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This is a note concerned with a previous publication by R. Klingbeil, V. G. Kaveeshwar,
and B. P. Hurst [Phys. Rev. A 4, 1760 (1971)]giving specific results for neon.

Recently Klingbeil, Kaveeshwar, and Hurst'
(KKH) derived the Hartree-Fock expression for
the third-harmonic coefficient (THC) of an atomic
system by a method employing Chung' s time-de-
pendent perturbation theory. KKH also obtained
the Hartree-Fock THC (HFTHC) of helium. It is
the purpose of this note to present the results of a
calculation of the HFTHC of neon.

It is necessary to obtain zeroth-, first-, and
second-order wave functions in order to evaluate
the expression for the THC given by Etl. (IV) of
KKH. The zeroth-order wave function chosen is
that of Clementi. 3 First-order wave functions are
obtained by the method of Kaveeshwar, Chung, and
Hurst, and agreement with their calculation of the
linear dynamic polarizability is excellent. Second-
order wave functions are obtained by the method of

KKH.
The results of the calculation of the HFTHC

X„„(-3&v;&u, ~, &u) of neon are presented in Table I
and plotted in Fig. 1 along with the HFTHC of heli-
um~ for comparison. At zero frequency the HFTHC
of neon is 54. 0 a. u. Surprisingly, this result is
significantly larger than the Hartree- Fock static
hyperpolarizability result of 42 a. u. obtained by
Sitter and Hurst. ' Both results are considerably
below the experimental static hyperpolarizability
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TABLE I. Hartree-Fock third-harmonic coefficient
of neon.

(—3~; &, ~, &)
(a. u. )

54 0
54, 9
57. 9
63.2
72, 0
86. 1

109.6
152.5
246. 7
570.6

100939.1
—16 333.3

0. 000 00

0. 025 18 238
0. 050 9119
0, 075 6079
0. 100 4559
O. 125 3648
0. 150 3040
0. 175 2605
0.200 2280
0.225 2026
0.247 1846
0. 248 1838

X~«~(-3; co, w, co) =54. 0 a. u. at zero frequency.
s(i646 A} =els A is the calculated value of the first

transition wavelength. The experimental value is 736 L.
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FIG. 1. Hartree-Fock third-harmonic coefficient
X«gg(-3~; co, co, co) ofhelium(Bef. 1) and neon(this work).



result of - 100 a. u. obtained by a method employing
the Kerr effect. e

Ward and Newv obtained the THC's of helium,
neon, and other gases using a ruby-laser light beam
with a wavelength A. = 6943 A. Their result for the
THC of neon is 106 a. u. , which is obtained by
scaling measurements to the calculation of the THC
of helium presented by Sitz and Yaris. 8 Sitz and
Yaris use time-ordered time-dependent perturba-
tion theory and determine that the THC of helium
at X= 6943 A is 4V. V a. u. with an estimated accura-
cy of 1%. At 6943 A the HFTCH'sofhelium andneon

are 40. 2 and 60. 9 a. u. , respectively. The neon xe-
sult is vexy fax' below the experimental value.

The ratio of the measured THC of neon to helium
is ~~.~ = 2. 2 and the HFTHC ratio is 40.z = 1.5.
This discrepancy is somewhat disappointing since
it indicates that the HFTHC results do not scale
well and may therefore be a poor indication of ex-
perimental results.
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An estimate of O' R„contributions to positronium and muonium hfs is made in somewhat
greater detail than heretofore. Comparison with the most recent experimental data suggests
that such additional corrections could well improve agreement between theory and experiment.
Indeed, the one immediately calculable e R„contribution almost totally accounts for present
discrepancies

The present comment is motivated by the most
recent value obtained for the ground-state triplet-
singlet splitting of positronium, ' which is stated
in Ref. 1 to differ from the most recent theoreti-
cal value~ by six standard deviations. The theo-
retical contribution~ in order3 &41na '8 is + 34
MHz. The discrepancy between theory and experi-
ment is —23 + 4 MHz. The questions I propose to
raise are whether this discrepancy could be ac-
counted for by the hitherto uncalculated contribu-
tions of order &4' and whether such contributions
would be consistent with the experimental results
for muonium hfs. The answer to both questions
appears to be yes and points up the need of ex-
tending hfs calculations to higher order for both
of these atoms.

In order to obtain my estimates of uncalculated
terms, it is convenient to separate contx'ibutions
to v„„into three parts:

v„„=C(r)[@+A+ rA(r)] .
The quantities appearing in Eg. (1) are defined

+O(~'in'n-')), (3)

with c~= 2» fox' posltroMum» and c~ = cH = 1 fox'

muonium and hydrogen. " The term a, is the anom-
alous magnetic moment of the electron:

a, = —,——0. 3285 — +O(n ) .N

'm

For positronium, we have

(4)

(p, /pa) = 1+a, , (5)

and for muonium, the observed magnetic moment

as follows:

C(r) =f (1+r), r = m /I, , (2)

where m is the mass of the electron, m, the mass
of the positron or p, , meson, respectively. The
term Q is the standard quantum-electrodynamical
(QED) correction without recoil terms, which also
occurs for hydrogen. It is

Q=2a It (p, /p )/1+ a, + a [9/4+ c,(-13/4+ln2)]


