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The bremsstrahlung radiation from electron-ion collisions is emitted anisotropically in
directions dependent on the electron kinetic energy and the photon energy. We consider here
the radiation from electrons confined in magnetic mirrors. In particular, the magnitude of
this anisotropy is examined as a function of the electron energy, the photon energy, the elec-
tron pitch angle, and the angle of a detector with respect to the magnetic-mirror midplane.
The calculations are performed in the Born approximation with the cross sections developed
by Gluckstern and Hull. We also compute the temperature of a bi-Maxwellian distribution from
the slope of the log of the intensity vs photon-energy curve and consider the effects of pitch-
angle distribution and detector angle on the anisotropy of the radiation.

I. INTRODUCTION

The bremsstrahlung radiation arising from elec-
tron-ion collisions is not emitted isotropically;
rather it is emitted in preferred directions depend-
ing on the electron kinetic energy. In this paper
we consider the consequences of this anisotropic
emission on the bremsstrahlung from mirror-con-
fined electrons. We assume that the radiation is
emitted at random phases over the orbit of the
electron and find the probability for detecting the
resulting x rays at various angles with respect to
the magnetic field.

Similar calculations using the nonrelativistic
form of the bremsstrahlung cross section have
been made by Shohet, ' who showed that the x-ray
spectra differed considerably when viewed parallel
and perpendicular to the magnetic field. However,
Shohet's calculations were based on the nonrela-
tivistic Sommerfeld2-Kirkpatrick-Wiedmann3 the-
ory. The results given here generally apply to
higher electron energies for which Shohet's calcu-
lations are not applicable. We make some specific
comparisons at low temperature with Shohet's the-
ory.

In this paper we show the magnitude of this an-
isotropy as a function of the electron and x-ray en-
ergies, of the electron pitch angle, and of the an-
gle at which the detector is placed. We also cal-
culate the temperature for bi-Maxwellian distri-

butions from the slope of the intensity-vs-photon-
energy curve. We show the effect of pitch-angle
distributions and detector angle on this tempera-
ture.

II. CALCULATIONS

We have used the bremsstrahlung cross section
given by Gluckstern and Hull' to find the relative
probability of detecting the resultant x ray as a
function of the detector angle at various electron
pitch angles. The relativistic cross section is
used, with different forms for "high" and "low"
x-ray energies. This cross section neglects
screening due to either bound or free electrons.
We also neglect magnetic bremsstrahlung since
for most laboratory pla, smas this does not produce
photons in the x-ray region. We have used a com-
puter code to calculate this cross section; and,
for the results quoted here for monoenergetic elec-
trons, we have used the high-energy form of the
cross section. It should be pointed out that the
calculations of Gluckstern and Hull use the Born
approximation, without the "Coulomb correction. "
Thus, the magnitude of the bremsstrahlung cross
section is too low for x-ray energies which ap-
proach the electron kinetic energy. These calcu-
lations apply to a Z =1 plasma, so the neglect of
screening effects is justified. However, the ef-
fects of electron-electron (e-e) bremsstrahlung
are neglected, with less justification. At present
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FIG. 1. Differential bremsstrahlung
cross section vs emission angle. The
solid curve is for E~=I. MeV; the dotted
curve is for E~=1 keV. In each case
E, /E, = 0. 05.

there are no formulations which can yield the an-
gular distributions for e-e bremsstrahlung. Maxon'

has shown that the magnitude of the e-e effect can
be twice as great as the electron-ion effect at
high electron temperatures (kT, ». 5 MeV).

Some investigations have shown discrepancies
between the Born approximation and experiment.
However, in a recent paper calculations for Z = 1
show fairly good agreement (several percent) be-
tween more exact point Coulomb calculations and
the Born approximation.

The differential cross sections for two electron
energies are shown in Fig. 1. In this figure the
cross sections are normalized to unity peak am-

'plitude and are plotted against 00, the angle be-
tween the original electron direction and the x-ray
direction. This figure illustrates the well-known
"searchlight effect. " The peak of the cross sec-
tion is at 90' at low electron energies and moves
toward the forward direction at high energies. If
the electron motion is primarily perpendicular to

the magnetic field, the radiation is enhanced par-
allel to the field for low-energy electrons and per-
pendicular for high-energy electrons.

To make these considerations more quantitative,
we have defined a "relative detection probability
P(g)" as a function of the detector angle g. This
is defined such that, if the bremsstrahlung opere
isotropic, P(P) would be unity and independent of

To the extent that the radiation is enhanced in
a direction g, the probability P(P) is greater than
unity. The geometry used for calculating P(() is
shown in Fig. 2. The electron has a pitch angle
a with respect to the midplane, the detector lies
in the xz plane at an angle ( with respect to the
midplane, the phase angle of the electron in its
orbit is P, and the angle between the x-ray direc-
tion and the electron velocity is 00. Since these
electrons are mirror confined, for each electron
with a pitch angle a, there is also an electron with

pitch angle —a.
We define P(P),

( )
f,"do[E„E„,n;q, 8, (p)]dp+I 'dv[E„E„, —n, (, 8 (p)]dp

f/2 d( cos( [f20' do(E„E» n, g, 80) d p+ f~~'da (E„E„,—n, p, 8O) d p]
'

where E, is the electron kinetic energy, E„ is the
x-ray energy, and der is the differential brems-
strahlung cross section.

The denominator of the expression is propor-
tional to the total probability of emission and P(g)
is the relative probability that the x-ray will be
emitted between P and g+d(. Implicit in this ex-
pression is the assumption that the emission is
independent of the phase angle P, about the axis
of symmetry provided by the magnetic field.

III. RESULTS FOR SINGLE ELECTRONS

We will show several angular distributions P(P)
for various electron energies and pitch angles, all

for unique values of these parameters. In suc-
ceeding sections we show the consequences of hav-
ing a distribution in these parameters.

All of the distributions P(g) are normalized to the
same area using the denominator of Eq. (I). This
normalization factor is obtained by integrating the
differential cross section over all solid angles
and is thus proportional to the integrated cross
section. The variation of this factor with x-ray
energy can be used to check the validity of the cal-
culation. Figure 3 shows this variation. The solid
curve shows the integrated bremsstrahlung cross
section as a function of the photon energy, as given
by Heitler. ' The points are calculated values with
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the point E„/E, =0.65 fitted to the curve. It ap-
peared that the agreement was sufficient.

There are two significant angles: the pitch an-
gle of the electron n and the detector angle (. In
Fig. 4 we show P(() for a pitch angle of 0', for
two electron energies, 10 and 100 keV. At the low

energy the radiation is primarily normal to the
electron motion, so P(() is peaked in the direction
of the magnetic field. At 100 keV the radiation is
nearly isotropic and P(P) = 1 for all g. Figure 5

shows the same plot at 1 MeV, and for various
x-ray energies. At energies this high the radi-
ation is strongly peaked in the forward direction
and P(p) is strongly peaked for small g. Note that
the variation of P(p) with the x-ray energy is rel-
atively small. We will ignore this variation in

what follows.
The other variation of interest is with the elec-

tron pitch angle. Figure 6 shows this variation for
an electron of 1 MeV and for an x-ray energy of

650 keV. The principal effect shown in Fig. 6 is
that electrons with small pitch angles concentrate

FIG. 4. P(g) vs |I). For the dotted curve E~=10 keV;
for the solid curve E,=100 keV. In each case Ey/E~
=0.65.

their radiation at small (, that is, near the mid-
plane. As the pitch angle is increased the radiation
becomes more isotropic in that the peak height is
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FIG. 3. Comparison of integrated cross section
(dots) with that of Heitler (solid curve).

FIG. 5. P($) vs P for various x-ray energies, E~=1
MeV Ap Ey 50 keV& Bp Ey 350 keV& C& Ey 650 keV&
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the results. Here the distribution in P is quite flat
and there is a very minor increase at g = 90' for a
mirror ratio of 4: 1 with a very slight intermediate
dip. Changing the mirror ratio has a very small
effect because the low-energy photon distribution
is almost isotropic.

V. RESULTS FOR BI-MAXWELLIAN DISTRIBUTION
FUNCTION

A. Angular Distributions

We show here a set of graphs showing the effect
of a change of mirror ratio with an isotropic plas-
ma contained up to the pitch-angle limit imposed by
the mirror ratio and also an anisotropic plasma in
a given mirror. We have used an anisotropic or
two-temperature Maxwellian distribution function

f~ VE, exp — '
2 cos n+ —sin n

E, q 1
8mc' T

0
0 15 30 45 60

p, DETECTOR ANGLE (deg)

I

75 90

where Hrnc is the electron temperature in MeV,
E, is the electron kinetic energy in MeV, and the
anisotropy parameter T= 8~, / 8, (small values of T
are more anisotropic). Note here that the distri-
bution function f is defined so that the number of
particles in an energy-angle interval is given by

FIG. 6. P(g) vs |jtj for various pitch angles, E,, =1 MeV. dK = 2n' fdE cosa dn.

reduced and the peak width is increased. At lower
energies the radiation is nearly isotropic even for
0' pitch angles, so the change in isotropy is small.
At higher energies the differential cross section is
so large in the forward direction that the resulting
P(P) is sharply peaked for g = n, as shown in Fig.
7, for 3-MeV electrons. This effect masks the
variation of the isotropy with a.
IV. RESULTS FOR MONOENERGETIC ELECTRONS WITH

INTEGRATION OVER PITCH ANGLE

Note also that the average particle energy is given
by

E),/Ee = O. 6 5

00

An integration over a range of pitch angles was
used to investigate the bremsstrahlang radiation
pattern, i.e. , P(g) vs g. Several electron energies
were used and the normalization was carried out
as before. We use here the usual definition of mir-
ror ratio in terms of the loss cone. For small
mirror ratios, the pitch-angle range is small and
vice versa. In particular the relation between the
mirror ratio R and the maximum pitch angle am~
is given by coso. ~= 1/vR.

For an electron kinetic energy of 1 MeV and an
isotropic distribution, i.e. ,

'

pitch angles from 0
to +90', there is no variation in P(P). For 0' o.
&+60', i.e. , a-4:1 mirror, Fig. 8 shows modest
peaking on the midplane. For a smaller range of
pitch angles (a lower mirror ratio), the peaking is
more predominant, as would be expected.

For an intermediate energy electron, 0. 1 MeV,
and the same ranges of pitch angles, Fig. 9 shows

0
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FIG. 7. P(P) vs P for various pitch angles, E,=B MeV.
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FIG. 8. I'(g) vs g for 1-MeU elec-
tron energy and two photon energies.
Pitch angles between 0' and+60; a 4:1
mirror ratio.
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Z=-', erne'(2+ T).

We always took an upper limit of 6 MeV on the
electron energy. (This upper limit is typical of
electron-cyclotron plasmas in the ELMO' mirror
facility, for example. This limit is somewhat too
high for other facilities employing electron-cyclo-
tron heating, e.g. , IMP and INTEREM. We have
used this distribution function because it is well
known and widely used. However, it is not neces-
sarily representative of actual mirror-confined
distributions.

Figure 10 shows the dependence of f(E„n) on
pitch angle for various anisotropies. For a non-
relativistic Maxwellian, the solid curves show that
the smaller T (the more anisotropic), the narrower
the distribution becomes in pitch angle. All the
curves are independent of the electron energy. The

question arises as to whether we could simplify
the distribution function further by replacing this
anisotropic Maxwellian distribution function with
an isotropic version (T= 1 always) and integrate
over a smaller range of pitch angles, i.e. , replace
the anisotropic distribution in a given mirror with
an isotropic distribution in a smaller mirror. We
will see the effect of this replacement later.

The next two graphs, Figs. 11 and 12, show the
angular distribution of the radiation for two dif-
ferent temperatures and anisotropies of T= 1 and
T=O. 2.

Figure 11 shows that at high temperatures 8 = 3
(Hmc = 1.53 MeV) and at high photon energies the
angular distribution indicates fairly accurately
the electron-pitch-angle distribution. (For T = 1,
the pitch-angle distribution would be flat out to 45'
and zero beyond that in a 2: 1 mirror. ) For a
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FIG. 9. P(g) vs g for 100-keU elec-
tron energy and two photon energies.
Pitch angles between 0' and+60; a 4:1
mirror ratio.
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0.4

higher mirror ratio (n ~&45') the plateau region
of the angular distribution is wider.

For T= 0. 2 (an anisotropic plasma) the full width
at half-maximum (FWHM) of the x-ray angular dis-
tribution is much narrower, as is seen in Fig. 12,
but nevertheless the distribution at high photon en-
ergies represents rather well the electron-pitch-
angle distribution (cf. Fig. 10). The FWHM is
several tens of degrees wide even at the highest
photon energy plotted. This means that small mis-
alignments in collimators would not make serious
errors in the intensity and temperature measure-

0
0 15 30 45 60 75

p, DETECTOR ANGLE (deg)

FIG. 12. P(g) vs III) for an anisotropic Maxwellian in
2:1 mirror, Hmc2 =1.53 MeU.
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ment unless we had a much more anisotropic plas-
ma or a very low mirror ratio. Figure 13 shows
an angular distribution for a lower temperature.
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FIG. 11. P(g) vs g for an isotropic Maxwellian in
2:1 mirror, &inc =1.53 MeV.
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FIG. 13. P(g) vs g for an isotropic Maxwellian in a
2:1 mirror, 8mc =51.1 keV.
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Note that at very low photon energies there is
slight peaking near g =90'. We have used here the
low-photon- energy approximation for the cross
section given in Ref. 4.

Figure 14 shows the width (FWHM) of the x-ray
angular distribution for a Maxwellian distribution
contained in a mirror ratio of 2: 1. ' The electron
distribution is characterized by a temperature of
1.53 MeV and one of two pitch-angle distributions:
The first has an anisotropy parameter T= 1 such
that the pitch-angle distribution is flat out to 45',
the second has T = 0. 2 such that most of the parti-
cles have small pitch angles. In the first case
(T = 1) and at high photon energies, the width of the
radiation distribution reflects the width of the pitch-
angle distribution, since both are 90'. In the sec-
ond case (T =0. 2) the width of the radiation distri-
bution at high photon energy tends toward 35,
which is close to the width expected for single elec-
trons at zero pitch angle.

If, as suggested earlier, we replace the aniso-
tropic distribution with an isotropic distribution
with a pitch-angle range from 0' to 25 [corre-
sponding to the half-value of f(E„n) for T=0. 2 in
Fig. 10], the resulting curves are much broader.
In other words, the FWHM does not in this case
resemble the anisotropic distribution FWHM.

We can take a smaller pitch-angle range, 0'-l5'
(R = 1.07: 1), corresponding to - 0. 78 of the maxi-
mum value of f(EO, n) for T = 0. 2 in Fig. 10, and
we find at high photon energies the FWHM tends to
be about the same value as the anisotropic case.
However, comparison of the curves of P(g) vs tt

LIAN DISTRIBUTION FUNCTION
RROR RATIO
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40
Ey= 0.3 MeV
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0
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FIG. 15. FWHM vs 1/T for Maxwellian in a 2:1 mir-
ror, 8mc =1.53 MeV.

show that even though the FWHM's are the same,
the isotropic distribution with the smaller pitch-
angle range displays much steeper sides than the
anisotropic distribution with the larger pitch-angle
range. Hence we cannot justify simplifying the cal-
culation by using this technique to approximate an
anisotropic distribution function. This observation
suggests that the functional dependence on n of the
electron distribution might be determined from a
measure of the shape of P(() vs (.

In Fig. 15 we show the effects of increased an-
isotropy on the FWHM for two photon energies.
Note that there is an apparent leveling off of the
FWHM at high anisotropy (small values of T) for
both of the photon energies shown. The higher-pho-
non-energy curve levels off more quickly and the
asymptotic value is just that expected for the width
of the radiation pattern produced by the highest-
energy electrons in the distribution.

In Fig. 16 we show the FWHM as a function of
electron temperature for a nonrelativistic Max-
wellian in a 2: 1 mirror. Somewhat surprisingly,
at relatively high photon energies the FWHM for an
anisotropic plasma may either decrease or rise as
the temperature 8 increases. Figure 17 shows the
variation of the FWHM with inverse mirror ratio
for two photon energies. A plot of the maximum
pitch angle contained in a mirror vs the inverse
mirror ratio [2 n ~=2arccos (R) ~~~]is also plot-
ted for comparison to show that the FWHM is al-
ways larger than 2n ~ but does follow its trend.

The higher-photon-energy curve (E„=5. 4 MeV)
more closely follows the curve of 2 a ~, while the
lower-energycurve (,E„=0. 8 MeV) shows more
broadening. For R = 1 the higher-energy curve in-
tercepts the ordinate at ™15', while the lower-en-
ergy curve intercepts the ordinate at -35'. Note
that these values are about the same as the asymp-
totic values of the FWHM in Fig. 15 for small val-
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ues of T, indicating that these are the inherent
minimum widths of the curves.

B. Temperature Determinations

A nonrelativistic calculation can be made which
shows that the slope of the log of the intensity vs
photon energy is inversely proportional to the tem-
perature. Figure 18 shows the intensity of the
radiation on an arbitrary scale as a function of the
photon energy for two detector angles, (=0' and

(= 90', and for two different anisotropies. The in-
tensity is proportional to the photon energy times
the unnormalized probability of emission. Note that
there is no single slope to the curve. In fact, the
smallest value of the slope gives a maximum tem-
perature of the order of but somewhat less than
anzac . The increased slope at the low-photon-en-
ergy end is due to an increase in the cross section
(cf. Fig. 3). The increased slope at the high-photon-
energy end is due to our arbitrary cutoff in the
electron energy which we have imposed on the dis-
tribution. Raising this limit decreases the slope.
However, in most machines there is a practical
limit to the electron energy that can be contained so
that this effect is to be expected.

The agreement between the slope of the intensity
curve and the temperature for a Maxwellian distri-
bution is best for detector angles near g =O'. The
minimum discrepancy is -6/~ for /=0' and occurs
at the lowest temperatures. The maximum dis-
crepancy for tI = 0' is -30% at the highest tempera-
ture examined. The discrepancy would be even

0
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FIG. 17. FWHM vs 1/MB for isotropic Maxwellians
with emc =1.53 MeV.
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FIG. 18. Log of the intensity vs photon energy for
isotropic Maxwellian distribution functions in 2:1 mir-
ror, emc =1.53 MeV.

larger at higher temperatures. The agreement is
worse at larger detector angles, particularly when

the detector angle is greater than the maximum con
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tained pitch angle. The limiting value is obtained
for a high-temperature highly anisotropic plasma,
viewed with a detector angle of (=90'. In that
case, the "slope temperature" is -70% of the tem-
perature at P = 0 . In no case is the "slope tem-
perature" greater than the true temperature.

The results in this paper are in disagreement
with those of Shohet, ~ where a nonrelativistic treat-
mentmasused. In that work, the electrontempera-
ture calculated for g = 90' was higher than for p = 0'.
This difference is apparently due to the inclusion of
relativistic effects in the Gluckstern-Hull treat-
ment. A recent paper by Greene and Shohet con-
firms this.

The cross section used in this work does not in-
clude the "Coulomb correction" (or Elwert) factor.
However, since this factor is not a strong function
of (, ' one would not expect its inclusion to have
much effect on the angular distribution of the brems-
strahlung.

Figure 19 shows the minimum slope of the inten-
sity-vs-photon-energy curve as a function of the
normalized temperature 8. We conclude that the
slope of the bremsstrahlung intensity-vs-energy
curve remains a fairly good indication of the tem-
perature as long as the temperature is much less
than the maximum electron energy. As mentioned
earlier, the drop off at high values of 8 is due to the
electron kinetic energy cutoff at 6.0 MeV. However,
the slope at lom values of 8 is little affected by this
cutoff and for a Maxwellian remains slightly below
the value of 8.

Finally, we have examined the effects of both mir-
ror ratio and anisotropy on the ratio of the mea-
sured "temperature" to 8m' . We found a slight in-
termediate minimum both as a function of T and of
R for e = 3 and Q = O'. It appears that the measured
temperature is neither a strong function nor a mono-

tonic function of either of these parameters.
It should be noted that the determination of "tem-

perature" from the slope of the intensity-vs-photon-
energy curve does not imply that the distribution is
Maxwellian. For instance, a monoenergetic mir-
ror-contained distribution of electrons will also
produce a photon spectrum. Over some energy in-
terval, the intensity will display an approximately
linear decrease with photon energy on a logarithmic
scale. For these distributions, the "temperature"
found from this minimum slope is roughly one-half
of the kinetic energy of the electrons.

It follows that many other distributions would give
rise to intensity spectra from which one could de-
termine a "temperature'. " The "temperature" so
determined is clearly not related to a Maxwellian
electron distribution and does not imply random
velocities, but nevertheless can be used to find a
mean or suitably averaged electron energy for the
distribution producing the radiation. This effect has
been noted previously.

VI. CONCLUSIONS

This study of the angular distribution of brems-
strahlung from mirror-confined electrons ha, s shown
two features. First, the effective solid angle for
detecting x rays from these electrons is a function
of their energy and pitch angle as well a.s the detec-
tor angle, and the magnitude of this effect has been
shown.

For mirror-confined Maxwellian distributions of
electrons, there is generally found a peaking of the
radiation on the midplane, and this effect is more
pronounced for high temperatures, high photon en-
ergies, and more anisotropic distributions. For
low photon energies and low temperatures, there
can be a peaking along the field direction.

The study has also shown that for the distributions
studied here the measured temperature is generally
slightly lower than the temperature of the Max-
wellian giving rise to the radiation. At high tem-
peratures this can represent an error of -30olo,
mostly due to the upper limit on the electron ener-
gy imposed by the experiment or the calculation.
Again, owing to statistical errors and necessary
corrections to data obtained from pulse-height
spectra, errors of this magnitude may normally
appear. Measurements of temperature for detec-
tors at an angle to the midplane may give a lower
value than measurements on the midplane.
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An analytic expression for the differential pair-production cross section is obtained using full

Furry-Sommerfeld —Maue wave functions for the electron and positron. It is shown that this expression

reduces to the Bethe —Maximon approximation and the Born approximation in the appropriate limits, and

that it goes into the corresponding Elwert —Haug approximation for bremmstrahlung via the substitution

rule. It is found that the cross sections of the Born approximation and the Bethe-Maximon approximation

may be related to the cross section of the present approximation by a normalization theory similar to that
used to relate point-Coulomb and screened "exact" calculations for pair production. No such theory works

for bremsstrahlung because a larger-r region is of importance in the bremsstrahlung process. The region of
validity of each approximation is found by comparison with "exact" numerical calculations, There exists a

region of low energies and small Z where the present theory for pair production and the Elwert —Haug
approximation for bremsstrahlung are valid and are significantly better than the Born and the
Bethe—Maximon approximations. The failure of these calculations at low energies for intermediate and high

Z is attributed to the fact that the lowest partial waves for the electron and positron, which are dominant

at low energies, are very poorly represented in the Furry —Sommerfeld —Maue approximation.

I. INTRODUCTION

Furry-Sommerfeld-Maue wave functions have
long been used in the calculation of cross sections
for pair production and bremsstrahlung. ' Their
beat-known application is due to Bethe and Maxi-
mon, who argued that the wave functions are cor-
rect when as/I «1«1 and used them to calculate
high-energy approximations to pair production and
bremsstrahlung. Here a=—Ze, with e as the fine-
structure constant and j =

l ~l ——,
' is the angular mo-

mentum of a partial wave in the expansion of the
wave function. In addition to the approximations
made in the derivation of Furry-Sommerfeld —Maue
wave functions, together with the omission of a
term in the matrix element which is small of rela-
tive order a, Bethe and Maximon made two further
assumptions in their calculation of the matrix ele-
ments. The first assumption was that of high en-
ergy, enabling them to drop terms O(1/E ) and
O(1 ~k~) compared to unity, ~ where E is the energy
of either fermion and k is the photon energy. Sec-
ond, they assumed that the angles between the pho-

ton and either fermion are small„since at high en-
ergies the main contribution to the cross section
for pair production and bremsstrahlung is from
near the forward direction. These assumptions
simplified the expression for the totally differential
cross section so thai it could be integrated analyt-
ically over angles to obtain an expression for the
cross-section differential only in energy.

Bethe and Maximon showed that the Furry-
Sommerfeld-Maue wave function P,„satisfies the
second-order Dirac equation to terms O(as/I Kl ).
They also obtained P,„from Darwin's partial-wave
series solution of the more restrictive first-order
Dirac equation by neglecting terms O(a /I z I ) in
each term of the series and summing the infinite
series; this approach has also been discussed by
Johnson and Deck. The neglect of terms O(g /

I vl ) in the wave function leads to errors O(a/I zl )
in the cross section, because the lowest-order
term in the matrix element is not O(1) as in the
wave function but O(a) (energy and momentum con-
servation forbid the processes in the absence of


