ic may be regarded as the wave function
for the entire atom including the correlated-elec-
tron pair. We have in Eq. (1) what is usually
called a correlated open shell, the detailed nature
of g„depending on the type of coupling used.

As for the correlation function X(x,2), we recall
here the arguments made by Hartree and Ingman.
The idea is that y(x,z) should approach a constant
value for x» -~, expressing the separability of
the wave function when the electrons are far apart,
and should decrease to a smaller value for r»- 0,
keeping the electrons apart.

B. Ansatz

On the basis of these considerations, we have
tried the following ansatz for the bound-state wave
function:

gc = P„(nln l; SLZM ) (1 —Xe ""&2),

where X and p, are variational parameters, and

$„(nln l; SLY) is the specialized form of
t/P„(r„r~) corresponding to the SLJM representa-
tion (we have used in this paper an extreme LS
coupling without configuration interaction). t/r„ in
Eq. (2) may be generally characterized by two dif-
ferent principal quantum numbers n and n, how-
ever, since the two electrons participating in the
ALL Auger process belong to the same major shell,
we have here ~=n'.

Since the purpose of this paper is to explore the
validity and limitations of the above ansatz in de-
scribing the atomic configuration undergoing ELL
transitions as a heliumlike systems, we start out
by using the ground state of helium as a test for
this model. In other words, we make a variational
calculation of the ground-state energy of helium
using the wave function |/c with the appropriate
quantum numbers and obtain the best value of X by
minimizing the energy. It is seen that X may be
taken as unity.
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For the secondparameter p, , we choose p = Z/nao,
where a is the first Bohr radius of hydrogen. [This
choice is valid for KLL transitions where n = n .
In general we can write p, = (Z/2ao)(1/n+ 1/n ). ] This
implies accepting ao as the unit of length. Obvious-
ly, tjIc is very nearly equal to |)I» for large Z so that
correlation effects become inappreciable. For
small Z, tjIc is rather different from g». This is
quite plausible, since for heavier atoms the Cou-
lomb fields of the nucleus and the other electrons
become quite strong, so that the perturbation caused
by the mutual repulsion of the two participating
electrons may be neglected. For lower Z values,
this perturbation is mor e appr eciable when compar ed
to the combined effect of these Coulomb fields. It
can also be seen that for larger values of n, where
the participating electrons can only "see" a rather
weak screened-Coulomb field, correlation effects
between these electrons should be more appreciable
than for small values of n.

For the final state of the system we do not as-
sume any correlation between the two electrons,
because they are now far apart and belong to states
which are dynamically different in character, one
being bound to the K shell and the other raised to
the continuum. For the continuum electron we use
a screened-Coulomb wave function normalized to
a current of one electron per unit time per unit
energy range.

Here R and Y are the single-particle radial and
angular functions, and y& and ~ are the single-
particle spin functions.

The total transition probability into all possible
states of L and S for a given final configuration of
the atom 'then is

(2$+ 1)(2L+ 1) 1 1 e
2(2f;I) ~X' I(~'~r ~~') . (8)

Here gz is the final-state wave function which may
be written

tP&=P»(n" 1"~v; SLY) .

N& is the normalization factor given by

g» (nlnl; SLJM)=~ Z Cg „„[p(nlnl LM~)
s

+ (- 1)" '
y(nl nlLM )] X ( —,'-,'SM ),

(8)where

y(nlnl'LM~) = Z C",„'.~ &( (&g, yg) &p' (&2, P2)
~g~l

xZ„,(r, )~„,, (r,) (4)

and

X(-'-'SM ) = Z C."".,",'v',"'X~(~8) X2(~e') (5)

C. Screening
Nc= J gc gcdr, dr, . (8)

It is well known that the result of such a calcula-
tion depends critically on the choice of an appro-
priate effective nuclear charge Z,«= Z-o; where 0

is the screening constant. For the bound-state wave

functions, we follow the Hartree prescription and
put o = Z- ((r„)/(r)). Here (r„) is the mean hy-
drogenic radius and (r) is the mean Hartree-Fock
radius. We use (r) as computed by Froese' for
neutral atoms.

The choice of screening for a continuum state
is more difficult. However, since the greatest
contribution to the matrix element comes for val-
ues of x near the orbit from which the Auger elec-
tron is ejected, the choice Z,«= Z„seems to be
realistic, where Z~ denotes the effective nuclear
charge for the 2s or 2P subshells, as the case may
be.

III. CALCULATION

For the lighter atoms, the electrostatic inter-
action dominates and we can realistically use the
LS coupling to describe the initial and final two-
hole states of the atom. (The second hole in the
initial state belongs to the continuum. ) In the
SLJM representation, the antisymmetrized wave
function g» introduced in Eq. (2) is given by

In the above n' l' are the quantum numbers char-
acterizing the bound electron in the final state
(for KLL transitions, n"=1, l"=0 and v denotes
the angular momentum of the ejected electron).

Specializing now to the ALL transitions, the
total transition probability into states of all pos-
sible L and S for a final configuration of the atom
ls

g (2S+1)(2L+1)g
LS P

—Z[d&(D~ —D&) a (- 1)'" e&(E& E~ )] . (9)-

Here P is a discrete index denoting the multipo-
larity of the virtual photon, arid its range is de-
termined by the conservation of angular momen-. -

tum. D& is the direct radial integral correspond-
ing to uncorrelated electronic orbitals and D~ the
same for correlated electronic orbitals. Similar-
ly, E~ and E~ represent the uncorrelated and cor-
related exchange integrals. (The plus sign goes
with even I.+ S and the minus sign with odd L+ S. )
The uncorrelated integrals D~ and E~ are exactly
the ones used by Kostroun et al. ' The correlated
integrals are given in the Appendix. The angular
factors d& and e& are as follows:
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Here & El(CPi(l'& is the reduced matrix element of
the spherical harmonic, multiplied by 4TT/(2p+ 1)'t3
and

l) l~ L
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is the 6-j symbol.
In obtaining E(l. (9) from E(l. (6), we have used

in go the approximate expansion

Vgp p ( letup

where 8U, is the angle between x qand ~&, the lat-
ter denoting the greater and smaller of the two
quantities x, and ra, respectively. The neglect of
higher terms in this expansion may be justified by
remembering that the initial wave function is very
small for small values of x&z. Most of the contri-
bution to the matrix element from this wave func-
tion is therefore made in the region of large x&z.

IV. RESULTS AND DISCUSSION

Transition rates for the lines 'S, (KL,,L,),
S(&(KL3L3), 'D3(KL3L3), P, (KI,,L3,3 ), and the

triplet P(&, , 3 (KI,,I,3 3 ) obtained by using the cor-
related two electron wave functions are given in
Table I. The corresponding rates in the limit of
no correlation (1=0) are also displayed in the
table. The only experimental results for transi-
tion rates available in this region are those of
Cleff and Mehlhorn3 for Cl (Z= 17).

Figure 1 shows calculated intensities of the

I0-
12 13 10

-- D2

1—So
I I MO

15 16 17 I8 19 20 21 22
ATOMIC NUMBER

FIG. 1. Intensities of D2 (KL2LS) lines relative to the
line SogL~L~) for 12 &2 & 21 are shown as a function of
atomic number Z. We have included the only available
experimental values for ~2Mg of Fahlman et al. (Ref. 9)
and those for ~YC1 of Mehlhornet. g). (Ref. 8). The solid
lines represents the correlated result and the broken
lines the uncorrelated ones. The same notation applies
to Fig. 2.

lines 'So(KI.3L3 ) and 'D3(KI,SI.3 ) relative to the
line' S, (KL,L, ); Fig. 2 shows the same for the
lines'P, (KL,L3 ~ 3) and Pz(KL, L3 ~ 3), In these
figures we have also included the experimental
values of relative intensities given by Fahlman
et af. 3 for Z = 12 in addition to those for Cl (Z =17).
Our uncorrelated results (which is a pure hydro-

TABLE I. K-auger transition probabilities (in multiples of 10+ a.u. ) for 2s 2p, 2s 2p5, and 2 2p4 final configuration
of the atom.

Uncorrelated transition rates
Values of the transition rates taking correlation

into account

'$,
(KLgLg)

2. 442
2.492
2. 525
2. 560
2. 583
2. 600

12
13
14
15
16
17
17
18 2.609
19 2. 614
20 2. 619
21 2. 620

LS

(KL2L2)

0, 125
0.169
0.210
0.250
0, 290
0.328

0.368
0.402
0.434
0, 460

Ig
(KL )L2 g)

2. 774
3.166
3.493
3.786
4. 031
4, 264

4.471
4. 633
4. 785
4. 912

PJ'

(KL,L, ,)

0, 888
0. 971
1, 023
1.082
1.117
1,163

1.197
1.213
l.239
1.248

iD

{KL2L3)

1.668
2. 213
2. 758
3.272
3, 720
4.249

4. 734
5.165
5. 552
G. 887

i$
(KLgLg)

1.187
1,180
1.133
1,120
1.105
1, 075
0.64+01
1.050
1, 009
0.983
0. 956

i$
(KL2L2)

0.139
0, 192
0. 247
0.370
0.457
0. 552
1,1+0.8
0.602
0. 818
0.981
0. 944

ig
(KL,L, ,)
2. 149
2. 297
2. 477
2. 582
3.104
3.669
3.0+0.3
4. 084
4. 890
5.866
5.683

sp
(KLiL2, 3)

1, 070
1,196
1.286
1,415
1,578
1.763
1.4+0.2
1.937
2. 199
2. 382
2. 684

D2
(KL,r.,)
1.320
l.760
1.916
2.644
2.967
3.183

10.6 +1.2
4. 973
5. 724
5.790
G. 948

The experimental results of Mehlhorn et gl. (Ref. 8).
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genic ease) agree closely with those of Asaad'0 or
of Callan. " In fact the two sets of numbers are
not discernible on a graphical plot. So in our
figures we have not included the transition rates of
Callan or of Asaad. It may be noted here that
Asaad's intermediate- coupling calculations ar e
actually based on LS-coupling transition ampli-
tudes computed by Callan using a s creened- hy-
drogenic model. In the low- Z region under con-
sideration Asaad's results come quite close to
the LS-coupling values .

Our hydrogenic values do not agree with those
obtained recently by Kostroun, Chen and Crase-
mann, ' because they have used a different type of
screening for the continuum electron. Interest-
ingly, looking at the correlated transition rates
for the'So (KL,.L, ) line we can see that its inten-
sity decreases as we go to the heavier atoms.
This is also the trend exhibited by the correspond-
ing rates of Kostroun et al. , although the num-
bers are different. Actually, our relative in-
tensities are better than the ones which can be
obtained from their values of transition rates .

From existing experimental data in the low- Z

3p

fp
1

5P
l I I I I

12 15 10 15 16 17 18 19 20 21 22

ATOMIC NUMBER 2

FIG. 2. Intensities of P1 (KL~L2, &) and Pq+L~L2 3)
relative to SogL~L2) are shown as a function of atomic
number S. We have included the only available experi-
mental values for 12 Mg of Fahlman et al. (Ref. 9) and
those for 1&Cl of Mehlhorn et al. (Ref. 8).

region it can be seen that the line So(KL,I,,) is
about the weakest. Although in our correlated
calculation this is not the weakest line, Table I
shows that it is consistently weaker than in the
uncorrelated hydrogenic case. The effect, of
course. is to enhance the relative intensities of
the other lines, which is a. change in the right direc-
tion sofar as experimental trends are concerned.

While the relative intensities obtained in our
correlated calculation exhibit an enhancement in
the right direction, their general behavior with
increasing Z is quite similar to that of the uncor-
related intensities . In Fig. 1, relative intens i-
ties of the 'So (KL,I,, ) and 'DE (KLELE) lines increase
with Z, but the rate of increase appears to level
off near Z = 21 . This is understandable, because
this is the region where the lines EPO(KLSLE) and
sPE(KL3L, ) belonging to the same configuration (2s)R
(2p)4 begin to build up at the expense of 'So(KLRLR)
and 'D, (KLSLE).

On the other hand, Fig. 2 indicates that the
lines 'P, (KL,LR, ,) and 'Pz(KL, L2 3) belonging to
the configuration (2s) (2p) keep growing in inten-
sity even at Z = 21 . This is in contrast to the un-
correlated case, where the rate of growth of these
lines is considerably slower, the group P . showing
an almost stationary intensity.

It can be seen that no definitive calculation in
accord with experiments has yet been worked out.
Quite possibly, choice of continuum wave functions
with appropriate screening' may be one of the fac-
tors having to do with the discrepancies which per-
sist. However, as conjectured by Callan et al. ,

'3

the simple e /r» interaction given originally by
Wentzel for the Auger effect may not hold very
nicely in the low-Z region. In particular for small
interelectronic distance r,~, the Hartree- Fock
radial integral overshoots its final steady value.
This seems to indicate that the kind of cutoff built
into our model for small r» is a venture in the
right direction. That this "correlation" has been
tagged onto an otherwise simple hydrogenic system
serves to keep the field of vision clear for judging
the relative importance of the different elements
of the calculation. For example, introduction of
intermediate coupling and configuration interaction
would be the next logical step enabling us to see how
crucial this correlation is when compared to these
other features. How one could go about introducing
correlations into a full- grown Hartree- Fock sys-
tem should be an interesting question.

APPENDIX: RADIAL INTEGRALS

The correlated direct radial integral DP introduced in Eg. (9) is given by
n" -l"-1 n'-l'-1 n-l-1

& (f"+S"+l+S+2+P))
Dp = &n"~'' +n'I' &nt + ~ ~ Pn" ~"s"Pn'1'8'0 'slI~p sJ&p s&p ( [, QLC1+ CP )] i"+S"+r+S+3+P
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gssgSs se, ge, S~s~p nc

tf lf
[-,'(C, +C,)]'(l"+S"+l S 3 P- )(

g "+s»+~+ s+3-p qC
ff lf

[-'(C,.C,).u/) ]'(l".S".l.S.2- j -j)t) '

(l'+S'+v+1 —P))
Q (lyS q

v)= G( vq l)ra C gl l~r~g~+z+g ~ 2 1 lt S1 2 ~ y 2v+2y+ +p+ + +P+ -P 3+ pyk+s )

(l '+ S '+ l'+ S'+ l+ S+ v+ 4-j ) I
l)

[~( C C C ) p/ y l]g"+8"+l~+8'+g+8+v+5-J

ff ff
P+ 1+Kg 2$

, 2v+2~ g . . (A3)
+S +l +S +l+S+ v+5-j ' ' 2(Cg+Ca+C~+p/0+i

where G(v, g), C„C~,C„etc., are exactly as in
Ref. V. Similarly one can write down the expres-
sions for E~ and E~ where the role of C~ and C3 are
interchanged. [For the exchange integrals,
Q'(l, S, v) Q'(l, S, v). Q& and Q& are obviously
symmetric under this mapping. ] The Sommerfeld

parameter g is also correspondingly modified.
All expressions are given in atomic units. The

ordinary hypergeometric functions with complex
arguments 3&, which occur in the radial, integrals
can be computed by the matrix method of Callan
et aE. "
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