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Direct sum-over-states methods are used to evaluate the frequency-dependent polarizability and anisotropy
for ground-state H,. Rayleigh and rotational and vibrational Raman cross sections for photon scattering and
depolarization ratios are given for Lyman-a radiation. An assessment of the accuracy obtainable by the
direct use of sum-over-states methods indicates its high promise as a technique for accurate computation of
molecular properties. The Dalgarno-Epstein [J. Chem. Phys. 50, 2837 (1969)] technique for obtaining a
finite-set representation of components of the resolvent operator is shown to be effective for molecules.

I. INTRODUCTION

Perturbation theory can be used to express many
properties of atoms and molecules as a sum over
matrix elements of complete sets of states of an
atomic and molecular system, It has generally
been assumed in the past that such a definition of
a molecular property was a purely formal state-
ment and could not be reasonably used as a basis
for computation, Dalgarno and co-workers,*
Karplus and Kolker,? and Kolker and Michels®
have shown that the sum-over-states methods can
be a very efficient approach for computation of
dynamic polarizability of atoms. The work re-
ported here shows that such sum-over-states
methods are also a very efficient and accurate
means of carrying out computations on molecular
systems. (A preliminary report on this work has
been given earlier.*) This is equivalent to a state-
ment that it is possible to compute a resolvent
operator which is effectively complete in some
domain of wave-function space. In particular, the
use of sum-over-states methods for dynamic
polarizability shows that sets of states constructed
by a slight modification of ordinary variational
procedures can lead to a resolvent-operator ex-
pression which is complete in the realm of states
reachable by dipole transitions from the ground
state.

Dalgarno and Epstein® showed that certain sum-
over-states formulas (sum rules) are exactly
satisfied for properly chosen finite sets of wave
functions (which are not necessarily eigenfunctions
of the Hamiltonian). It is demonstrated in these
computations on the hydrogen molecule that if some
finite set of sum rules are forced to be satisfied
or very nearly satisfied by the wave functions
chosen, then other closely related sum rules will
also give very accurate results when carried out

I

over the same set of wave functions.

This technique is being extended to the study of
such properties as dipole moments of isotopically
different systems (such as HD), magnetic suscep-
tability, nuclear spin-spin interaction, and a
variety of properties that can be expressed as sum-
over-states formulas. The ability to obtain a high
level of accuracy for a set of sum rules will also
be expected to have considerable utility in the
construction of upper and lower bounds to transi-
tion-matrix elements, &

The principal results of this study are an ac-
curate set of dynamic polarizabilities and anisot-
ropies for the hydrogen molecule, These quanti-
ties can be used to obtain such experimentally in-
teresting quantities as Rayleigh and Raman cross
sections and depolarization ratios, Kerr and Ver-
det constants, index of refraction, and other mea-
sures of interaction of radiation with matter. Of
particular interest for astrophysics are the values
for Lyman-a radiation of the Rayleigh cross sec-
tion, the vy Raman cross section, and the depolar-
ization ratio for unpolarized light.

It was also found in the execution of the computa-
tions that certain common assumptions such as the
use of closure for summing the vibrational and
rotational states of molecules are not always
justified,

II. SUM RULES, POLARIZABILITY TENSORS, AND
DEPOLARIZATION RATIOS

For a diatomic molecule the oscillator strengths
in the dipole (length) approximation are defined by
the equations

f:bz%(gb/gn)(Eb—En)(”"zlb)(bl‘z'n)r (1)
L =4(g,/8,)(Ey— E,)n|x|0)b|x|n), ()

or the equivalents of (1) and (2)inthe dipole velocity
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X is given as
k(w)=yw)/3a(w). (12)
Z|

Y,Y'

FIG. 1. Definition of the photon scattering angle 6.
The special case considered here is scattering into the
XZ plane of the coordinate system defined by the incident
photon.

or acceleration forms of the matrix element, The
factors g, and g, represent, respectively, the de-
generacies of the initial and final rotational levels:

Fun= (f"+ F*). 3)

The oscillator strengths can be formed into the
familiar set of sum rules:

S"(k)=320y frs(Ey— E, ),
S*(k)=322 frs(Ey~ E, ),
S(k)=3[S"(B)+2S*(%)].

Second-order perturbation theory gives the
polarizability of a molecule in response to a photon
as

~ o~ o~
(=220, I
~ ~— ~—

J
= —”Lz“‘“z) .

o) ?((Eb'En) - @)
w is the circular frequency of the photon and atomic
units (#=1) are assumed. In each of Eqs. (1)~(7)
the sum over states extends over all states, elec-
tronic, vibrational, and rotational, of the mole-
cule, For a diatomic molecule, the polarizability
tensor has two components:

Qu(w)=325f|;|1b [(Eb—En)z—wa], (8)
al(w):%zbf#b/[(Eb_En)a—wz]; 9)
a(w)=3la,(w)+2a,(w)]. (10)

It can be clearly seen that S(- 2) is equal to the
polarizability for w=0. The anisotropy of the dy-
namic polarizability is defined as

y(w)=a,(w)- o, (w) (11)

and k(w), a frequently used measure of anisotropy,

Experimental values of the polarizability can be
obtained via the index of refraction #:

n-1=27Na(w). (13)

N is the number of molecules per unit volume.

The depolarization ratios for the scattered pho-
tons are among the experimentally most accessible
quantities for photon-scattering experiments. The
coordinate system of Fig. 1 has the Z axis in the
direction of the incident photons and the Z’ axis in
the direction of the scattered photons. Define I,
to be the intensity of the beam scattering into an
angle 6, lying in the XZ plane. Assume the polar-
ization of the incident photons is along the Y direc-
tion and that the final rotational states are not re-
solved in the derivation of the intensity formula.
Define I4, to be identical to 1,5, except that rota-
tional states are resolved in the analysis leading to
I]g. B is the direction of polarization of the inci-
dent photon and A the direction of polarization of
the scattered photon, Then four depolarization
ratios which cover all available experimental data
can conveniently be defined:

I . . 3')’2

T_2ix07

pv_]rly 45a +4'y ’ (14)
Iy, 87*

T_ X' o - °

Pu Iyw 4507+ 7Y |6,=90°, (15)
14, 392X 347

IR SR 2 s S T
Iyy 4°X;+450° 9°+45a
1% 6y°X 37

c_. X _ J ~ 2

P T4~ X, 4507 T T+ 45a a7

where
x J(T+1)

7T 2 - 1)(27+3)

The subscripts # and v refer, respectively, to un-
polarized and vertically polarized (Y axis) incident
photons. Clearly pI and p,f include both Rayleigh-
and rotational Raman-scattered photons while pJ
and p¢ include only the elastically scattered (Ray-
leigh) photons. The far-right-hand sides of

Eqs. (14)-(17) are the familiar results, The ap-
proximation sign appears in (14) and (15) because
they are obtained by summing over final rotational
levels with neglect of the dependence of scattered-
photon frequency and the effect on the final-state
vibrational function of the final rotational level.
This is a poor approximation for H,. The approxi-
mation sign appears in (16) and (17) because X,
averages to 0. 25 in the intensity only as hcB,/kT
- 0. The depolarization ratios will in many cases,
for example, Eq. (15), be functions of scattering
angle. Measurements have not been made at
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angles different from 6,=90° for simple gases,
as far as is known to the authors. A number of experi-
ments suggest themselves. For example, a(w)
could be determined without a knowledge of p if
measurements are made at 6,=54°30", It will
appear in Sec, V that considerable attention to de-
tail in the derivation of the depolarization ratios is
essential if correct comparison to experiment is
to be made. Bridge and Buckingham” and par-
ticularly Chiu® and Ford® give detailed derivations
and analysis of the expressions for I, and I, and
the resulting expressions for the cross sections.
The components of the polarizability tensor also
determine the Rayleigh and Raman scattering cross
sections. The total cross section for H, for a
transition J=J’, v=v"' is given by

5
,{v’.'=<128f ) @J"+1)
ot
J'J0Y 2 (J’ Jz)z]
2
X[3°‘ (o oo) +37(0 00)) (®
where )\’ is the wavelength of the scattered photon
and a and y are values appropriate to the specific
transition, Summing over J', with neglect of de-

pendence of A’ and a, ¥ on final rotational state,
yields the familiar approximate formula

Qr,~(1287°/91 "*)(3a%+347). (19)

Mean excitation energies I(k) for the passage of
fast particles through matter!! are also given in
terms of oscillator strength distributions

Inl(k)=2(E ,— E,)*In(E, - E,) f,,/S®).  (20)

InI(-1) is related to the cross section for grazing
collisions of fast charged particles with atoms or
molecules. 1nI(0) is related to the mean energy
transference in fast collisions (stopping power).
InI(1) is related to the mean fluctuation of energy
transference in fast collisions and InI(2), often
called InK,, is related to the radiative correction
to atomic and molecular energy levels (Lamb
shift),

III. WAVE FUNCTION AND CALCULATIONS

The sets of wave functions used in these calcula-
tions were chosen to exactly satisfy the sum rules
S(0) and S(~ 1). Such wave functions can be ob-
tained according to the formalism of Dalgarno and
Epstein® by including in the expansion basis for the
wave function such states that Eqs. (21)-(23) are
satisfied:

(s Hol ¢:)= 8.5, (21)
(Hy= Eolho=0, Pp=dq (22)
Vi =E¢ a9, (23)

where V is a perturbation to Hy., It is easy to ob-

|3

tain a set of wave functions which satisfy these
criteria to a high degree of accuracy for the case

of V=T merely by using the conventional variational
configuration-interaction wave-function computation
packages. The procedure is to compute a good ap-
proximate wave function for the ground state (of,
say, n, configurations) and good approximate wave
functions for the lowest state of symmetries which
are reachable from the ground state by dipole tran-
sitions (of, say, #n, configurations). The ground-state
wave function is then multiplied by the appropriate
component of the T vector and added to the wave
functions of excited symmetry to give a composite
wave function. The Hamiltonian H, is then diag-
onalized in the basis. The resulting set of eigen-
functions then satisfies the sum rules to a high
degree of precision. The dipole spectrum of ground
state =} H, includes the 'z} and 'Il, states. Sev-
eral different wave-function sets were tried for the
2, 'z;, and I, states to study convergence and
obtain a satisfactory representation of the resolvent
operator over the full range of internuclear separa-
tions, For the ground state of the hydrogen mole-
cule, we used for the first wave function a 14-
configuration wave function of 12, symmetry which
was obtained by full configuration interaction on

the orbitals 1s, 2s, and 2p on both nuclei, The
wave function has the form

14
¥, R’=El C,(R)®,(F, R).
i=

The C,(R) are determined variationally and each
$, has '>} symmetry. A contracted notation,
e.g., '27(14), will be used to refer to the wave
functions. The second wave function used for the
ground state was a 24-configuration wave function
['Z} (24)] compounded by using full configuration
interaction, except for three ionic terms involving
the 3d, orbital, on 1s, 2s, 2p, and 3d on both
nuclei, The orbital exponents for the orbitals were
optimized at each internuclear separation. The
Dalgarno- Epstein finite-set sum rules are not
perfectly satisfied unless ¢, is an exact wave func-
tion, We did not find that the sum rules were
particularly sensitive to the ground-state wave
function so long as wave functions of good quality
were used,

For wave functions of !, symmetry, a wave
function of 26 configurations ['T }(26)] constructed
without explicit inclusion of the z¢, in the expansion
basis was used from R =1a, to 3a,. The orbital
exponents were optimized on the lowest state at
each internuclear separation. For R >3a, and for
0.5a,=R <1.0qa,, a function of 36 configurations,
which included a ten-configuration wave function
with full configuration interaction on 1s, 2s, and
2p for the 'z} state plus z times the 14-configura-
tion X'z, wave function, was used.
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1%1(36) ="' 5(10)+ (2)'z}(14) . (24)
A 52-term wave function constructed by

12(52)=12,(28) + () 'z ;(14) (25)

was used to test convergence,

For the states of 1[1,, symmetry, two wave func-
tions were used. A 28-configuration wave function
[111,, (28)] was compounded by taking six terms, full
configuration interaction on 1s, 2s, and 2p with
orbital exponents optimized on the lowest state at
each internuclear separation, to which was added
the 14-configuration ground-state wave function
multiplied by (x+iy):

'1,(28) ="1,(8) + (x +iy) ' }(14) .. (26)

The second wave function used for the I, states to
check for convergence was a 40-configuration wave
function compounded according to the equation

1,(40) = 'I,(18) + (v +4y) = }(14) . (27)

I11,(18) is a wave function with orbital basis 1s, 2s,
2p, and 3d on each nuclei and full orbital exponent
optimization on the lowest state. The wave function
contained all covalent configurations that result
from full configuration interaction on the basis;
only the three ionic configurations (1s2p +),

(1s3d +), and (1s3p+) are included. The transi-
tional-matrix elements with the larger 'II, and 'Z }
wave functions were computed using the 24-config-
uration 'z} function. Comparable levels of ac-
curacy in the wave functions seem to be essential,
so that the error in the transition energy will be
minimized,

The sets of wave functions were grouped into two
sets for the computation of the f}, and f;, distribu-
tions, which are the basic data for the computation
of a(w), y(w), etc. Set 1 computes f,, from ‘T }(14)
and 'z} (26) for 1.0ay<R <3, 0a,, '} (14) and
1% (36) for 0. 5ay<R <1.0a, and for 3.0a,<R<8.0ay,
and f%, from 'z} (14) and 'I1, (28) for 0.5a,<R
<8.0a, Set 2 computes fy, from T} (24) and
15 (52) for 1.0a,<R <3.0a,.

IV. SUM-RULE COMPUTATIONS FOR H; FOR STATIC
QUANTITIES

We report in this section some results obtained
using sum-rule functions as defined in Eqs. (28)-
(33):

S(-2)=a(0), (28)

S(=1)=3|F T |n), (29)

S(0) = N= the number of electrons, (30)
F_\e

sw=-1al( 2 B) |m), 61)

S@)==412, Z,n| Zt) 6(V,a)|n) (32)
i=
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== 5| V¥V |n). (33)

In (33), V is the total potential-energy operator of
the system, Each sum-rule function can be decom-
posed into parallel (1) and perpendicular (1) com-
ponents, These are all static quantities. The
principal quantities of this paper are those related
to frequency-dependent polarizability, e.g., Ray-
leigh and Raman scattering cross sections, de-
polarization ratios, etc. Nonetheless, the accuracy
obtainable with sum-over-states methods for a
spectrum of sum rules for the static quantities
would seem to be of interest when considering ex-
tensions of this technique to other static proper-
ties. It should be observed that the sum rules
S(~-1) and S(0) should be exactly satisfied by the
wave functions used in these computations provided
that the ground-state wave function is an exact
wave function and that the diagonalizations are
carried out to exact accuracy. Additionally, the
length and velocity forms to the matrix elements
should be identical under the same conditions.® It
will be seen that S(-2) is also very accurately
satisfied for the static case, However, the sum
rules of higher index, S(1) and S(2), are not so
accurately obtained. Table I contains the expecta-
tion values of the sum rules for a single inter-
nuclear separation together with accurate results
where they are available and diagonal expectation
values where this is practical. Table II contains
rotation-vibration averages of the static polariza-
bility tensor for several J values and for a single
J value for the 0— 1 vibrational transition.

Examining these results corroborates clearly
that the sum rules S(- 2) to S(0) are very accurate-
ly satisfied. The sum rules that weight the con-
tinuum portion of the oscillator strength, S(1) and
S(2), appear to be less accurate,

A particularly interesting comparison for the
states polarizabilities is the quantity «(0). Nelis-
sen, Reuss, and Dymanus’? directly measure «(0)
by a beam-deflection measurement in static elec-
tric and magnetic fields. They find £k=0.112
+0.002. This is in considerable disagreement with
the value of (6328 A)=0.128+ 0,002 found by
Bridge and Buckingham from photon scattering and

TABLE I. Sum rules for R=1. 4a,.

B S"E)  (nl0In)®  (nI01n)®  S'R)  (»101n)®  (2101n)®
-2 6.3517 6.3805 4,5693 4.5777
—1 3.4452 3.4590 3.4534 2.8248 2.789%4 2.8264
+0 1.9885 2.0 2.0041 2.0
+1° 1.6365 1.7066 1.7012
+2¢ 1.9992 3.8636 3.8550

2Computed from the 24-term ‘E; wave function.

bw, Kolos and L. Wolniewicz, J. Chem. Phys. 41,
3663 (1964).

°Theresults here are for S() =3 ($"+28Y.
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Vibration-rotation averages of the static
polarizability tensor.

TABLE II.

v = 0 vibrational level

JJ 1 J
afd =5@a+a) R =an—ay

This work® KW results® This work® KW results®

J=0 5.3981a} 5.4139a) 2. 006043 2.02394}

1 5.4090 5.4235 2.0138 2.0317

2 5.4284 5.4427 2.0289 2.0474

3 5.4573 5.4714 2.0515 2.0709

4 5.4957 5.4292 2.0818 2.1022
thermal
average over
rotational
levels for
T=300°K 5.4144 5.4292 2.0182 2.0360
Nondiagonal matrix elements (J=J’=0, =0, v’'=1)

off 8

KW results®
0.60974;

KW results® This work®

0.7380a]

This work®

0.7401a} 0. 60804}

3.5 computed from set-1 wave functions (see text). The
f from set-2 wave functions yields af§=>5.4114} and v}
=2,029af.

*W. Kolos and L. Wolniewicz, J. Chem. Phys. 51,
5002 (1969).

%5 computed from set-2 wave functions (see text). The
Jfp from set-1 wave functions yields ozg(f =0, 7326ag and
v39=0.585743.

with the value of «(0)=0.125 computed by Kolos
and Wolniewicz. The value computed in this study
is k(0)=0,126. MacAdam and Ra,msey13 have mea-
sured y(0) by a beam-magnetic-resonance method
and find ¥(0)=2,035+0.003a,. Using the Kolos—
Wolniewicz value for «(0) in Eq. (12), H(0)=0.125
is obtained. It would appear that Nelissen, Reuss,
and Dymanus have an undetected error in their ex-
periment or interpretation of the experiment.
Tables III and IV show the convergence of com-
puted S(1) and S(2) with respect to wave-function
size. S(1) appears to have become very stable
with respect to wave-function size, whereas S(2)
is clearly unstable as yet, which indicates defi-
ciency in the continuum representation, Our pro-

TABLE IIl. Convergence of computed S(1) with respect
to wave-function size.
Sll (1)

R X(14); '2:26)  X(14); 'z;B6)  X(24); '2;(62)
1.0 1.6915 1.7632 1.7779
1.4 1.2655 1.3782 1.3789
3.0 0.9335 1.0061 1.0056

st ()
R X(14); 'm,(28) X(24); 'm,(40)
1.4 1.7653 1.7678
2.0 1,4371 1.4761

A, L. FORD AND J.
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TABLE IV. Convergence of computed S(2) with respect
to wave-function size.

s" ()
R X(4); 'zi@e)  x(14); 'z3@6)  X@4); '2i62)
1.0 3.6450 5.2048 5.7148
1.4 1.9320 3.8056 4.0106
3.0 1.7304 2.0966 2.2162
st @)
R X(14); 'm,@8) X(24); 'm, @0)
1.4 3.9922 4.0246
2.0 2.5820 2.9442

cedures apparently yield a poor description of the
high-energy portion of the oscillator strength dis-
tribution for the 'II, states. The set of states of II
symmetry that lie high in the continuum and cor-
respond approximately to doubly excited electronic
states of H, have appreciable oscillator strength,
The spectrum of the 12; states has very little os-
cillator strength in the electronic continuum.
Table V contains the expectation values for
mean excitation energies as computed from our
sum-rule values, It would be anticipated from our
other results that our I(- 1) and I(0) should be very

TABLE V. Values of mean excitation energy functions
1111(k) =Z b (Eb - En)k ln(E,, - E,,)f,,,,/S(k) .

I(7) from the expectation value of InI(7) for the v =0
vibrational level, thermal average over rotational levels

I(-1) I(0) (1) 1(2)
This work® 16.43 eV 19.21 eV 25,39 eV 44,66 eV

Previous

values 16.28"  18.6° 31.8"  61.66°
19.5+ 0,59 247,24
18.3+2.6° 269, 3¢
18.7"

R=1.4 fixed nuclei value for 1(0)

This work 19.52 eV

Kamikawai et al.® 18.2 eV

%5 computed from set-2 wave functions (see text).

PReference 20.

®Lower bound, L. Wolniewicz, J. Chem. Phys. 45,
515 (1966).

4. D. Garcia, Phys. Rev. 147, 66 (1966).

®*Experimental value, F. W. Martin and L. C. North-
cliffe, Phys. Rev. 128, 1166 (1962).

fHydrogen-atom exact value, H. A. Bethe and E. E.
Salpeter, in Handbuch dev Physik, edited by S. Fliigge
(Springer, Berlin, 1957), Vol. 35/1.

®R. Kamikawai, T. Watanabe, and A. Amemiya, Phys.
Rev. 184, 303 (1969).

bp, W. Langhoff and A. C. Yates, J. Phys. B 5,
1071 (1972).
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accurate,

It was noted in the computations that the exact
equality between length and velocity forms of the
matrix element which would in principle result
from the exact application of the Dalgarno—- Epstein
finite-sum-rule procedure was not obtained, It
was consistently found that use of an average of the
length and velocity matrix elements was more ac-
curate than either separately. This is in accord
with the results of Hansen! and others.

V. RESULTS FOR H, DYNAMIC QUANTITIES

The principal quantities of interest are a(w) and
y(w). Equations (14)-(19) show that nearly all
quantities of interest for photon scattering can be
obtained if a(w) and y(w) are known over the com-
plete range of internuclear separations. Table VI
contains ¢ and y at a fixed internuclear separation
of R =1, 4aq, (a, is the Bohr radius) together with
comparisons with previous computations. The
agreement between the best of these previous com-
putations, Langhoff and Karplus!® and Epstein, ¢ is
seento be excellent, Table VII has the vibrationally
and rotationally averaged (7 =293 °K) dynamic
polarizabilities and anisotropies as a function of

frequency from Lyman-a to infinite wavelength.
No previous computations of dynamic polarizabili-
ties have been carried out with vibrational averag-
ing over initial- and final-state vibrational func-
tions. These are compared with semiempirical
results of Dalgarno and Victor!” and the experi-
mental results (also as compiled by Dalgarno and
Victor). Table VIII reports the same quantities for
the 0~ 1 Raman vibrational transition averaged at
300 °K. Extensive tables of a(w) and y(w) for sets
of allowed rotation levels for Rayleigh and Raman
scattering are available on request, °

The use of closure to sum over the vibrational
levels of the intermediate states becomes suc-
cessively less accurate as the wavelength of the
incident photon becomes shorter, It was found
necessary to introduce explicit summation over the
vibration levels and integration over the nuclear
translation continuum for the C'I, and B!Z}
states. The effect of closure was very marked for
the 0 —~1 vibrational excitation matrix element.
Explicit summation and integration produced, for
example, a 6. 8% correction for a g, (1215.7) but a
42% correction for ayg, (1215.7). A thorough anal-
ysis of the deficiencies of closure is givenby Ford. ®

TABLE VI. Comparison of computed o (w) and y(w) values to previous computations at R=1.4a.

Wavelength Present o(w) @)

(A) work IRE? LKP HPK® KWAY VBD® AE!

w 5,18 5,21 5.23 5.20 (5.37) 5,43 5.23 5,406
6328.0 5.28 5.31 5.32 5.29 (5.47) 5.52 5.31 5.50
5462, 3 5,31 5.34 5.36 5.32 (5.50) 5.55 5.35 5.53
4359.6 5.39 5.42 5.43 5.39 (5.58) 5.63 5.42 5.60
4047.7 5.42 5.46 5,47 5.43 (5.62) 5.66 5.45 5,64
2968.0 5.65 5.68 5.70 5.63 (5. 86) 5.88 5.65 5.85
2302.9 6.01 6.03 6.07 5.96 6.23) 6.24 5.98 6.19
1854.6 6.59 6.60 6.67 6.50 6. 85) 6.80 6.49 6.73
1600.0 7.31 7.29 7.40 7.12 (7.66) 7.48 7.08 7.36
1400.0 8.44 8.36 (8.58) 8.21 (8.71) 8.44 8.05 8.30
1215.7 11,02 10.40 (11.17) 0.05 (12. 30) 10.68 10.12

y(w) (ad)

w 1.84 1.84 1.83 1.95 1.64 1.67 1.65
6328.0 1.90 1.86 1.88 2.00 1.68 1.74 1.69
5462.3 1.92 1.90 2,02 1.69 1.75 1.71
4359.6 1.96 1.94 2.07 1.73 1.78 1.74
4047.7 1.98 1.96 2,09 1.75 1.79 1.76
2968.0 2,11 2.09 2.23 1.86 1.90 1.86
2302.9 2,32 2.30 2.46 2.05 2.08 2.04
1854.6 2.69 2.66 2.86 2.36 2.39 2.32
1600.0 3.16 3.13 3.31 2.77 2.74 2.67
1400.0 3.95 (3.93) 4,42 3.36 3.42 3.23
1215.7 6.12 (5.92) 5.78 5.07 4,50 4,45

2Reference 13.

PReference 12.

°H. P. Kelly, Phys. Rev. A 1, 274 (1970). The values
of o(w) in parentheses are calculated by shifting the 1s
orbital energy by an amount chosen so that the results are
in better agreement with experiment.

9R, Kamikawai, J. Watanabe, and A. Ameniya, Phys.
Rev. 184, 303 (1969).

®G. A. Victor, J. C. Browne, and A. Dalgarno, Proc,
Phys. Soc. (London) 92, 42 (1967).

fM. N. Adamov and R. A. Evarestov, Opt. Spektrosk.
19, 648 (1965) [Opt. Spectry. 19, 362 (1965)].
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TABLE VII. Comparisonof « (w) and y(w) to semiempirical
calculations and to experiment.

% diff.
Wavelength Semi- (this work
(A) This work® empirical® Expt.® vs expt.)
a(w) (ad)

o0 5,406 5,450 5.437 0.6%
6943.0 5.492
6328.0 5.509 5,554 5.5654 0.8
5462, 3 5.545 5.591 5.582 0.7
4880.0 5.581
4359.6 5.628 5,675 5.667 0.7
4079.0 5.662 5.708 5,701 0.7
4047.7 5.666 5,713 5.705 0.8
3342.4 5.797 5,845 5.840 0.7
2968.1 5.913 5.963 5.960 0.8
2753.6 6.006 6. 056 6.055 0.8
2535.6 6.130 6.182 6.183 0.9
2379.1 6.246 6.299 6.303 0.9
2302.9 6.313 6.368 6.384 1.1
1990.5 6.707 6.766 6.771 1.0
1935.8 6.804 6.865 6.868 0.9
1862.7 6.954 7.017 7.017 0.9
1854.6 6.973 7.035 7.035 0.9
1700.0 7.402 7.471
1600.0 7.797 7.872
1500.0 8.348 8.431
1400.0 9.165 9.262
1300.0 10.509 10.625
1215.7 12.603 12,765 12,2¢ 3.2

v(w) @)

© 2.005 2.029
6943.0 2.056
6328.0 2.066 2.092 2.09%¢ 1,0
5462, 3 2.087 2.115
4880.0 2.109
4359.6 2,137 2.168
4079.0 2,157 2.188
4047.7 2.160 2.191
3342.4 2.240 2.274
2968.1 2,312 2.350
2753.6 2.370 2,410
2535.6 2.450 2,492
2379.1 2.524 2.569
2302.9 2.569 2.615
1990.5 2.834 2.889
1935.8 2.901 2,958
1862.7 3.007 3.067
1854.6 3.020 3.080
1700.0 3.333 3.401
1600.0 3.635 3.710
1500.0 4,077 4,159
1400.0 4,783 4,871
1300.0 6.074 6.158
1215.7 8.428 8.495

Coefficients in the Cauchy expansion of o (w)

al)= 3 apled?
k=0

S|

TABLE VII. (Continued)

p
From experimental refractive
E This work®? index data®
0 5.379 5.439
1 19.35 20.02
2 78.60 81.62
3 343.00 350,00

%, computed from wave function set 1 (see text). The
o (w) reported is a thermal average (T'=293 °K) over ro-
tational levels. Explicit summation of vibrational levels
of the B!z} and Cln, states was carried out.

bReference 20.

°Reference 21.

9F rom the experimentally determined molecular anisot-

ropy values, «(w)=y(w)/3a (w) using our calculated o (w).
°Reference 7.
fIntegration over nuclear continuum for B!z} and C'1,

not included in these computations.
®Reference 12,

The accuracy of the dynamic polarizability as a
function of frequency requires little comment with
the exception of Lyman-a. The results are gen-
erally in agreement with experiment to approxi-
mately 1%. An accurate experimental value of the
anisotropy is available at only a single frequency.
The agreement with this one experimental point is
very good, within 1%. The discrepancy at Lyman-
a has some question concerning it, This measure-
ment was taken by Gill and Heddle'® and depends
directly upon the value of the depolarization ratio
since their measurement is of the quantity (x-1)

X (6+6p)/(6—"Tp). The value of @(1215.7) listed
here was extracted from their measurement using
our computed value of pT =0, 0558 for Lyman-a.
Gill and Heddle normalized their results to an
older value of pf for N,. Nonetheless later ex-
periments appear to confirm the accuracy of the
Gill-Heddle result.'® Comparisons to semi-
empirical and experimental work for a,, and Yo1
are available at Lyman-q and at 4047 A. Dalgarno
and Williams' find these quantities to be ag (1215,7
A)=2.314 and y(1215.7 A)=3.524}. Results found
in this study are 3. 81aj and 4.977a). The experi-
mental result for @y and the ratio between anisot-
ropy and the polarizability at 4047 A are obtained
from the work of Golden and Crawford® and
Yoshino and Bernstein.'! These authors find, re-
spectively, g, (4047 A)=0.770+0. 0624 and
0.73a3. The computed result given here is 0.801a3,
which is well within the experimental limits set by
Golden and Crawford. The computed values for
the ratio ay, (4047 A)/y,, (4047 A) are within experi-
mental error, Golden and Crawford find this ratio
equal to 0. 775+0. 171, while Bernstein and Yoshino
find 0.76. The computed value inthis workis 0.841.



ki DIRECT-RESOLVENT-OPERATOR COMPUTATIONS... 425

TABLE VIIL af(w) and v{{ (w) thermal average over
rotational levels (T'=300°K).?

TABLE X. Dispersion-force coefficients for a pair of
hydrogen molecules.

Wavelength (&) 001(w) @) you (@) (@)

© 0.740 0.613
6328.0 0.761 0.634
5462.3 0.770 0.643
4359.6 0.791 0.663
4079.0 0.800 0.672
4047.7 0.801 0.674
3342.4 0.835 0.709
2968.1 0.866 0.742
2753.6 0.892 0.769
2535.6 0.927 0.806
2379.1 0.960 0.841
2302.9 0.980 0.864
1990.5 1.098 0.990
1935.8 1.130 1.029
1862.7 1.178 1.084
1854.6 1.184 1.091
1700.0 1.328 1.261
1600.0 1.468 1.432
1500.0 1.676 1.696
1400.0 2.013 2.146
1300.0 2.640 3.057
1215.7 3.810 4,977
1150.0 6.348 9.974

Comparison to previous values
Semiempirical® This work
0 (1215.7 A)=2. 314} 3.81043
vo1(1215.7 A) =3.5243 4.977a}
Expt.
01 (4047 A)=0.770 + 0.06243 © 0.801a}
=0.730a3¢
yor/@oy (4047 A)=0.775+0.171° 0.841
=0,764

3 » computed from wave function set 2 (see text).
bReference 17.
°Reference 18.
dReference 19.

The depolarization ratios are perhaps the most
interesting and sensitive experimental results that
can be obtained for Rayleigh and Raman scattering,
Table IX gives the p¢ and pT ratios for 4880 A com-

TABLE IX. Depolarization ratios as a function of rotation

states.
J pS (4880 A) pT (4880 &)
0 0.0 0.00869
1 0.00378 0.00873
2 0.00272 0.00884
3 0.00258 0. 00890
4 0.00256

R=1.4 fixed nuclei values

Present work?® LGKP
C 11.35 11.5
T 0.0985 0.097
A 0.0102 0.010

Values for v =0 vibrational level

Present work®® vp4

C 12,09 12.4
T 0.1031 0.101
A 0,0112 0.011

35 computed from set-1 wave functions (see text).

bp, W. Langhoff, R. G. Gordon, and M. Karplus, J.
Chem. Phys. 55, 2126 (1971).

°For J=1 rotational level.

9G. A. Victor and A. Dalgarno, J. Chem. Phys. 53,
1316 (1970).

puted in this work as a function of J. The accurate
rather than approximate forms of Eqs. (14) and
(16) were used, as described below. Rowell,
Aval, and Barrett (RAB)?2 measure p¢ as 0. 0025
and measure pl =0.0095. These values were then
“verified” through the use of the relation

pS=Gpg)/1-p7).

Since the forms quoted by RAB for p¢ and pT are
only approximately valid for H,, the verification

is fortuitious. In Paper I, where the right-hand
sides of Egs. (14) and (16) were used to compute
values of p¢ and pl to compare with RAB, excellent
agreement was obtained. The thermally averaged
value for p$, obtained with the more correct middle
form of Eq. (16), yields pj=0,00306. A computa-
tion of pI from the definition of 7§,y /I¥.y with
I{,y and I{,y summed over the @, 0, and S branch-
es and thermally averaged (T =293 °K) yields pT

TABLE XI. Results for Lyman-« radiation. Thermal
average over rotational and vibrational states at 300 °K.
The exact rather than approximate formulas are used for
the depolarization ratios and cross sections. Only atthis
wavelength are the approximate formulas for pf , in error.

0p=12.538a3, o= 8.3424]
001=3.810a, v =4.977a}
0,=0.0147 (9,=90°)
pF=0.0558
Q§,=2.129% 1072 cm?

Q% =2.265x 102 cm?

Qf=2.146% 10-% cm?

pS=0.007 45,
pT=0.0287,
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=0,00875. The agreement reported in Paper I
with the experimental work of Bridge and Bucking-
ham persists, the most direct comparison being
the anisotropy at 6328 A which is in agreement to
within 1%. We conclude that the failure of RAB to
consider the breakdown for H, of the assumptions
leading to the far right-hand sides of Eqs. (14)-
(17) render a reanalysis of their results for H, of
interest. It must be noted that Bridge and Bucking-
ham have derived formulas equivalent to those used
in this analysis.

Dispersion-force coefficients for pairs of hydro-
gen molecules can also be obtained from this work.
Table X contains values at a fixed internuclear
separation and also vibrationally averaged values.
These are compared to the only previous computa-
tions and to semi-empirical work by Victor and
Dalgarno. The agreement can be seen to be quite
good,

VI. CONCLUSION

It has been demonstrated in this paper that sum-
over-states methods can be applied directly to
variationally obtained wave functions to obtain very
accurate results for frequency-dependent quantities

[BS]

C. BROWNE

such as polarizability, anisotropy, Rayleigh and
Raman scattering, etc, This implies directly that
it is possible to compute resolvent operators that
are complete in domains of interest. This work is
being extended to consider other operators, such
as nuclear spin-spin interactions, magnetic sus-
ceptabilities, dipole shielding constants, etc. It is
hoped that the Rayleigh and Raman cross sections
listed here for Lyman-a radiation are of interest
to astrophysicists for the study of radiation passing
through outer space and in particular for the de-
termination of the densities of molecular hydrogen
and HD in interstellar clouds and stars. The re-
sults for Lyman « are collected, for convenience,
in Table XI.
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