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The spin-orbit interaction for p electrons is shown to occur in the E shell for all atoms and

to vary with atomic number Z according to 4p ~Ha (0, Z)/Z, where hp is the difference in
quantum defect between the fine-structure levels evaluated at the series limit, n(0, Z) is the
amplitude function for a nonrelativistic zero-energy p wave at r = 0, and H is a relativistic
correction factor. The quantity bp is evaluated and found to vary as Z '3, which is in re-
markable agreement with experiment. In addition to this gross behavior, the variation of
0.' (0, Z)/Z exhibits a structure tied to the Periodic Table. This structure derives from the in-
fluence of the valence region of the atomic potential, which affects the spin-orbit interaction
through the normalization factor a(0, Z). Neither inner screening effects, embodied in
Casimir's 0(Z) parameter, nor deviations of the atomic potential from Zr ~ in the interaction
region appear very relevant to this problem.

I. INTRODUCTION

The study of spin-orbit (SO) interaction is a
very old subject, historically dealing with the anal-
ysis of the optical spectra of particular atomic
configurations. A recent advance' employing
quantum-defect theory (QDT) has led to an empiri-
cal law by which the strength of SO interaction of

p electrons for all atoms can be expressed approxi-
mately as a power law in Z, the atomic number.
In the present paper, the phase-amplitude method
(PAN)~ is used to show that the SO interaction for
p electrons can be expressed as the product of two
factors. One factor originates from a pm. ely
hyChogenic interaction that takes place within the
atomic K shell in the field of the unscxeened
nucleus and the other factor depends on the spin-
independent potential outside the K shell. This
latter factor is the amplitude function of the PAM
and constitutes an electron optical transmission
function that connects the amplitude of a radial
wave function at &= 0 to that in the ionic field beyond
the valence region of the atom. This application
of PAN to the Z dependence of SO interaction is a
prototype for applications to other inner-shell

phenomena, such as K-shell photoabsorption, which
can be usefully separated into a factor arising from
interactions localized near the nucleus and a nor-
malization factor that depends on transmission
properties of the entire atomic field.

Before proceeding, we will review briefly the
aspect of the PAM to be exploited here. As shown
in an earlier paper, hereafter referred to as I,
the radial wave function P(r) for an electron in the
field of an ion can be conveniently expressed in
terms of an amplitude function o.(x) and a phase
function S (r):

P(r) = n(r)[fcos[5(~)] gsin[5b)]}, - (l)
where (f, g) are independent Coulomb functions
defined in I. The utility of the amplitude function
derives from the fact that S(x) depends solely on
the range [0, r] whereas a(z) depends on the entire
range [r, ~]. Hence, for an interaction taking
place at small x, the part of Eq. (1) in braces is
characteristic of a purely Coulomb field and should
scale with atomic number in a simple way. There-
fore, all nonhydrogenic behavior is isolated in the
factor o(z), which we will show depends strongly on
the field in the valence shells of atoms. This
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dependence not only determines the over-all Z
dependence of spin-orbit coupling, but also pro-
duces a yeriodic structure in this function that has
the eharacteristie periods of the Periodic Table.

H. PARAMETERS FOR SPIN-ORBIT COUPLING

There are two alternative parametex s in the
problem of SO coupling. One is the spectroscopic
strength parameter f„„which is accurately given
by first-order perturbation theory ass

where V(r) is the electron's potential energy at a
distance y from the nucleus, and P(y), the radial
wave function of a discrete state nl, is normalized
to uIllty l. e.

J" P„',dr= l.
This parameter has the dimension of energy and is
directly related to the enex'gy splitting of fine-
structure levels. For the simyle case of a single
e1ectron outside a closed shell, the fine-structure
interval is given by

sy a &&.gy a
= (~+ 2)t: g

For more complex spectra, routine spectroscopic
techniques lead one to determine values of f„, for
each (core)nl configuration. The disadvantage of
this quantity is that it depends strongly on the de-
gree of excitation of the electron, vanishing at
the limit of a Hydberg series. Therefore, while

g„, i.s directly applicable to calculation of fine
structure, it is not suited for charactexizing SO
coupling as a function of Z.

The para eter used by Fa o and Martin wa, s
6p,„„the change in the effective quantum number
between the fine-structure states. In the context
of quantum-defect theory, hp, „, is the change in
quantum defect due to spin-orbit coupling; when

Ap« is extrapolated into the continuum, m~p
is the phase difference between the states with

j= I+ —,'. This yarameter is dimensionless and

equally relevant to discrete and continuous spectra.
It is approximately independent of the degree of
excitation and varies smoothly through the thresh-
old for ionization. Therefore, we have dropped
the subscript nE. The quantity ~ItL is given by an
expression like Eg. (2), except that the radial
wave function is normalized per unit energy.
This representation reveals the significance- of
Ap, as the spin-orbit energy yer unit energy range.
Using the known conversion~ from discrete normal-
ization to energy normalization, we can relate
the two quantities by

n~s d p.
~p =&sr 2~

+B

where n* is the effective quantum number of the
state and g is its eigenvalue, or simply

b, p,
- g„,n*'/2R

for Rydberg levels for which dp/de=a. The
parameter &p, is very well suited for the study of
the Z dependence of spin-orbit coupling since the
effects of excitation may be removed by determin-
ing the value of this parameter at the ionization
limit.

Using this parameter, we will now focus our
attention on p electrons. The dependence of gp,
on atomic number determined by Fano and Martin
from experimental energy levels is shown in Fig.
1. The over-all power law in Z determined from
a straight-line fit to the log-log plot of the data is

hp, =2 05&10 6 Z2.33

This plot was constructed from f values that re-
sult from fitting intermediate coupling theory to
expeximental energy levels. The effect of excita-
tion was removed as completely as possible by ex-
trapolating the quantity fn*3 toward the series
limit when enough data were available. Squares
indicate yoints for which this is done and lines
connect points that represent different degrees of
extrapolation.

IH. Z-DEPENDENT FACTOR IN SPIN-ORBIT COUPLING

In order to study the variations of 8p, with Z,
we plotted for several atoms the integrand ap-
peari. ng in the definition of gp,

P, (~)A, (7)
1hl *1dV
2mci l

xA'
I

where the subscript & denotes that the radial wave
function is noxngglg'zed per unit energy. The inte-
grands for Z=18, 20, 80, and 86 calculated with

zero-energy p waves computed in a Herman-Skill-
man (HS) field are shown in Fig. 2. These curves
contain one very important piece of information:
The interaction profile is located in the E shell and

has a maximum remarkably close to x=1/Z a. u.
(marked by arrow). The fact that the 80 interaction
occurs in the K shell for p electrons deserves
emphasis since earlier discussions" have not ap-
preciated this fact. This result is bkewise ob-
tained by assuming that the SO interaction occurs
in a pure Coulomb field. That is, when one uses
a 2p-like function P, ~ pe-'~" ~~0& and yacc g/y, the
integrand of Eg. (V) has a maximum at r = Z
Therefore, Fig. 2 shows us that, in the region
contributing to Eg. (7), the p electron is governed
by the Coulomb field of the nucleus and is screened
by at most the electrons of the K shell. Con-
sequently, the value of hp, should scale smoothly
with the nuclear charge except for any dependence
of the normalization of P, upon the outer part of the
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FIG. 1, Experimental & de-
pendence of spin-orbit interac-
tions for p electrons in neutral
atoms expressed as a change in
quantum defect (from Ref. 1).
The squares denote values of
4p obtained by extrapolating this
quantity to the series limit.
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potential. This normalization effect can be rep-
resented, in the language of the PAN, by o. (0, Z),
where we have added the argument Z to emphasize
the dependence of e on nuclear charge. %e there-
fore replaced P, by P, /o. (0, Z) and replotted the

integrand of Eg. (7) as a function of Zx. The in-
tegrands for Z=18 and 36, so modified, are shown
in Fig. 3. The curves for Z=20 and 30 would /.ie
between these two curves. From this figure it is
clear that we have factored out the main depen-
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FIG. 2. Integrand of Eq. (7) for Z =18, 20, 30, 36,
and &'=0. The arrows correspond to the radial distances

All curves are referred to a common ordinate
scale with arbitrary units.

FIG, 3. Integrand of Eq. (7) for 2 =18 and 36, divided
by o'2(0, S) and plotted as a function of Zy. Both curves
are referred to a common ordinate scale with arbitrary
units,
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dence on atomic numbex'. This dependence may
be expressed by

h p = ca'(0, z)/z,
where C is evaluated starting from Eq. (7) by re-
normalizing P, by dividing by a(0, Z) and evaluating
the integral as a function of Zy. This is just the
area under the curves in Fig. 3 and has approxi-
mately the same value for all atoms. The slight
deviation between the curves in Fig. 3 at larger y

indicates that the part of the interaction that ex-
tends out of the E shell into the I. shell does not
scale in exact accordance with Eq. (8). Alterna-
tively, this deviation might be due to a systematic
error in the yrocedure used to yroduce these
curves. 8 However, for the puryoses of this dis-
cussion, we assume that Eq. (8) describes the
scaling lam of 6p, with sufficient precision, and do
not discuss the 1-2%%uq deviations further since they
cannot significantly affect the power lam in Z.

Before taking up the calculation of n(0, Z), we
discuss the relation of Eqs. (4)-(8) to various
hydrogenic approximations. First, the Coulomb
wave function P,(x) for a p electron with s-0 in the
field of a, nucleus of atomic number Z has the form
(1) with o.(0, Z) ~ Z3~2. Assuming this hydrogenic
form for P, mould yield

&'(0, z)/z- z'.
According to Rose, assumption of this hydrogenic
o.(0, Z) in problems of this type (which include
P-ray emission) is equivalent to applying a WEB
approximation throughout the nonhydrogenic region
of the atomic field. Therefore, any departure of a
calculated value of o,~(0, Z)/Z from a Z2 behavior
serves as an index of the failure of WKB approxi-
mRtion.

Hpdx'ogenllke formulRs mere used in the pRst to
fit spin-oxbit coupling data in a semiempirical may
An early I.andd formulae mas generalized by
Casimir to a form equivalent to

dg+
AP„g =6 13~

H (10)

where Z, indicates an effective nuclear charge,
dn*/dn coincides with the factor 1+ (2H/n&) (dp/
ds) in (4), and H is a relativistic correction de-
fined by Casimir. Fitting of experimental data
was achieved by Casimir, starting from Eq. (10)
by defining

Z, =Z-o(Z),

where a(z) is an empirical "inner screening" num-
ber. By equating Eq. (10) and the Fano-Martin
power 1am, me find that the parametex' 0 increases
from approximately 2 to 9 as Z increases from
5 to 90. Figures 2 and 3 support the remark of
Fano and Martin that Casimir's interpretation of

0 is rathex unrealistic since only a limited range
of r contributes to the integral in Eq. (7) and this
many electrons could not fit inside it. However,
these same authors then concluded that the devia-
tions from Coulomb behavior, which Rx'6 grouped
into Casimir's o, mere pxobably due to departure
of V(y) from Coulomb form. We can now see that
the deviation is actually due to the influence of the
outer regions of the potential that is manifested in
the interaction region via the quantity o.(0, Z),
rather than to departures of r ' dV/dr from Ze /r
at the lorn z values that contribute to the matrix
element.

IV. RESULTS AND DISCUSSION

hp, = 2. Qox 10" Z ' (12)

By comparing Eqs. (8) and (12) we find that the
yomer of Z has been predicted exactly. This exact
agreement is, of course, somewhat foxtuitous, but
demonstrates the suitability of this approach in
studying the Z-dependent part of interactions
that occur near the nucleus. The lack of agree-
ment between the coefficient in Eq. (12) and the
experimentally determined coefficient shows that
the use of the HS model potentials and the explicit
correction for relativi, stic effects does not permit
the accurate determination of absolute magnitude
of the function hp(z). The calculation of this
coefficient lies outside the scoye of this paper and
mill not be treated further here. For present
applications, therefore, it is better to use the ex-
perimental coefficient in Eq. (8), together with the
values of Ha2(0, Z)/Z in Fig. 4, to determine hp

The theoretical Z scaling 1am for spin-orbit
coupling was calculated by evaluating the quantity
Hn (0, Z)/Z for atomic numbers between 8 and

103, using HS atomic potentials. The relativistic
correction H takes into account the fact that in the
X shell, p electrons acquire a velocity that is
greater than c/10 for the heaviest atoms. This
circumstance brings about some increases in the
average spin-orbit interaction because it enables
an electron of given enexgy and angular momentum
to approach the nucleus more closejy than one
mould expect in the absence of relativistic consid-
erations. The resulting increase of 6p, is rep-
resented by the factor H in Eq. (10), which
rises monotonically from unity for Z ~ 50 to 1.2V

for Z = 92. This correction is based on hydrogenie
functions, which are very suitable fox this applica-
tion. The results are plotted in Fig. 4. In this
logarithmic plot, the calculated points cluster
along a straight line, In Hn (0, Z)/Z = - 2. 10
+2. 33 lnz. Evaluating the factor C in Eq. (8)
by using a 2p-like function, me can straightfor-
wardly tl Rnsform this x'epx'esentRtion of
Hn'(0, Z)/Z into a final expression for hp, :



J. L. DE HME 8

I04
I I I I I I I I x P[5(~)] P[5(~)+ ,'v]-dr]. (13)

N
ON

Al0
to:3

~ XIO

~ ~

As in I, U(v, Z) is the effective potential for the
electron, minus a unit charge Coulomb potential.
This modified potential has a finite range for the
case of an electron in a neutral system and there-
fore the integration in Eq. (13) is stopped at yo.
The quantity P[5(x)] is just the radial wave function
divided by the amplitude function, i. e. , P(r)/n(r).
Since a(y) only modifies the amplitude of P to give
P, these two functions resemble each other in that
they have the same nodes and total phase P(r),
where

P(y ) = (Coulomb phase) + 6(r).

— Ne

~ +os

Kr

In order to extract the physical significance of Eq.
(13), we schematize it by setting P[5(r)] = sin[/(r)].
Since P appears again in Eq. (13), this time
phase shifted by v/2, we set P[5(r)+-,'m] equal ~o

cos[g(r)]. Using this simplified model for T', we
can rewrite Eq. (13) in a more transparent way:

2
IO I I I I I I I I I

20 40 60 IOO

FIG. 4. Theoretical Z dependence for spin-orbit
coupling, given by H&~(0, Z)/Z, for &=0, l =1, and 10
«Z «100~

for a particular atom or set of atoms.
We now take up the distinct periodic substructure

that is evident in Fig. 4. It seems that by virtue
of calculating the value of Hn~(0, Z)/Z for every
Z and always at the series limit, the curve in
Fig. 4 exhibits a pattern in the deviations from a
straight line mentioned by Fano and Martin. This
pattern, which is not discernible in the sparser
experimental data, ' is quite clearly correlated to
the Periodic Table. Specifically, the "local slope"
of the curve in Fig. 4 depends on the angular
momentum of the atomic subshell that is filling:
The slope in the immediate vicinity of the alkali
metals and alkaline earths is always approximately
equal to 10. On the other hand, when an zp sub-
shell is filling, the slope is always less than 1.1
and becomes negative during the filling of the 4p,
5p, and 6p subshells. For all other Z, the points
do not deviate significantly from the Z ' law and
are regarded here as a single class whether an ~d
or an gf subshell is filling.

The periodic deviation from the average Z '

behavior observed in Fig. 4 is most clearly under-
stood in terms of the definition of the amplitude
function. It was shown in I that ~(0, Z) for a con-
tinuum wave function is given by

n(Q, Z)=2'~ exp{--,'v f~ U(~ Z)

&(0, Z) ~exp[ ,'m f —U(r,Z)sin(2$)dr]. (15)

Since U is a monotonic function, it is now apparent
that the integrand in Eq. (15) will oscillate twice
as often as the radial wave function, represented by
sing. That is, during each loop (or orbit) of the
radial wave function, there will be a positive and
negative contribution to the integral in Eq. (15),
corresponding, respectively, to the first half -loop
(odd quadrant of g) and to the second half-loop
(even quadrant of P) of the wave function. We can
therefore interpret the substructure in Fig. 4 by
considering the number of even and odd quadrants
of the wave function in the region [0, yo] over which
the modified potential U(r) is nonzero. To be
more precise, Eq. (15) dictates that the amplitude
at the nucleus will be largest when the region
[0, ro] includes an odd number of quadrants, and
will be smallest when it includes an even number
of quadrants, or integral number of loops. Note
that these same remarks apply to the transmission
coefficient for a plane wave passing over a square-
well potential. ' Here we are concerned, in effect,
with the transmission coefficient of a realistic p
wave over the potential U.

In applying these elementary properties of the
transmission coefficient, we can take advantage of
another property of atomic wave functions. The
integral in Eq. (15) covers a range defined by the
electron density of the atom. However, in the
closed shell region of the atom, the potential
energy is large and the inner loops of the wave
function vary smoothly as a function of Z. Each
loop contributes a positive and a negative contri-
bution to the integral. These contributions tend to
cancel each other and will not produce any periodic
dependence on Z of the function n(Q, Z). They will
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only cause a smooth increase in the integral as
these inner orbits move to lower y with increasing
Z. To find contributions to a(0, Z) that are not
smooth with Z, we must examine the valence
region of the potential. It is this region of space,
outside of closed shells but inside the region of
finite electron density, in which the atomic shell
structure manifests itself.

As a specific example, we focus on one period of
the variation, that is, on one row of the Periodic
Table. At Kr, the 4p subshell has just become full.
The 4p orbit defines the extent of the electron
distribution, and exactly three loops of the wave
function overlap the potential inside y =zo. Between
Kr and Y, the 5s subshell fills. These valence
electrons occupy diffuse orbits. This extends ro,
while the additional nuclear charge pulls the fourth
loop of the p wave toward the nucleus. The end
result is that the seventh quadrant of the 0 wave
now overlaps with U. Therefore, the steep slope
of u(0, Z) in the vicinity of alkali metals and
alkaline earths derives from this rapid movement
of an odd quadrant of the wave function into the
region y & xo. In the following group of transition
elements, the points in Fig. 4 lie close to the best
straight line. In this range of Z, a high-angular-
momentum state of an inner shell is filling so that
the outer p orbit is almost completely screened
from the increase in nuclear charge by the addi-
tional valence electron. Therefore, the relative
positions of the outer p orbit and of yo do not change
appreciably between Z=39 and 48. The inter-
mediate rate of increase of a(0, Z) is due to the
general contraction of the electron distribution.
Finally, after the end of the transition series, the
5p subshell becomes stable and fills between Z=49

and 54. In so doing, the even quadrant of the 5p
loop moves onto the potential U, and the amplitude
function decreases, thus completing this particular
period of variation in Fig. 4.

The motion of the zero-energy p wave described
above is consistent with the phase-shift calculations
of Manson. ' Using HS potentials, Mansoncomputed
scattering phase shifts for zero-energy p waves as
a function of Z. He found that the phase shift in-
creases only by approximately —,

' rad during the long
transition series, and then increases by more than
2 rad while the np and the (n+1)s subshells are
filling.

There is one more characteristic substructure
in Fig. 4 which occurs during the transition series.
For instance, as the Sd subshell is filling, there
are sudden dips in o.(0, Z) at Cr and Cu. The origin
of these dips is presumably the promotion of a 4s
electron to form a half full and full 3d shell in Cr
and Cu, respectively. This promotion contracts the
outer shell and eliminates a positive contribution
to Eq. (15). (The effect may be overemphasized by
artifacts of the HS model potential. ) Likewise,
irregularities at higher Z arise from changes in
the outer part of the effective potential brought on
by the discontinuous order of filling of atomic sub-
shells.
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