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Linewidth, angular dissymmetry, and hydrodynamic-shear-viscosity data of a critical bi-
nary-liquid mixture of isobutyric acid in water compares well with the modified mode-mode

coupling theory of Kawasaki in the range 11—X$ ~0.0067 after corrections for vertex, non-

local shear viscosity and deviation of the Ornstein-Zernike correlation function. Deviations
between experiments and theory in the critical region (K$ &4) suggest needs for further im-
provements in theory at large values of Ef as well as measurements of the hydrodynamic
shear viscosity at small temperature distances from the critical mixing point.

I. INTRODUCTION AND THEORETICAL BACKGROUND

I' = yK (simple Quid),

I' = DId' (binary fluid),

(la)
(1b)

where g and D are the thermal-diffusivity and the
mutual-diffusion coefficients, respectively. The
mutual-diffusion coefficient D is given by D=-0.*
x (sp/sc)~ r, where o.* is the transport (or Onsager
kinetic) coefficient, which is sometimes referred
to as the concentration conductivity, relating the
diffusion coefficient to (sp/sc)~, r with Iu as the
chemical potential and c the concentration.

In the nonlocal hydrodynamic region ($K~ 1, ),
Fixman and Felderhof' first extended the Landau-
Placzek-Debye theory to include the effect of

The first measurements of Hayleigh linewidths
for binary fluids were reported by Alpert and co-
workers. ' Their data were explained by Debye
who extended the Landau-Placzek theory to con-
centration fluctuations in a binary-liquid mixture
by considering the diffusion broadening as a re-
flection from standing concentration waves which
obey the Bragg relation K= ks with k = 2'/X and

s = 2 sin-,'8; X and 8 being the wavelength of light in
the medium and the scattering angle, respectively.

In the hydrodynamic region (If'$ «1 with $ being
the long-range correlation length), the Landau-
Placzek and Debye equation predicts that the power
'spectrum of the central component due to concen-
tration fluctuations is a Lorentzian-shaped line of
half-width 1:

long-range correlation. According to the mode-
mode coupling theory developed by Kadanoff and

Swift and then further extended by Kawasaki, ~ the
Hayleigh linewidth in the nonlocal hydrodynamic
region (K$ —1) has the form

r = Dz'(I+ —,'Jf'~ '),
where D = ks T/6vri~), with rif, and ks being the high-
frequency shear viscosity and the Boltzmann con-
stant, respectively. The Kawasaki equation for the
decay rate I' with the wave vector K is applicable
to all values of X$(=-X):

r, = (aw/s&)p 'H, (x),
where A=-ksT/16'„*, and the function Ho(X) is given

by

Ho(x) = —,
' [I+X'+ (X' —X ') arctanx] . (4)

In the critical region ()K& 1) rr = AX, while
Eg. (6) reduces to Eq. (1) for )E«1.

Decay rates of order-parameter fluctuations near
the critical point of fluids have been extensively
investigated by means of optical self-beating spec-
troscopy. ' It has been shown that Eg. (S) is ap-
plicable to only the singular part of thermodynamic
properties, ' 0 and that nondivergent background
contributions must be taken into account in com-
paring theory with experiments. For a binary-
fluid mixture, the nondivergent background con-
tribution is crucial when the system is far from the
critical point even though the contribution becomes
negligibly small in the critical region. Ne shall
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include the nondivergent background contributions,
especially those related to the high-frequency shear
viscosity g„, in comparison of our experiments
with theory. Furthermore, Eq. (3) can be modified
to take into account (a) deviations from the Orn-
stein-Zernike form of the correlation function, '
(b) vertex corrections, '2 and (c) the nonlocality of
the high-frequency shear viscosity q„*,(K(). '~

We have reinvestigated the spectral width of light
scattered by concentration fluctuations near the
critical mixing point of isobutyric acid in water
using the technique of time-dependent photocurrent
signal correlation. ' These data together with in-
tensity' and viscosity' ' results of the same sys-
tem are compared with Eq. (3) and its modifica-
tions. A preliminary analysis has been published
elsewhere. ' In this article we wish to report a
more detailed comyarison of theory with all of our
linewidth results on the isobutyric-acid-water sys-
tem which we have measured thus fax by means of
signal correlation.

II. EXPERIMENTAL METHODS

A. Sample Preparation

Isobutyric acid (Fisher certified reagent grade)
was purified by preparative gas chromatography
using a 20-ft. -long &&-', -in. o. d. column packed
with 30% FFAP on 60-80 chromosorb P. A 38. 6-
wt% isobutyric acid in deionized doubly distilled
water was sealed in an 8-mm i. d. cylindrical glass
light-scattering cell. The phase-separation tem-
perature (T ) was determined to be 26. 08 'C by
visual observation. This value of the critical tem-
perature is in reasonable agreement with the best
in the literature. " " On a relative scale, we have
determined our critical temyerature to within
0. 001 C.

B. Laser Self-Beating Spectrometer

Our laser spectrometer is a modified version of
the one described elsewhere. "'" We have in es-
sence used three different spectrometers of slight-
ly different optical geometry consisting of varying
sizes of angular and field stops as well as lasers
of different output powers. For measurements in
the very immediate neighborhood of the critical
mixing point, a dc-excited He-Ne cw gas laser with
an output power of about 2 mW at 632. 8 nm was
used. As we moved away from the critical mixing
point, higher-power lasers were used to ensure a
good signal-to-noise ratio of our measurements.
We used two dc-excited He-Ne cw gas lasers at
632. 8 nm with output powers of 15 and 60 mW as
well as an argon-ion laser of 200-mW output power
at 488 nm. The light beams were focused to about
a 0. 2-mm diam. Time-dependent yhotocurrents
from S-20 photomultipliers, such as EMI 95588

and ITT FW180, were amplified and analyzed with

a SAICOR signal correlator which was interfaced
with an IBM 1800 digital computer for direct data
acquisition. The SAICOR correlator accepted an
analog photocurrent signal and then converted its
amplitude into digital information. All subsequent
processes were performed digitally. Alignments
of the spectrometers were checked first with a
centrifuged aqueous solution of colloidal silica
(LUDOX) which showed a constant scattered inten-
sity for vertically polarized incident light to with-
in 1-2/0 over an angular range of 20'-140' depend-
ing on the spectrometers. Linewidth measure-
ments from dilute solutions of polystyrene latex
spheres with sizes 0. OS07+ 0. 0056 (run No. LS-
1132-B)and 0.357+0.0056 p (run No. LS-1010-E)
obeyed the Stokes-Einstein relation 1" = (ke T/6w 7ix)
&&X~ with ~ and g* being the radius of the latex
spheres and the hydrodynamic shear viscosity, re-
spectively. We also found that calibrations fur-
nished by the Dow Chemical Co. for the above two
latex samples were different from both our line-
width measurements and our own electron micro-
scopic studies using two different electron micro-
scopes and each with two different magnifications.
The details of our calibration will be published
elsewhere. In summary, we are able to measure
the mutual-diffusion coefficients to an accuracy
of +1% or better.

The signal correlator measured the time-depen-
dent photocurrent autocorrelation function. A total
of 505 linewidths were measured at the critical
solution concentration in the temperature interval
(0. 003 c T —T, c 30)'C for scattering angles varying
from 20' to 140'. Temperature of the sample was
controlled to better than 0. 001 'C for measurements
very near the critical mixing point (T —T, & 0. 02 'C)
and to + 0. 03 'C for those at large temperature dis-
tances (T —T, & 3'C). Each linewidthwas obtained
from a 95-100 point three-parameter least-squares
fit of the exponential photocurrent autocorr elation
function C, (t) to a. rms fitting error of + (0. 5-1)%
according to the equation C, (t) = Re " "+ B, where
the three parameters are A, B, and I'. When there
was no. baseline drift, the correlator output was
least-squares fitted to Ae with a known B.
The two approaches invariably gave us the same
result. In fitting the photocurrent autocorrelation
function with a single exponential, we have not im-
plicitly assumed that critical concentration fluctua-
tions can be represented by a single decay rate I'.
Rather, we have made several very careful line-
width measurements and found that the least-
squares fitting of one single exponential function
already leads to an agreement between data ex-
periment and theory to better than 0. 5/0 over many
linewidths. It should also be noted that our 505
linewidths correspond to over 50000 delay point



COMPARISON OF EXPERIMENTS WITH THE MODIFIED. . .

IS0

7.2—

7.0—

ln I

6.8—
(rad/secj

6.6—

6~
0.6

I I

0.7 0.8

InK (10 crn )

I

0.9

FIG. 1. Log-log plot of the decay rate I' as a function
of K at T —T~ = 0.006 'C. I' (rad/sec) = (l.028 + 2. 3 ~/g

&& 10 3 Kf3.04 . '/'3 with K expressed jn cm ~

measurements. Thus the data would probably
represent more than an entire year of measurement
time if older methods21 were used

III. RESULTS AND DISCUSSION

A. Critical Region ($K) 1)

Halperin and Hohenberg proposed that
I'= K' E(K]), where Z is the degree of homogeneity,
and a specific form of F(K$) was derived first by
Kawasaki and subsequently by Ferrell. ~3 Accord-
ing to Kawasaki, 7 I'=AK3 in the critical region.
Figure 1 shows a typical plot of lnI" vs lnK at
T —T, = 0. 006 'C. Least-squares fits of 3V line-
widths at T —T, =0. 003'C and of 30 linewidths at
T —T, = 0. 006 ' C give 1' = (1.075+ 3, 4/k ) x 10 '
K' ~s' "@rad/sec and (1.026+ 2. 3%)x 10-'3
K's'~6' '0"' rad/sec, respectively. Thus, we
find that Z is indeed equal to 3 and that background
contributions must be negligibly small in the crit-
ical region since the Kawasaki equation represents
only the singular part of the linewidth exhibiting
the asymptotic critical behavior. We have inten-
tionally made linewidth measurement's at various
scattering angles, but at fixed temperatures above
the critical temperature satisfying the condition
&K&2. With A=ksT/16q*„, and Z= 3, we have com-
puted the so-called high-frequency shear viscosity
which is assumed to be independent of Kf. It
should be noted that if q„*, depends upon Kt„ then
F =2K cannot be strictly correct over large ranges
of K]. Table I shows a comparison of 7lf,
'(= ksT/16A) and the measured hydrodynamic
shear viscosity by means of the classical capil-
lary method. ' We find g„*, & g* and g„*, depends

TABLE I. Comparison of the Kawasaki high-frequency
viscosity and the hydrodynamic shear viscosity in the
critical region for the critical binary mixture of isobuty-
ric acid in water.

T —Tc
('c)

0.003
0.006
0.009
0.025

No. I'
measured

37
30
22
15

A

(10 ' cm /sec)

1 054+ 0 3%
1.065 + 0.3%
1.07
1.12

Ihf

/ ) hf Ic/~hf

2.45 1.19 l.25
2. 42 1.20 1.24
2. 41 1.20 1.23
2.32 1.24 1.25

q* interpolated from measured values of g* by Allegra,
Stein, and Allen (Ref. 17).

"q*, computed using the formula q ~
= (E/&) (e ~ -1)+Ee

+G; 102 g/cm sec with E=0.27+ 0.04, E=-10.0+ 0.8,
G =1.35+ 0.10, and u=-0. 117+ 0.019 as reported by
Allegra, Stein, and Allen (H,ef. 17). e =(T- T~)/T~.

+ 0.3% represents the standard deviation of our mea-
surements when we take Z=3.

q*, = (E/n)(q —1) + E, +G (5)

with e = (T —T, )/T, . Values of parameters E,
F, G, and n are listed in Table II. For g*, in
Table I, F. = 0. 2V + 0. 04, F = —10.0 + 0.8, G
= 1.35 + 0. 10, and z = —0. 11V + 0. 019, as re-
ported by Allegra, Stein, and Allen, '7 were
used. In our analysis of their data, we believe
that Allegra, Stein, and Allen'7 have essentially
excluded their viscosity measurements in the
critical region in order to obtain the reported
values of those parameters. Since the capillary
method is susceptible to error for measurements
in the very immediate neighborhood of the criti-
cal mixing point because of gravitational effects,
it is quite conceivable that the maximum in 7I*/

g„, is an experimental artifact of the capillary
method. We shall accept the finding that the
ratio of the hydrodynamic shear viscosity to the
(K$-averaged) Kawasaki high-frequency viscosity
is about 1.23 in the critical region, and perhaps
the deviation increases as the critical mixing
point is approached since q*/ri„*, at T —T,
= 0. 025 'C is least reliable because of limited
angular range available for fK& 1 at that tem-
perature distance from the critical mixing point.

upon temperature. The superscript bar is used
to emphasize the fact that our g„*, is averaged over
ranges of K$ if qf, depends upon Kt'. In Table I, if
we take the actual measured hydrodynamic shear
viscosity, we find that q*/7) f, decreases as the crit-
ical mixing point is approached. The decrease
suggests a very weak maximum in q*/rl„*, since
g* = 1.OVg„*, in the hydrodynamic limit. Such a
maximum is contrary to the usual expectation.
Furthermore, ri,*/r)*„, is relatively constant, if not
with a slightly increasing trend as the critical mix-
ing point is approached. g,* represents the compu-
puted hydrodynamic shear viscosity using the for-
mula'4
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TABLE II. Least-squares fits of viscosity data according to Eq. (5) for the isobutyric-acid-water system.

Method
No. data

points

17R

18

Temperature range
('C)

0.100 —T —Tc «30. 0
0.075 —T —Tc —30.0

3.42+ 2.93
1.40+ 1.31

1.37+ 6.31
—3.3.3 + 4. 53

—3.74 + 3.92
-0.894~ 2.11

—0.541 + 0.134
—0.388 + 0. 152

Capillary Ref. b l.33 + 0.4 —3.3 + l.4 —0.68 + 0.04
Capillary Ref. c 0.27 + 0.04 —10.0 + 0.8 1.35 + 0.10
Capillary 25~ 0.002 «T- T «8.32 1.03+ 0.258 —0.928+ 2. 82 —0.357+ 0.529
Capillary 18' 0.076 —T- Tc «8.32 0.19+ 0.028 —11.4+ 0.67 l.57+ 0.08

03t=ksT/6xDI. Actual data listed in Table III. Only the re value at T —T~=0.076'C is omitted for
17 data points.

"Data of Woermann and Sarholz (Ref. 16) as fitted by Allegra, Stein, and Allen (Ref. 17).
~Data of Allegra, Stein, and Allen (Ref. 17) as fitted by Allegra, Stein, and Allen Qef. 17).
Data of Allegra, Stein, and Allen, their Table II, as fitted by us.

'Data of Allegra, Stein, and Allen, their Table II, but excluding point Nos. 1-7, as fitted by us.

-0.37+ 0.04
—0.117+ 0.019
—0.304 + 0.030
—0.067 + 0.021

the fitting with

The parameters in Eq. (5) are very sensitive to
minor variations in experimental data. In Table
II, we note that i)f, (=ksT/611D) in the hydro-
dynamic limit) can be represented by quite dif-
ferent parameters w'hether we use 17 or 18 data
points for the least-squares fit of Eq. (5).
Similarly, if we use a,ll the 25 data points of
the viscosity data of Allegra, Stein, and Allen, '
we obtain parameter values different from those
reported by Allegra, Stein, and Allen. Figure
2 represents a deviation plot for viscosities cal-
culated from Eq. (5) using the 25 data points.
It is interesting to note that reasonably good agree-
ment can be obtained from seemingly different pa-
rameters. The four-parameter equation requires
data. of ultra-high precision. It is likely that our
measurements and even those of hydrodynamic
shear viscosity are not sufficiently precise for an
unambiguous fit by means of Eq. (5). On the other
hand, all the experimental data point toward a range
of n between —1 and 0. Thus, the presence of a
cusp in the critical viscosity anomaly is indicated.

where the long-range correlation length P is ob-
tained from a least-squares fit of the intensity
data, "with

(p 357+ p pp7)&&lp-7&-0, $13+0.001 cm

I2—
I I I I I I

T-T
C

* l.49

B. Nonlocal Hydrodynamic Region ($K ~~l)

In the nonlocal hydrodyna. mic region the Rayleigh
linewidth obeys Eq. (2) as shown in Fig. 3. From
a plot of I'/K3 vs K3, we obtain the mutual-diffu-
sion coefficient D from the intercept. The results
are tabulated in Table III. We have also computed
the diffusion coefficient at temperature distances
very near the critical mixing temperature by
means of the Kawasaki-Stokes-Einstein relation

I I I II I I I II I I I II I I I II I

A
L

L A
L L

IO—
= 0.98

&exp &c

|exp

L
L

L L
A

A L
A L

~I8---
K

6—

=07I5

=0.502

-I /o

10

I BW VISCOSITY by Allegro, Stein, Allen

I
0".=3.39(l-e ) . 0298-33057I-

I I I II I I I I I I I I II I

IO IO 10

Tc {'c)

III
IO

FIG. 2. Deviation plot for high-frequency viscosities
calculated from Eq. (5) using E=l.03+ 0.258,
5' = —0. 928+2. 82, t" = —0.357+ 0.529, and e = —0.304
+ 0.031.

=0.25d
=O. I 50
=QIOO

0.075
2 .=-

I

0 I 2 3 4 5 6 7
2 {IOIO|:fn-2)

FIG. 3. Plot of I;/K vs K in the nonlocal hydrodynamic
region.
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TABLE III. Mutual-diffusion coefficient of 38.6-wt. %
isobutyric acid in water from Rayleigh linewidth mea-
surements. ~

T —Tc
('C)

0.003
0.006
0.009
0.025
0.075
0.100
0.150
0.250
0.348
0.502
0.715
0.98

1.39
2.47
3.45
5.01
7.15
9.00

10.95

15.00
20. 00
30.00

D(= Jim I"/g2)
lC~u

(10 8 cm2/sec)

1.44(4)
1.86(9)
2. 36(1)
3.21(2)
3.94(6)
5.o6(4)
6.35(5)
V. 95(4)

1o.v(2)
15.3(6)
20. 0 (0)
26. 3(4)
36.v(o)
44. 2(5)
52. 6(8)

73.1(4)
1O1. (3)
186. (4)

D (=-k, T/6&q*„,~)"
(10 crn /sec)

0.217
0.335
0.431
0.841

ri*„, =keT/16A from a least-squares fit of 1'=AK~.
Figure 4 shows a plot of lnD vs ln(T —T,). The
plot clearly indicates that the temperature depen-

'The values for k&T/6~ $ have been reported (Ref. 18).
In general, we find 6m'*)D/k~T varies from 1.05 to 1.08.

( obtained from a least-squares fit of the intensity
data (Ref. 15) wit g =(O.35(V)+ O. OOV) x10-'~-'"""o cm.

dence of the diffusion coefficient cannot be repre-
sented by a simple exponent, such as D~ &" . Fur-
thermore, a discrepancy is observedfor D (=keT/
6cq„*,$) and the values extrapolated from
D=lim~. c 1'/K very near the critical mixing point.
The same manifestation is shown in Table I where
IV*/qf, = 1.28 for small temperature distances from
the critical point, while q*/qf, =1.0V at large tem-
perature distances. ' Independently, Kawasaki and
I o'3 have computed an explicit correction factor
to account for the E$ dependence of the high-fre-
quency shear viscosity. We shall discuss the non-
local shear viscosity together with all the other
corrections.

The long-range correlation length $r can be
computed from the ratio of el)pe/intercept of the
isotherms in Fig. 3. The subscript I' denotes the
value of $ obtained by means of Eq. (2). Table IV
shows a comparison of $r with those from the an-
gular distribution of scattered intensity [Eq. (V)I.
Over a limited temperature range (O. OV5 ( T —T,
(0.150) 'C we can identify the same correlation
length $ which governs the critical behaviors of
both static and dynamic properties of the critical
binary fluid. Even the factor —', in Eq. (2) is prop-
erly obeyed. However, $r appears to have a
somewhat different temperature dependence with
vr & 0. 6. The discrepancy between v~ and v could
probably be attributed to the nonlocality in q„*,.
Then, Eq. (2) cannot be used for determining $r
over large ranges of K$ at many different tempera-
ture distances from the critical mixing point.
Thus, the $ values represented by Eq. (V) are more
reliable than those from the linewidth measurement.
If we combine the intensity data measured at Xo

=435. 8 nm with those measured at Xo= 632. 8 nm, we

I I I II I I I II ~ 1 & II I

IBW

:X EXPERlMENT(D =K D 2, Kg(l }

0 D = keT/6~yC

D = keT/6~v„g,
IO ~r

5
r5rl

r5
r5

r5
5r5

rO

h, r
mr&

rO
A r.0

D

lcm%sec)

io—

I III I I I II I

IO lO
T Tc ( g)

to'
IO IO

8

|t r

6

IO

FIG. 4. Temperature dependence
of the diffusion coefficient in a crit-
ical binary-liquid mixture. Note:
The dotted straight line is obtained
by joining data points in the tem-
perature range (0.075 & T —To
&1.0) 'C in order to show deviations
from the simple exponent behavior
ID ~ e", where e = (T —T~) /T, and
y* is an apparent exponent] at both
large and small temperature dis-
tances, but for different reasons.
Note: The difference between 0 and
X is real. The (4) values from D
=k~T/6m'~&f) are distinctly higher
than the extrapolated dotted line
indicating a discrepancy between
experiment and theory.
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TABLE IV. Long-range correlation length $ from
measurements of angular distribution of spectral width
and that of scattered intensity for the isobutyric-acid-
water system.

Io

-(a)
I II I I I II
0 ii,~ 632.8 nm

&M 488.0 nm

A ~ I 06 x lo
g. ~ 3.57 k

y «0.6I3

I I III I

IBW

I III I

T Tc
('C)

0.075
0.100
0.150
0.250
0. 348

562
460
381
311
260

(A)

574
482
376
275
224

]r/] (=1)

0.98
0.96
1.01
1.13
1.16

-IS
IO

(rad cm)
sec

lo 10

I II I I III
IO IO

$ = )pe
"with (p = (0.357 + 0.007) x 10 cm and v = 0.613

+ 0.001. The data were those from Hef. 15 using a wave-
length of 435.8 nm with a medium pressure mercury-arc
lamp.

(b)

1.2—

09—

I I I j I I I
f I

IBW
A from f' AK

from intensity

get

$=(0.362+0. 010)x10 "g ' ' ' ' ' cm.
0.6—

Q3—

0
0

~ ~

It should be noted that the uncertainties are rms
fitting errors, not estimates of accuracy. Thus
we find v =0. 613+0. 001 using one set of measure-
ments and v = 0. 618+ 0. 015when we include additional
intensity data which are slightly poorer in quality.
We have decided not to make accuracy estimates
on the critical exponents as too many unknown fac-
tors could be involved. Rather, we have tried to
report two values using independent data measured
at different times. If pressed, we believe that the
most probable value for v from our intensity studies
is 0. 615+ 0. 015. The literature is filled with crit-
ical exponent determinations, quoting far better
accuracy estimates which we do not take very seri-
iously. On the other hand, the uncertainties on I'
should be considered from a slightly different view-
point since we have calibrated our instruments
using latex spheres of known diameters. Gur cali-
brations have shown that we can measure I' to an
accuracy of + 1% or better.

0 —Iexp "th

~th

-03,—
IO

~ o+ ~
~ ~~ ~ ~ ~ ~ ~ ~

~ ~ ~ y ~ ~

~ +each oe 4 I ~V ~ ) p~~ ~~+ ~+ er
~ ~ ~

I t

IO

I il
IO

Kg

I it
IO

FIG. 5. Comparison of the Kawasaki theory with the
linewidth data for the isobutyric-acid —water system at
the critical solution concentration. (a) A plot of the
Kawasaki linewidth with A=1.06~ 10 ' cme/sec, v

=0, 613 and $p = (0, 357 + 0 ~ 007) x 10 ' cm. (b) A plot of
the deviation of the isobutyric-acid-water linewidth data
from the theoretical curve [Eq. (3)] with parameters
shown in (a).

tions, it is interesting to note that we can obtain a
three-parameter fit of the Kawasaki equation as
shown in Fig. 6. The agreement between the com-
puted curve and experimental data is very good.

C. Kawasaki Theory and Modifications

The Kawasaki theory tEqs. (3) and (4)] disagrees
with experimental data as shown in Fig. 5 because

g~ is assumed to be independent of temperature.
Equation (5) further shows that a simple separa-
tion of the form

D= Do+ k~T/Gmrlf, ) lo

I I II I I I II
Ii. 632.8nm

4 +~488Q n m
-IS S

A ~I.096 x!0 cm
~2.09k

y ~069

THREE PARAM

I I & I
I I I I

IBW

(with I)„*, as a constant) is inappropriate. Yet, we
see that I'=A, K3 holds very well at constant tem-
peratures suggesting a negligible background in the
critical region. Thus, our approach is totry to com-
pare the Kawasaki theory by taking into account
(a) the vertex correction, (b) the approximate
Grnstein-Zernike form of the correlation function
in the Kawasaki equation, and (c) the nonlocal
shear viscosity. Before we consider the modifica-

(rad-cm
~sec

IS

002 O.I I.O

I/Kq

I I II I I I II I

Io IOO

FIG. 6. Least-squares fit of the Kawasaki equation
[Eqs. (3) and (4)] with experimental data. The average
parameters A. = 1.096 && 10 ~3 cm3/sec, p = 0.69, and $p
=0.209& 10"' cm represent distorted values because of
the forced fit.
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The difficulty lies mith disagreements of the values
of parameters obtained this way and by other meth-
ods.

TABLE V. Percent change of computed linewidth due
to vertex correlation function and nonlocal viscosity cor-
rections.

Vertex Correction

The contributions of the simplest vertex col rec-
tions's on the decay rate I' are —2 441o f» $«& 1
and 0.40k for $K»1.

2. Nodification to Linewidth Obtained for Differe«
Correlation Functions

Modification

1. Vertex correction
2. Correlation functions

Gi [zq. (»)]
G, [zq. (eb)]
G, [Zq. (ec)] y=O. 5

G, [Zq. (ec)] y==0. 1

3. Nonlocal viscosity

Kg =0.1
-2.44

(7] =0.1)

11.1
7.6
3.7
1.0

/0 change of I'a

1

9.5
7.0
4.3
1.2

10

6.2
5, 7
5.6

Sminney and co-workers~1 as have modified the
Kawasaki theory for different correlation functions:

G, (K)~ sin[(1 - n)»«~(ra)]/K(K'+ g-') &'- ~1~s,
(9)

(K)o- (Ks+ ~-2)-(1-e/ 8)
(9b)

8,(K) (P-'+ y'K')""/[~-'+ (I+-,'qy')K'] . (gc)

With an assumed 1) = 0. 1 and &f&
= 0. 5 (or 0. 1), they

obtained an increase in the computed linemidth vary-
ing from 1-11%at K$ «1 and about 4-6Vo at K$» 1.
Table V lists the percent change of 1 at K&=0. 1,
1, and 10 for Eq. (9).

3. Corrections due to Nonlocal Shear Viscosity

Kawasaki and Lo have removed the ambiguity as-
sociated with the so-called "high-frequency" shear
viscosity's in Eq. (3) by considering the nonlocal
shear viscosity which depends upon K( as mell as
temperature. The so-called high-frequency viscos-
ity g~ is related to the macroscopic shear viscosity
l)*(r) by

f)*„,= [H,(K~)/H(K~)]l)*(T) . (io)

The correction is quite important, amounting to
about 30% for K( = 20, and remains finite (- 5. 5%)
even in the hydrodynamic region. Values of H(K$)/
Hs(Kt ) at KP = 0. 1, 1, and 10 are also listed in
Table V. In the hydrodynamic limit, both the cor-
relation function and nonloca1. viscosity corrections
contribute an approximate 5/o change in the com-
puted linemidth; With the vertex correction, either
correlation function or nonlocal viscosity is suffi-
cient to account for the discrepancy between exper i-
ments and theory. Homever, in the critical region,
1)*/q„*,= i. 25. Thus, the main correction term
must be contributions due to nonlocal viscosity.
From Table V, for Kg=0 iand 10,. H(K$)/Hs(K))
=1.055 and l. 23, and li*/11„*, (measured) =1.070 and
1.25, respectively. By means of Ell. (10), we see
that the agreement between experiments (li*/li„*, )
Rnd the modified Kawasaki theory [H(K$)/Hs(K))]
is within 2%%u~. The implication could be that devia-
tion from the approximate Qrnstein-Zernike cor-
relation function must be small, and l) and @ are
small numbers if they exist. Figure 7 shows a
comparison of the modified linemidth function

a(K~)/a, (K~)

Q+/ 7] bf (before
correction)

7.0

7.0

q*jq ff [after correction with (1) and (3)]

7| /Qfjf [after corrections with (1)-(3)]
-4.6
-4.1
—4, 0
—2 8

with G 1
—7.16

G2 —3.66
G, (y =o. 5) 0.24
G3(y =O. 1) 2. 94

The errors for q*/q fz in % change of 1" should be at
least + 1. Thus, figures after the decimal are not mean-
ingful.

Note: We have taken Hg$)/Ho(K/) =1.23 at K$ =10
while Vlf' is averaged over a range of Xf «ll. Thus, in
the critical region, we see that the correl. ation-function
correction is needed even though it is likely to be small
with @&0.1 and Q small, if any.

I;= (f,Z'/6&v)+ ~') H(Kg)

with our experimental data. Note that no adjust-
able parameters enter the theoretical curve. The
measured linewidths are compared with Eg. (11)
which can be computed using hydrodynamic shear
viscosity by the capillary method and correlation
length by the angular dissymmetry method. Higher-
order effects appear to be unimportant since me
have already achieved good agreement betmeen ex-
periments and theory. The background contribution
(if Rny), tile col'1'e'1Riloll-fllllction modlflcRtioll, Rlld

the vertex correction play only secondary roles,
or there could be effects cancelling one another.
The solid line represents H(K&)ks T/(6v)sKs), where
the H(IQ) function is obtained by computing He(K))
from Ell. (4) and H(Kg)/Hs(Kf) from Fig. 3 of Ref.
13. In terms of the reduced variable (K$), the
computed curve should be valid for all systems.
The solid circles represent experimental data for
the isobutyric-acid-water system where I' is ob-
tained from Bayleigh linemidth studies, q* is com-
puted using Eq. (5), withZ=0. 27, E= —10.0,
6=1.35, and 0.=-0.117, and f by means of Eq.
(7). The solid triangles represent typical data for
the 3-methyl pentane-nitroethane system. '0 The
agreement among the tmo experiments and the
modified Kamasaki theory is remarkable. However,
in the nonlocal hydrodynamic region, me note that
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FIG. 7, Plot of ln(T'/Ee)g* vs

InK). Solid circles represent ex-
perimental data for the isobutyric-
acid-water system. The parameters
used are A =I.06&&10 ~3 cm3/sec,
v=0. 613, and $0=0.357xl0 ~ cm.
The solid curve represents Eq. (11);
which includes the nonlocal vis-
cosity correction but not the cor-
relation function and vertex cor-
rections. The dashed line repre-
sents C(K$) x Eq. (I1},where C(K$}
accounts for the deviation of the
Ornstein-Zernike correlation func-
tion but not the vertex correction.
The solid triangles represent typ-
ical experimental data for the three-
methyl pentane-nitroethane system
from Fig. 3 of Ref. IO.

the measured data are higher than the computed
curve which contains no adjustable parameters.
Thus, it becomes necessary to consider a break-
down of the Ornstein-Zernike form of the correla-
tion function. Any of the correlation functions in
Eg. (9) will contribute to an increase in the com-
puted curve. Since the vertex correction' provides
a decrease in the computed linewidth in the hydro-
dynamic limit, we estimate g ~ 0. 1 in order to ac-
count for the discrepancy. In the critical region,
the values for the 3-methyl pentane-nitroethane ap-
peRx' R bit too low. There is R possibility that the
capillary method becomes less reliable in the crit-
ical region because of gravitational effects at small
temperature distances from the critical mixing
point. It should be noted that the exponent n de-
pends strongly upon the mathematical representa-
tion of the power law used. For example, the ex-
pression g* =A@ +g ~«can also fit our experimen-
taldata. However, we may safely conclude that
the viscosity anomaly is weak and the possibility
of a cusp clearly exists even though the precision

.of present-day experimental data is not able to rule
out a very we~ power law or logarithmic diver-
gence. A possible indirect evidence on the shaxp-
cusp formation very near the critical point is the
slowing down in the collapse of the linewidth as
the critical point is aptproached. Thus, for the
isobutyric-acid-water system, we have used val-
ues of the hydrodynamic shear viscosity computed
by means of Eg. (5) which was least-squares fitted
using expex'imental data without those measured
very near the critical mixing point (T- 7,
«0. 05 'C). The discrepancy between the isobu-
tyric-acid-water system and the modified Ka-
wasaki theory can be reduced if we utilize the cor-

relation-function modification, as shown by the
dotted line in Fig. V. This dotted line represents
H(K$)C(K&)ks T/(Gvg K ), where Q(K$) is the cor-
rection factor which takes into account the cor-
relation-function modification. [Eq. (9b) with g
=0. 1].~' There are two remarks worthwhile men-
tioning. Fix'st, we are considering discrepancies
of only a few percent. Thus, the conclusions from
those comparisons must necessarily be on a less-
solid footing. Second, with precise experimental
data, we see a new method of determining the form
of the correlation function by comparing data with
theory over the entire Kf range. However, such
a new approach cannot yet be utilized until the
modified Kawasaki theory, which already includes
vertex, correlation functions, and nonlocal viscos-
ity corrections, is further improved. In Fig. , V,
the measured data at Kt' & 1 level off faster than
the computed curve even though the discrepancy
can hardly be detected in such an insensitive log-
log plot.

A more crucial comparison is achieved by plot-
ting q*(T)/gf, vs lnKf, as shown in Fig. 8. The
measured points are computed according to the
expression

where g*,(T) is the computed hydrodynamic shear
viscosity from Eg. (5), with E=0.2V, E= —10.0,
G=1.35, and a=0. 11V. I' is the measured Bay-
leigh linewidth, P=(oq "with &0=0. 35V&10 7 cm
and v =0. 613. Ho(K&) is computed by means of
Eq. (4). The solid line represents H(KP)/Ho(IQ)
which is identical to Fig. 3 of Bef. 13.

In Fig. 8 the absence of adjustable parameters
suggests that while the agreement between experi-
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ments and theory is already exceedingly good,
further modification of the theory is needed since
the discrepancies exceed the combined error
limits of our measurements. The solid curve
(H/Hp} falls consistently below the measured points
over the entire Eh range till EP» 1. Contribution
of the simplest vertex correction for the computed
linewidth is —2. 44% in the hydrodynamic region
and 0.4(P/p in the critical region. ' Thus, accord-
ing to Fig. 8, the computed curve needs to be
raised about another 7%%up at small values of K] and
not so much in the critical region if we take Eq.
(12) as the definition for f)h*, . The dotted line in
Fig. 8 represents (H/Hp)C(K)), where C(K$) is the
correlation-function correction [using Eq. (9b) with
fr=0. 1].s' Hence, if we take into account the vertex
correction as well as the correlation-function
modification in addition to the nonlocal viscosity
effect, we can obtain excellent agreement between
experiments and theory over lar'ge ranges of Kf up
to Z~-1.

The quantity, H/Hp should be independent of the
nature of the fluid. systems under investigation.
The solid triangles in Fig. 8 represent typical data
(f)~/q„*, ) for the 3-methyl pentane-nitroethane syste
tern. ' Aside from imprecisions in computing data
from graphs in the literature, we believe that our
linewidth measurements are better because of signal
correlation rather than spectrum analysis. Never-
theless, the agreement is quite remarkable over
the K$ range from the hydrodynamic region to
about K$-1 for both systems with the modified
theory.

In the critical region, especially at large values
of K$, the 3-methyl pentane-nitroethane system
shows lower values of q*/qf, than expected. The
values become even lower if we take the earlier I' (130') H [K(130')$] H

r (4o') H, [K(40')~] H, „ (i3)

hydrodynamic shear viscosity data. The source
of this discrepancy could be partly due to lower
values in the measured hydrodynamic shear viscos-
ity in the critical region as discussed earlier.
Similarly, for the isobutyric-acid-water system,
f)*/gh*, has lower values in the critical region if we
used the measured hydrodynamic shear viscosity
instead of Eq. (5). We believe that the correct
values for the hydrodynamic shear viscosity in the
critical region are slightly higher than those re-
ported in the literature. ' On the other hand, the
shape of the measured curve in Fig. 8 is not sen-
sitive to the magnitudes of $p and v in the critical
region (K$ & 1). Thus, we observe a discrepancy
between experiments and theory even ii we neglect
considerations of q*/q*h, in the large ranges of K$
corresponding to T —T, & 0.01 for the hydrodynamic
shear viscosity where gravitational effects are
likely to be significant. This leveloff effect in the
shape of the measured data at Z$ & 1 cannot be taken
into account by (a) the simple vertex correction,
(b) the correlation-function correction, and (c) the
nonlocal viscosity correction. It is not likely be-
cause of gravitational effects since we have ne-
glected the measured hydrodynamic shear viscosity
very near the critical mixing point nor because of
slight variations in the magnitudes of Pp and v.

The H(KP) function of Kawasaki and Lo'P can be
tested on a relative scale in the absence of hydro-
dynamic-shear-viscosity data. At a given tem-
perature, the hydrodynamic shear viscosity q*(T)
and the long-range correlation length $(T) are
constant. Then, the ratio of Rayleigh linewidth
at two different scattering angles, say 8 =40' and
130, is

I.4—
I I I

I I I I I

according to Eq. (3), where f)*h, is assumed to be
independent of K$; or

hf

I"„(130') H[K(130')$] Happ

r„(4o') H[K(40')g] H„
(i4)

1.2—
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FIG. 8. Plot of q*/q@ vs inlet. q"/q~~ =6~*)SI'/
kaT Ho. Solid line represents H/Ho. Dotted line repre-
sents (H/Ho)C(K)) with g = o. l. ~: isobutyric-acid-
water system; k: three-methyl pentane-nitroethane sys-
tem.

according to Eq. (11). Equation (13) remains
valid even if qh*, depends upon temperature. ( H])K/

Hp(K() increases rapidly for large values of Kg
and remains relatively constant in the hydro-
dynamic region. Far away from the critical point,
both K(40')P and K(130')P are in the hydrodynamic
region. Thus, Hp, pp/Hp 4p and H,pp/H4p coincide.
At smaller temperature distances, K(130')$ is
further into the critical region than K(40 )g.
'/hen, Hp»p/Hp 4p deviates from H, pp/H4p as shown
in Fig. 9. We have used two different values of fp
and v to illustrate the fact that the comparison
remains valid even if our measured values of $p
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(=3. 57 A) and v (=0.613) are slightly different from
the correct ones. From universality considera-
tions, ' the most probable value for v could be
0.63. We then compute a (0 value by assuming v

=0. 63 in $ =)ac" at 7 —T, =0. 1'C. In Fig. 9, the
data appear to agree better with the modified theory
of Kawasaki and Lo even though deviations at
large values of $ exist. The lower value of
I"(130')/I'(40 ) when compared with H, ta/H4a at
(-10s A seems to indicate that the ratio of H(K$)/
Ha(K)) inc "eases too fast at large values of K$.

Figure 10 shows deviation plots of (I',„„—I',„)/
F,„„vslnK(, where F,„„represents the measured
Bayleigh linewidth and T,„is computed from Eq.
(11). In Fig. 10(a), v =0. 613 and )a=3. 57 A, while
v =0. 63 and ]a=3.11 A in Fig. 10(b). The first
($a, v) pair is the best values from least-squares
fi~- of intensity measurements using %0=435. 8 nm.
The second ($p v) pair is again introduced by as-
suming v=0. 63. The values of $a and v seem to
influence the magnitude of F,„at small values of
K$ and become insensitive at large values of K$.
In order to take into account the vertex and cor-
relation-function corrections as well as the con-
tribution from nonlocal viscosity, we need to ob-
serve the deviations over the entire Kg range. In
Fig. 10(a), at small K$ values (K$ ~1), (I',„„
—F,„)/I",„,, is about +6k. With —2. 44% due to the
vertex contribution in the hydrodynamic limit, it
requires a correlation function of Eq. (9b) with tI
& 0. 1 to account for the discrepancy. Other effects,
such as the frequency dependence of the viscosity,
need to be included since the deviation drops off
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FIG. 10. (a) Plot of (I' t —I'~)/I t vs ln K). I',
represents the measured linewidth. I'th is computed from
Eq. (11) using $p —-0.357&& 10" cm v=0. 613; q* from
Eq. (5) with E=0.27, F = —10.0, G=1.35, and & =-0.117;
Hp (Kf) from Eq. (4); and H (Kf)/Hp (K$) from Fig. 3 of
Ref. 13. The following symbols denote various scattering
angles 8: a, 20'; k, , 25', 4, 30'; ~, 40', Q+, 50'; O,
60', g, 70', gg, 80', 3, 90'; IZI, 95'; H, 100', Q, 105';
+, 110'; +, 115'; &, 120'; O, 125'; , 130'; S, 135;
140'. (b) The same plot using (p=0. 311&& 10 cm and
v =0.63.
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FIG. 9. (a) A comparison of ratio of Rayleigh line-
width as a function of correlation length with theories of
Kawasaki and Lo (Ref. 13) and Kawasaki (Ref. 7) using
(p = 3 57 ~ and v = 0 ~ 613 (b) The same comparison using
$0=3.11 L and v=0. 63 obtained by equating t = foe at
T —Tc =0.1 C. No correlation-function and vertex cor-
rections have been included. The experimental data
agree better with the modified theory of Kawasaki and Lo
(Ref. 13). Note that the general behavior is relatively
independent of small changes in the magnitudes of $ p and v.

too fast at large values of E$. The maximum in
Fig. 10 cannot be explained by the presently known
theoretical modification as we have already dis-
cussed. Experimentally, it is not likely that any
appreciable error exists in our Rayleigh linewidth
measurements. The magnitude of ( does not change
the qualitative behavior as shown by Figs. 10(a)
and 10(b). There could be possible errors in the
hydrodynamic shear-viscosity studies. Neverthe-
less, we believe that we have alleviated part of the
difficulties by utilizing Eq. (5). Thus, further
improvements of the modified Kawasaki-Lo theory
should be worthwhile.

IV. SUMMARY AND CONCLUSIONS

A careful comparison of linewidth, angular dis-
symmetry, and hydrodynamic shear-viscosity data



OMPARISON OF EXPERIMENTS WITH THE MODIFIED. . .

of a critical binary-liquid mixture with the mode-
mode coupling theory of Kawasaki has led to the
following remarks:

(i) The high-frequency shear viscosity p„*, de-
pends upon K$ (as well as temperature) in the crit-
ical region.

(ii) qf, depends upon temperature, and in the
hydrodynamic limit, it exhibits a similar tempera-
ture behavior as the hydrodynamic shear viscosity
ri*(T). A cusp behavior in the critical viscosity
anomaly is strongly indicated.

(iii) g* & g, over the entire K$ range.
(iv) The formula I'AK~ seems to hold very

well even though q„*, depends upon K(. Implicitly,
this could mean that the K$ dependence of q„", is not

very strong.
(v) Equation (3) assumes that ri~ is a constant,

independent of K$ and T. If we force a three-pa-
rameter fit using only the linewidth data, we ob-
tain a set of values of $0, v, and A(or q*„,) which
are not consistent over different ranges of K$ and

with angular dissymmetry and viscosity studies.
Thus, it is incorrect to analyze experimental data
using this approach and to proclaim a good agree-
ment between experiments and theory.

(vi) DtksT/6mq*$ since we have shown that q~M

(vii) It is invalid to obtain the long-range cor-
relation length by means of Eq. (2) because q„*, de-
pends upon K$. The ratio of slope/intercept in a
I"/K -vs-K plot will be slightly distorted. As a
result, temperature dependence of the long-range
correlation length is incorrect if we use Eq. (2)
in the nonlocal hydrodynamic region. Table IV
clearly demonstrates that the factor & is valid only
over limited K$ and temperature ranges.

(viii) DWDo&~*. The critical exponent y* is
obviously an apparent one. The viscosity term has
a complex temperature dependence. With D = ks T/
6m'„, $, it is not reasonable to use a single critical
exponent y* to represent the temperature depen-
dence of the diffusion coefficient over large tem-
perature distances as shown in Fig. 4.

(ix) Fluctuations in data points which are out-
side of our error limits in a plot of q*(T)/qf, vs K$
or Fig. 8 reveal additional possible weaknesses in
the theory. It should be noted that such fluctuation!
are relatively independent of scattering angles or
temperatures studied. Thus, there are other ef-
fects which have to be taken into account in the
modif ied theory.

(x) The maximum in Fig. 10(1 ~ K] ~10) can-
not be explained. We believe that the slight in-
crease up to E$-3 is real. Such discrepancies in
this region could be taken into account by means
of the correlation-function modification and vertex
corrections. The decrease for K$ ~ 4 means that
the computed H/Ho curve increases too fast at
large values of K$, suggesting a frequency depen-
dence of the high-frequency shear viscosity.

(xi) Values of reported hydrodynamic shear
viscosities at very small temperature distances are
questionable. '~ 2

(xii) With good experimental data in linewidth,
angular dissymmetry, and hydrodynamic shear
viscosity, the theory of Kawasaki and Lo'3 after
further modifications suggests another interesting
method of eventually determining the form of the
correlation functions with their corresponding
critical exponents by comparing experiments with
theory over the entire K$ range.

(xiii) It should be noted that the correlation-
function correction for the original Kawasaki theory
was computed by Swinney and Saleh. ' The modi-
fied Fisher formula with the exponent g is expected
to be valid at K$» 1 and theoretical linewidth
change may be different with different correlation
functions in the critical region. However, in the
hydrodynamic region, Swinney, Henry, and Cum-
mins" and Swinney and Saleh ' predicted equiva-
lent changes in linewidths dependent upon the
magnitudes of critical exponents q and P and a
lack of convergence with the computed linewidth
using the Ornstein-Zernike correlation function.
In our discussion, we have simply used their yet
unpublished results in Table V, and Figs. 7 and 9
without repeating the numerical calculations.

(xiv) Recently, Perl and Ferrell' proposed
that retardation produces some non-Lorentzian
distortion in the diffusion line shapes which we have
been unable to observe with our present instru-
mentation. Perhaps, as they have mentioned, the
effect is too weak to be detected experimentally.
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