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The stability of electromagnetic waves propagating transverse to the direction of streaming
in a system comprised of identical nonuniform plasmas contrastreaming along a nonuni. orm
magnetic field is investigated. It is found that the low-frequency waves &2«Q2(~ and 0; being
the wave frequency and the ion cyclotron frequency, respectively) can become unstable due to
the excitation of either resonant ion instability or resonant electron instability. The latter in-
stability can be excited only in the presence of streaming. The drift cyclotron instability gets
excited for some bounded values of U~, U&, k, P, and p, (U~ being the electron streaming veloc-
ity, U& the ion streaming velocity, k the characteristic wave number, p the ratio of kinetic
pressure to magnetic pressure, and p the inhomogeneity in the magnetic field). The effect of
ion temperature on this mode is stabilizing and the typical growth rates associated with this
unstable mode are of the order of 0;. The presence of even a weak inhomogeneity can render
the otherwise marginally stable waves unstable, their growth rates being as high as 0.05 Q~

(Q~ being the electron cyclotron frequency). However, the effect of p and &n on the trans-
versal instability (for frequencies 0;« ~ «O~) is to increase the growth rate of the unstable
waves slightly.

I. INTRODUCTION

The study of instabilities in nonuniform plasmas
is of great interest as such plasmas are encoun-
tered in controlled-fusion machines as well as in
some astrophysical situations. ' The presence of
gradients not only can give rise to various kinds
of drift modes but it can affect the modes of the
uniform plasmas and make them unstable. The
electrostatic drift modes have been discussed by
several authors, but little work has been done
on electromagnetic modes. Krall and Rosenbluth'
and Krall" have shown that for nonuniform plasmas
in an inhomogeneous magnetic field, electromag-
netic drift-wave instability can exist. Chamber-
lain' has explained the mechanism of auroral
bombardment on the basis of this instability. He
has also given the physical picture of this insta-
bility as arising due to the resonant interaction of
drifting ions with the drift waves. Recently Wu'

has extended the work of Krall and Rosenbluth by
including temperature gradients. He finds that in
some cases the electron and ion temperature gra-
dients can give rise to a new instability which is
due to the resonant interaction between electrons
and the drift wave.

Here we have investigated some electromagnetic
instabilities which can arise in contrastreaming
nonuniform plasmas. In particular we have studied
(a) low-frequency drift instability, (b) drift cyclo-
tron instability, and (c) the effect of gradients on
transversal instabilities. For case (a) we find that

the low-frequency waves, & «0', , can become
unstable due to the excitation of either resonant ion
instability or resonant electron instability. The
latter instability can be excited only in the presence
of streaming and its growth rates are M/m times
larger than those in the former case. The growth
rates, corresponding to resonant ion instability,
increase with the increase of P, p, , U„and U, and
with the decrease of T,/T, and k, where P= Srrn&T/

Bo, p = VB/Bo, and T,&;& are the electron (ion)
temperatures. For resonant electron instability,
however, the growth rates are enhanced due to an
increase in T, /T„p. , and U, and due to a de-
crease in P and U;.

For case (b) we find that the drift cyclotron
instability can exist only for nonuniform streaming
plasmas and for some bounded values of U„U, ,
0, P, and p. The ion temperature has a stabilizing
effect on this instability.

For case (c) we find that for 0',. « ~' «0', the
effect of the gradients is toward increasing the
growth rate slightly for the already unstable waves.
However, even a very weak gradient can make the
marginally stable waves unstable with the growth
rate as high as 0. 05 0, .

In Sec. II we have derived the general dispersion
relation and some special cases are analyzed in
Sec. III. The results are summarized in Sec. IV.

II. DISPERSION RELATlON

We consider a system comprising of two plas-
mas, which are nonuniform in the x direction, and
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I

fog g (y~g) . fog 0x

and

7&5= (4m/c)Z, Z&e; J dVV fL, (2)

where fo, and 5(x.) =Bo(l+ px)e, are the equilibrium
distribution function and the magnetic field, re-
spectively. Here j refers to the particle species
and is to be summed over i and e for ions and
electron, respectively; s specifies the plasma
streams. A simple distribution function which
satisfies Eqs. (1) and (2) can be written

fog ——(ag/m)~ n'og exp[- o'& V —o&(V, —U&) ]

are streaming along the direction of the external
magnetic field which initially is uniform and is di-
rected along the z axis. The drift currents owing
to the plasma nonuniformities render the magnetic
field nonuniform, and the equilibrium state is
reached only when these currents are counter-
balanced by the drift currents owing to the magnetic
field gradients. The equilibrium state is completely
described by the Vlasov-Maxwell equations,
namely,

where

x [1 —e&(x+ V, /Q&)], (3)

where

(4)

o'& = m&/2kT&= 2 V& and Q& = e&BO/m&c

is the cyclotron frequency of the jth species.
—V nz/noj denotes the inhomogeneity in the density.
However, the charge-neutrality condition requires
that ~,. = c,= ~.

The y component of Eq. (2) demands that p/e
= 2 P. The x and z components are identically
satisfied when the plasmas are identical and contra-
streaming and thus yield no further information
regarding the equilibrium state.

Equation (3) describes the equilibrium nonuni-
form streaming plasmas; we wish to examine the
stability of such a system in the presence of a
small perturbation for which the distribution func-
tion can be written as f~=fo,.+ff, . The perturbed
distribution function f&& can be obtained by inte-
grating the linearized Vlasov equation over the un-
perturbed orbits, ' ""and on making use of the
local approximation we arrive at the following
dispersion relation

S

R= (c k —&u )I —kk —&uQ Q ' (dye Xf'0, J) ' Z ' exp[-f(l —m) (
—
2m —8)],

where

X= —V, n& 1+ ~ ' —,' A, e„+ —iV, o.
&

1+ ~ ' A — 1+ ' ' +2o."V~i 1+ ' ' Ao e
(d 2Q Q hl

U'k
~y ~s 9 9 Q + 2 P U ~ + & + 2~ Us+ ~ g e 6

with

A, = e '
[&u+ k, V, + k, V„+ (l+ 1) Qq] '+e' [u&+ k, V, + k, V~+ (- —1)Qq]

and

A, = (&u+k, V,+k,V„+lQ,), V„= V,'p, /2Q&.

For identical contrastreaming plasmas (U, = —U, = U) the ordinary mode, i.e., the mode with k, = 0 and
E, (perturbed electric field) parallel to e, gets decoupled from the rest of the modes, and the dispersion
relation for this mode according to Eq (4) comes. out to be

c k —&u =eQ Z 2o.'zu&~ t dV, V,
g «oo

0

2o,,U2Q, f el ek(l+ 2o.,U, ) o.,U, k pV, J,(k V,, /Q, )e

For &u «Q, and U&-—0, Eq. (9) becomes similar to that of Krall and Rosenbluth'o and Wu'2 and for c = p, =0 it
reduces to that of Buti and Lakhiaa. ' '
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IH. ANALYSIS OF DISPERSION RELATION

In this section we shall discuss the solution of Eq. (S) for some special cases.
Eq. (9) for some special cases.

A. Low-Frequency Drift Instability (m2(& Q&)

321

Let us consider the case for which c'k'» aP. On neglecting re+kg V,'/2Qi compared to lQ, (lo0), the dis-
persion relation (9) reduces to

D(k, ~) -=csk —Q 2u&Ua&u&ss [1 —Io(Xi)e "&]

&k
(1 2 Us) kV, Uq~ri Jo{(k/Qq)(ri/n~) ~s)e "

( )
5J 2 rsvp Qi Qg (&d+ k p'g/2Qi Q'g)

where Xi=k V,'/Q~. Let us write ~=&o„—iv, where v&0 corresponds to instability. Let us further as-
sume that I vl « I co„I; then we can express the real and the imaginary parts of the function D as follows:

ReD(k, &o„)= c'k' —52a~U,' ~s, [1 —Eo(X~) e "&]

ImD(ka, )= — ,
' '--E ~,', I dne "(

0

(12)

Evidently the ImD(k, ~„) would be nonzero only if

The real frequency &„can be determined from the
relation ReD(k, &:„)=0, whereas the growth rate v

can be obtained from the relation

ImD{k, &u„)

(8/e&a„)[ReD(k, &u, )]

Assuming l &u„l » Ikii r)/2u~Q& I, the principal inte-
gral in Eq. (11) can be easily evaluated to yield

[A., —(m/M)A, ]
y

gk f 210(l,)e d

2IQ, lo., I, p

x (1+ 2rr, Ua,), (16)

e( f / e) I (y ) e-x~ 2rr Us[1 I (y ) e-xq]

~' &.Ur [I-fo(~&)& ~]+
M fo( r)e

(17)
and A& is obtained from A, by replacing the sub-
script e by i.

Now A, & (m /M )A, unless X, & X, and U, & U„V„,
in which case for y &0 only the ions can satisfy the
inequality (13) and thus only they can contribute to
ImD(k, &o„) and consequently to v. In this sense
the ions in this case are having resonant interaction
with the wave. ' On the other hand, for X &0, it
is obvious from inequality (13) that the instability
vrill be excited by the resonant electrons.

The growth rates for xesonant ion and for reso-
nant electxon instability me shall determine sepa-
rately.

1. Resonant Ion Instability

As mentioned above, for g &0 the low-frequency
mode is driven unstable by the resonance interac-
tion of the ion with the vrave. The growth rates,
for this mode, on using Eq. (14), are found to be

2' n 0 {d„e "~ 4p
M kiL A, —(m/M)A, " n(Q)p

&:(I+2o'~U~) +
Q « ~oi~~),

kg, U2&

q, = k
~
(u, ~/(pQ, X, )
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p , =2K, 1+,' [1 I-(&,)e ] —I &, e "

T U$+ ' ' [1-I (X,)e ']-
The quantity P, is meanin ul on~gI "y

in e expression (20) iis positive, i. e. ,

U, &V Ie ~e 0 &e)e '+ —I
M

s —l, (~, )e "'])/[t rP —)
-", e ~ . (21

Equation 21 puts restrictions o
value of U or U.

ns on the minimum

, or; or both. The rg o
o q. (14) are given b

7t&, JQ, I ~„e "e

A, —(m/M)A, . po.', I Q, I

U2
x 1+ ~' Zo(x, ), (22)

where

q, = k~„/yQ, X,

and

x, = (2k&v„/p, Q,)'i'

Now because of th e presence of Q

nator in the exp
, in the denomi-

xpression for x„we may take
ox,)-1; then E

to yield
q. (22) is simplified

2. Resonanant Electron Instability

[2k I~, ~/(pn )]'~~

For x»f we can replace J2

Eq (18) and on do
0(x&) by 1/(&x;) in

on oing so we get

J co„/ 2p. Xm x( Q;
0; kP

T, M U
T', m

~. (19)

We have evaluated E .
some results for the ro

e q. (19 nu merically and

g owth rate v are ho
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this case, q, «1, and hence we can replace e "e

by unity; the growth rate is then given by

where

U, [) e(Z(6))I, (26)

From the above expression we notice that v will
increase with the increase of U, and p, . As in both
o)„and x„Poccurs in the denominator [cf. Eqs.
(15)-(17)]; the growth rate will increase with
the decrease of P. We also observe that the growth
rates are M/m times larger than those for the case
of resonant ion instability.

From Eq. (24) we further notice that once the in-
stability is initiated, v will decrease with the in-
crease of U, and T, /T, . This is because of the
fact that the [o„decreases and Iy I (with X & 0) in-
creases with U, and with T, /T, .

It is worth pointing out that the conditions g &0
or y & 0 are the necessary but not sufficient con-
ditions for the resonant ions or electrons instabili-
ty, respectively. For IXI =0 neither the ions nor
the electrons can have resonant interaction with
the wave because in this case o) &0, [cf. Eqs.
(15)-(17)]which is incompatible with our assump-
tion «0;.

B. Drift Cyclotron Instability

In this section we consider the case

~

o)+ lQ, + kV~
i
«(l+ 1)0, ,

where

Vd = kp V~J20;

is the drift velocity of the ions due to VB. Let us
consider the case where l is such that

ikt(, V,/20,
i
«(o -10[«0, .

Then the contribution due to the electron terms in
Eq. (9) can be written

4.= 2n.U'. ~', [.1 -Io(~.) e "]

(( 2e,U, )) Jp(2,)e
2IQ, In,

PG0 +g&+r=P ~

where

(27)

p = ' 1+~ + e Io(&e) —
o [1 —Io(Ae)e '],U

p TU V

(26)
(29)q=(wp+q-z),
(30)

[2)= (1+2n U ) 2
2n I 0 I

' '
p

with

e [2.Ip(Z. )e P'[) ,
e

(31)

m (kR) '
2 2plE=—

(2 )'gta 2n[U[ lQ( 1—

t[k 2(1+2n, U, )
2 0 p

+n]U)

(32)
(33)W= lQ, +kt(,/4n, Q, .

Equation (27) for (d yields

(34)(d = —q/2p+ (1/2p) (q —4rp) ~

From Eq. (34) it is obvious that the instability can
occur only if

((d + lQ, )20, n( ((d + 10, )

kp, kt/'t, pB,

with R, = V, , /0, as the ion Larmor radius and
po 2e- t

Z($) = ~ ' dt with Im) &0,J„
is the plasma dispersion function. ' If p, and k are
such that (t[R, ) (kR, ) «1 then I)oI » 1 and we can
use the asymptotic expansion for Z($) in Eq. (26).
On combining the resulting equation with Eq. (25)
and taking c k» co the dispersion relation can be
written in the form

+ [& Io(~)e '](1+2n, Uoe) . (25) q —4rp&0 . (35)

For the ion contribution we need retain only the l th
harmonic terrr. in the ion series and on further
assuming k VJQ, » 1, i. e. ,

J', (k Vz/0()- (1/m') (/0k V,

the ion contribution [t), , can be written in the form

2pepep, Pp, e, 2e, U, )PP,
()

3/2

w" k)u

1 ——+ 1+2@]U]
~l ak, Z(f)

2' Q] Q]

For p & 0, the inequality (35) is violated and hence
the necessary and sufficient conditions for the
stability of this mode is simply p&0, i.e. ,

2X, (1+ T, /T, )—
(U,'/V, ' ) [1-Io(X,)e-~] —I,(X.) e-"

with

Uo& VZo Io(X,)e &/[1 —Io(&, )e "'] . (37)

For p&0 and in particular for U, =O it can be shown
from inequality (35) that the instability can occur
only for some bounded values of ion streaming,
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i.e. , U, & U& & U, where

U2 y2 ([(WP )1/3 q1/2]2 g ]/G
U2 y2 f [(WP )1/2+ ql/2]2 g ]/g .

So and G are, however, given by

m (kR) gk 1' m (2v)"' o.,Q, p

(38)

(39)

(40)

G = lV+
2I"' k'~R2 —l~ ~T kRi

kP '
& r, (2v)"' ' (4l)

v = (WS/g )'/' . (42)

In Figs. 4-6 we have shown some numerical re-
sults for the growth rates as calculated from Eq.
(42). In Fig. 4, when P exceeds some particular
value, say p,„, the relation q/2p = W is not satis-
fied and so the growth rates corresponding to P
& P are redundant and hence dropped out. The
same thing happens for ion streaming which is

p~ and Q, being the corresponding values of p and

Q for U, = 0. We may point out that only those
solutions for &u, as given by Eq. (34), would be
valid which satisfy the basic requirement Re&
= —(IQ, +kg/4o. ,Q, ), on which the analysis of this
section is based. In this sense inequality (35) is
the necessary but not sufficient condition for stabil-
ity. In order that the solutions given by Eq. (34)
should represent the valid solutions we must satis-
fy the requirement q/2p = W; in which case the in-
equality (35) is automatically satisfied and hence
q/2p =W represents the necessary and sufficient
condition for instability. The growth rates, con-
sistent with this, are simply given by

shown in Fig. 5.
From Figs. 4 and 5 we observe that the instabil-

ity exists for some bounded values of U3. As for
p & p ~ and Um & U ~ the condition q/2p = W breaks
down, therefore, the instability can occur only
for some bounded values of P and U, . The effect
of T&/T, is stabilizing.

In Fig. 6 we cannot go below A, = 0. 3 as then the
assumption k~R~ » 1 does not hold good. From this
figure we observe that, in general, the instability
will occur for some bounded values of A., and

pV„/Q, . (i. e. , k and p), respectively, because
the values of V, and A, have been fixed while as-
signing values to other parameters.

We may point out that for homogeneous plasmas,
i.e. , q= p, =0, this mode is stable as seen from
Eq. (35). Moreover, when a or p are finite but
the plasmas are stationary, i.e. , U, = U, =0, this
mode is again stable because then the condition
q/2p = W cannot be satisfied without violating the
assumption ( kpV, /2Q, l «IQ, .

C. Transverse Instabilities

In this section we study the effect of VB and Vn

on the unstable electromagnetic modes of uniform
contrastreaming plasmas. We consider the special
case of

In this case the dispersion relation (9) reduces to
the following simple form

3f+—4/&u = 0, (43)
where

g = &o, g [I —fo(X, )e-"]—fo(X, )e- ~—
p &'

(44)

l.5—

I.O

0.5—

FIG. 4. Variation
of growth rate v/~~
vs P for ~~ =0.5,
p, V&,/&~ =0.Vx10 3,

U]/Vg =0.1, T]/T~
0 ~ 01 and for Ue/V

=0.1, 0.5, and 1.0
for the curves 1,2,
and 3, respectively
(for /=1).

0.0
lo 10 IO
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0.8

O. T

0 ~ 6

0. 5

~ eJ

o.4

0.3

0.2

FIG. 5. Variation of
v/0& vs U~/V~ for P = l.0,
y, =0.5, PV& Qd=0. 7x10
U, =0. 0 and for T&/T, =0. 05,
0. 1, and 0. 5 for the curves
1, 2, and 3, respectively
{for / =1).

0 ~ I '

0 ~ 0'
2X lo lo'

.2 2
U; //Vt,

lo'

kteV, , Rde(X, )e d
~ ~ ~ ~)0, P dX,

( U2

i
1 + . (45)

I ~ 0

We can solve Eg. (43) considering C/~ as the per-
turbation and applying the successive approxima-
tion. In the zeroth approximation we see that g

& 0 gives rise to a purely growing wave, i.e. ,

0 ' 9

0 ' 8

0 (1/2

Then the first-order approximation yields

((1/ s + @2/8 ]5/ 2)

(45)
~ ISJ

o.7

0.5

(48)

From Eg. (4/) we observe that the gradients tend
to increase the growth rates by a small factor of
4 /8$ /, which one should, as a matter of fact,
expect because the gradient drifts are very much
weaker than the streaming velocity required for
producing the transverse instability. In fact, it
would be more appropriate and interesting to study
the effect of gradients on the marginally stable
waves, i.e. , $ -0; for this, if once again we write
~=&a„—iv and solve Eq. (43), we obtain

0.4

0.3

0.2

O. I

0.0
0.3 I.O IO 0

td, = ac'/(4v' —5) (49)

td = 5+~& 4 /(4~ —$)s . (50)
Now for $- 0, Eq. (50) for the growth rate simply

FIG. 6. Variation of v/~& vs Ae for p =1.0, U,./p&
Oo 1 y Tg/Tg 0 ~ 01 y Ug/gg 5y and p, V~ /Q~ = 0.7 x ].0-

0. 2&&10 2 and 0.2&&10 ' for the curves 1,2, 3, and 4,
respectively {for l =1).
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gives

v =-' &3(c*)"' (51)

4* in Eg. (51) is the value of C corresponding to

$ =0. Figure (7) shows the growth rates as cal-
culated from Eg. (51). From this figure we ob-
serve that a weak nonuniformity such as pV, /0,
-10-7 can render the otherwise marginally stable
waves unstable, their growth rates being of the
order of 3-5/o of A, From Eqs. (45) and (51) it
is obvious that v will vary as p,

'

IV. CONCLUSIONS
CV

O

5.0

4.0

In identical nonuniform plasmas contrastreaming
along an external magnetic field, the electromag-
netic waves propagating transverse to the direc-
tion of the magnetic field can become unstable. In

particular the low-frequency waves ~ «0, , can
become unstable owing to the excitation of either
resonant ion instability or resonant electron in-
stability, the latter instability being much stronger
than the former one. For the case of resonant ion
instability the growth rates increase with the in-
crease of P, p, , U„and U, and with the decrease
of T, /T, and k. For large values of p, p, , U„and
U, , however, the assumption co «Q, breaks down

and so the corresponding growth rates are incon-
sistent. On the other hand the growth rates for
the resonant electron instability show increase
with the increase of p, T, /T, , and U, . and with
the decrease of P and U, . These results may
prove useful in understanding some astrophysical
processes' ' such as hydromagnetic discon-

tinuities in the solar wind, etc.
Apart from the low-frequency instability the ex-

istence of the unstable drift cyclotron mode is
also predicted. This instability occurs in nonuni-
form streaming plasmas and for some bounded
values of U, , U, , k, P, and p, (or e). The ion tem-
perature has a stabilizing effect and the growth
rates are of the order of 0, .

The effect of nonuniformities on the transverse
instability, for frequencies 0, «co «Q, is to in-

3.0

2 0 I I I I I I I I I l I I t & s

0.5 I.O I.S 2.0
2 2

Ue/Vte

FIG. 7. Variation of growth rate v/~e vs Ue/V&e f r
pp& /@~=10 ', C /V&, ——200 and for X,=2, 3, 5, and 10 f»
the curves 1,2, 3, and 4, respectively.

crease the growth rate of the unstable waves slight-
ly. However, even a weak nonuniformity such as
p, V,, /A, -10 ~ can render the otherwise marginal-
ly stable waves unstable, their growth rate being
3-5% of 0, . These results may prove useful in
some plasma confinement experiment.
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