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A method for obtaining analytical expressions for 2N& pulses in an unbroadened resonant
medium is derived by a systematic application of the Backlund transformation. The resulting
large-area pulses display the expected property of pulse breakup into separate 27t hyperbolic
secant pulses.

INTRODUCTION
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where C and S are defined in terms of the macro-

A distinctive property of ultrashort-light-pulse
propagation in resonant media is the conserva-

~ tion of pulse area for multiple 2w pulses. This
result, which applies to an ideal attenuator with
inhomogeneously broadened line shape, was first
stated in an area theorem by McCall and Hahn. '
A similar result holds for unbroadened ideal atten-
uators. ~ In this communication, we shall derive
analytical expressions for multiple 2m pulses to any
order which may propagate in unbroadened media
without change of pulse area. As these pulses
propagate in the resonant medium, they evolve
into separate 2z hyperbolic secant (hs) pulses
characteristic of self-induced transparency (SIT).
A similar result has been obtained for multiple
2z pulses in broadened media by numerical inte-
gration of the equations of motion. "

EQUATIONS OF MODEL

The equations of motion for ultrashort-pulse
propagation in resonant media have been discussed
in several papers'2'4 and so they will only be re-
viewed here. The classical field serves as a per-
turbation to the two-level nondegenerate resonant
medium which is treated in the dipole approxima-
tion according to the Bloch formalism. The field
is assumed to be a linearly polarized plane wave
propagating in the z direction and is approximated
by a carrier frequency P = too(t —z/c) and a slowly
varying amplitude z (z, t) and phase 8(z, t):

E(z, t) = z(z, t) cos[g —8(z, t) J .
If we assume that the atomic transition frequency
is equal to the field-carrier frequency, the equa-
tions of motion reduce~ to

2mnoeoP+c —6=
9t ez

S(z, t) = sing(z, t),
g(z, t) = —cosg(z, t) .

Equation (2) may then be expressed as

82$
= —singcger

(8)

in terms of the variables r = a(t —z/c) and g = az/c,
where

n = (2' o(uoP'/I )"' .
We wish to find solutions of Eq. (9) for which

g(z, +~) is an integer multiple of 2z. As may be
seen by integrating Eq. (9) from —~ to+~, these
solutions propagate without change in area. A
useful technique for obtaining solutions to Eq. (9)
has been pointed out by Lamb~ and consists of the
Backlund transformation. ~ This method permits
generating a second solution of Eq. (9) from a
known one by solving the coupled pair of first-or-
der partial-differential equations

8 1 . 1—
2 (P, —(,) =a sin

2 (g, + g,),
8 1 1 . 1——(y + tt' ) = -—sin —(y —y )ey2 ' ' a 2 ' o

where a is an arbitrary constant. We denote the
solution of Eqs. (10) for g, in terms of f~ by the

scopic polarization P(z, t),

P(z, t)=noP[C(z, t) cosP+S(», t) sinPj,
and rt(z, t) is the normalized atomic population in-
version

ri(z, t)= ~a(t)~'- ~f(t)~'.

a(t) and b(t) are the coefficients of upper and lower
energy states in the atomic wave function, p is the
atomic dipole matrix element, no is the density of
active atoms, and f = (p/K)z.

Equations (4) and (5) may be integrated in terms
of the partial field area

q(z, t) = f' C(z, t) dt (&)

to give

373



THOMAS W. BARNARD

across the branch points of the tangent function as
t goes from —~ to +~. The field amplitude is also
obtained from this expression by differentiation
with respect to time:

3I +gpss~ f+&,g 1+-+UI If 2 w(& ),j-i e (+l,g) ~ (14)+
&g NJ

FIG. 1. Notation convention for pulses linked by
Backlund transformation.

expression g, =B,g, If fo.ur solutions of Eq. (9)
are linked by Backlund transformations in terms
of two constants, as indicated below,

then the four solutions obey a simple txigonometric
relationship

tan — — = ta

New solutions of the second-order partial-dif-
ferential equation [Eq. (9)] may thus be expressed
as algebraic combinations of known solutions.

2%m PURSES

The simplest solution of Eq. (9) is the trivial
(=0. If we let II)„, , =0 for all i& 0, then it fol-
lows from Eq. (10) that g, , = 4tan 'e"&, where
u) = a,o. (t —z/t), )+y„where y, is a constant and

I/u, = (1/c)(l+ I/aP) for all i& 0. The correspond-
ing electric field amplitude is 8, ; = 2ng& sechu;.
Since P, ,,(z, +~) = a 2m for a, ~& 0, („... and g, , can
be used as a basis for building multiple 2g pulses
by repeated use of Eq. (13). Figure 2 shows a
sequence of transformations that may be extended
systematically to obtain analytical expressions
for arbitrary large-area (or negative-area) pulses.
The pulse areas are indicated in the circles which
designate the pulse functions. The pulse area is
alternately +2M' and —BMOC across each row,
where M is the number of rows from the bottom.

The transformation constants must be constrained
by a set of inequalities in order to obtain P&g
pulses. Since the second row of pulses has alter-
nately+2g and —2g area, the constants must be
alternately positive and negative.

Thus,

In this section a recursion relation is derived
for generating 2Am pulses, where N is any integer.
A diagrammatic representation of the Backlund
transformation suggested by Lamb will be use-
ful in visualizing the analytical technique (see Fig.
1). Figure 1 also defines the notation convention
for the four solutions of Eq. (9), g, &, etc , and.
the two constants g&'and g&, which are related by
the trigonometric form of the BKcklund transfor-
mation [Eq. (11)].

The pulse area 8( g
= $( g(g + ~) is given by

85+1/ 1+~5 g 1 ~5+1/ y (12)

if (Qg + cg)/(Qg —Qg) & 0 and if 8(~g g g) 8 g„g) and

8&,& &
are integer multiples of 2g. This may be

demonstrated by following the evolution of

+4 tan "(a . a )/(e -a ) t'an -~~—' ~"-~J ()3), FIG. 2. Sequence of Backlund transformations for
generation of 12m. pulse.
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FIG. 3. 12m pulse (a) before and (b) after pulse breakup for the constants a~=3. 0, a2= —2. 5, a3=2. 2, a4= —1.6,
as=1. 0, and a6=-0. 4.

(-1)'a, &0.

Also, the inequality

(a, +a~)/(a, -a, ) & 0

(15)

(16)

$, , =4tan 'e"»,
&

(- 1)'a, & 0, !

i&Q;

+4 tan ' K tan)+1~) iJ 4

&+A~«.s=si i,s-i+ffv 1 If 2 a(&&,g i-e~.i,y) 2~i ~

1+K]~ g, ~

In order to generate the analytical expression
for one of the higher-order pulses, it is necessary
first to obtain the expressions for the constituent
pulses. This corresponds in Fig. 2 to finding the
expressions for all solutions within the triangle
whose apex is the solution in question and whose
base is the set of trivial Og pulses.

must be preserved for all j& i. It may readily be
seen that both Egs. (15) and (16) are satisfied if

(-1)'a, &(-1)~a~, j&i
which yields a self-consistent set of inequalities for
the transformation constants. The expr essions
which define the 2' pulses are summarized be-
low'

DISCUSSION

It has been noted previously' that the only stable
SIT pulse is the 2z hs pulse and that, consequently,
a multiple 2g pulse will break up into separate 2g
hs pulses. This fact may be verified by calculat-
ing the field envelope according to Eq. (14). The
result is also expected from the manner in which
higher-order pulses are constructed by means of
the Backlund transformation.

In order to obtain a 2~m pulse, one must com-
bine N hs pulses each with a different velocity.
For large values of g, only one retarded-time
variable g~ =a~a(t —s/v&)+y& will be near zero for
a given value of I;. Since the pulse is centered about
I& = 0 and has significant amplitude only in a limited
region around zero, it is as though only one non-
trivial pulse were present in. the hierarchy of Blck-
lund transformations for a given value of z, t. This
is equivalent to requiring that all a& be zero except
for one such as a&, where i depends one, t„ It is
clear from Eqs. (13) and (14) that any multiple 2w

pulse will consist of separate 2m hs pulses.
A plot of a 12m pulse is shown in Fig. 3 before

and after it has evolved into six 2p hs pulses.
The pulses are ordered according to their velocities
c[a, /(1+a, )], their widths 1/aa„and their am-
plitudes ma&, as would be expected.
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This is a note concerned with a previous publication by R. Klingbeil, V. G. Kaveeshwar,
and B. P. Hurst [Phys. Rev. A 4, 1760 (1971)]giving specific results for neon.

Recently Klingbeil, Kaveeshwar, and Hurst'
(KKH) derived the Hartree-Fock expression for
the third-harmonic coefficient (THC) of an atomic
system by a method employing Chung' s time-de-
pendent perturbation theory. KKH also obtained
the Hartree-Fock THC (HFTHC) of helium. It is
the purpose of this note to present the results of a
calculation of the HFTHC of neon.

It is necessary to obtain zeroth-, first-, and
second-order wave functions in order to evaluate
the expression for the THC given by Etl. (IV) of
KKH. The zeroth-order wave function chosen is
that of Clementi. 3 First-order wave functions are
obtained by the method of Kaveeshwar, Chung, and
Hurst, and agreement with their calculation of the
linear dynamic polarizability is excellent. Second-
order wave functions are obtained by the method of

KKH.
The results of the calculation of the HFTHC

X„„(-3&v;&u, ~, &u) of neon are presented in Table I
and plotted in Fig. 1 along with the HFTHC of heli-
um~ for comparison. At zero frequency the HFTHC
of neon is 54. 0 a. u. Surprisingly, this result is
significantly larger than the Hartree- Fock static
hyperpolarizability result of 42 a. u. obtained by
Sitter and Hurst. ' Both results are considerably
below the experimental static hyperpolarizability
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TABLE I. Hartree-Fock third-harmonic coefficient
of neon.

(—3~; &, ~, &)
(a. u. )

54 0
54, 9
57. 9
63.2
72, 0
86. 1

109.6
152.5
246. 7
570.6

100939.1
—16 333.3

0. 000 00

0. 025 18 238
0. 050 9119
0, 075 6079
0. 100 4559
O. 125 3648
0. 150 3040
0. 175 2605
0.200 2280
0.225 2026
0.247 1846
0. 248 1838

X~«~(-3; co, w, co) =54. 0 a. u. at zero frequency.
s(i646 A} =els A is the calculated value of the first

transition wavelength. The experimental value is 736 L.
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FIG. 1. Hartree-Fock third-harmonic coefficient
X«gg(-3~; co, co, co) ofhelium(Bef. 1) and neon(this work).


