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The contribution of small-momentum-transfer processes to the T3 lnT term in the specif-
ic heat of a normal Fermi liquid is considered using Landau theory, and is evaluated exactly
in terms of Landau parameters. This contribution is shown to be due to a term in the quasi-
particie interaction, fy ~, g, which varies as (P ' j) when q 0; the physical process re-
sponsible for this behavior is the repeated scattering of quasiparticle-quasihole pairs. It is
well known that for the two-body problem the interaction energy, while not, in general, equal
to the real part of the forward-scattering amplitude, may be expressed in terms of the scat-
tering amplitude. We take overthe results for the two-body problem and apply them to a quasi-
particle-quasihole pair. This gives an expression for fy g~ in terms of the quasiparticle-
quasihole scattering amplitude, which, since q is small, may be expressed in terms of
Landau parameters. We apply our results to liquid He at low pressure.

I. INTRODUCTION

The quasiparticle concept, introduced by
Landau, '~ has clarified a whole area of the physics
of many-particle systems, and has been applied to
a large number of equilibrium and nonequilibrium
problems. The basic assumption of Landau theory
is that the states of an interacting Fermi system
are in one-to-onecorrespondence with the states
of the noninteracting system; thus, one may specify
the state of the 1Qte1 aetlQg system by glvlQg the
quasiparticle distribution function n y, which is equal
to the distr ibution of particles in the corresponding
state of the noninteraeting system. The total energy
of the system E[n;j is thus a functional only of the
distribution function, and the entropy 8, which de-
pends purely on combinatorial considerations, has
the same form as for a free Fermi gas:

S=- u, g [n, i~,+(I -n;)in(I -~)], (I)

w11el'e ks 18 Boltzmann 8 collstaIlt (and 8111118 ovel'
spine are implicit). The equilibrium distribution
function nng(T) at a temperature T is determined by
maximizing the entropy for a given total energy;
one finds

nor (T) = [exp(p fer[n & (T)] —i1]) + I ] '

where the quasiparticle energy &g is the functional
derivative of the energy with respect to the quasi-
particle distribution function,

5E[n;j
(3)

6ng

p, is the chemical potential, and P-=I/AT. The
equilibrium distribution function n;(T) and quasi-
particle energy er[n)(T)] = sr(T) are to be deter-
mined self-consistently from Eqs. (2) and (3). The

entx'opy of the system ln equilibrium ls therefore
the same as thatof a collection of noninteracting
fermions whose (temperature dependent) energies
are eg(T). Intuitively, one would expect the quasi-
particle expression (1) for the entropy to be valid
pxovided the lifetimes of the relevant quasiparticle
states are sufficiently long. However, Balian and
De Dominicis and Luttinger have shown within the
framework of perturbation theory that, in general,
it is possible to define "statistical quasiparticle
energies" which obey the same equations as the
quasiparticle energy introduced by Landau and,
in particular, give the correct result for the en-
tropy when inserted into the quasiparticle expres-
sion; somewhat surprisingly, this result is true at
arbitrary temperatures, since it holds even if the
states of the system are short lived.

Work over the last few years on the specific
heat of liquid Hes brought to light two important
features of normal Fermi systems. First, the
asymptotic expansion for the specific heat at low
temperatures contains not only powers of T', but
also terms such as T~lQT, and second, for cal-
culating the T lIlT term lt ls 1QeoxTect to ldeQtlfy
the statistical quasipartiele energy with the "dynam-
ical quasipartiele energy" defined by the poles of
the single-particle propagator. When measure-
ments of the heat capa, city of liquid Hes were ex-
tended to temperatures below 100 m'K' it became
clear that the data could not be fitted by a series
containing only odd powers of the temperature, as
one would expect on the basis of Landau Fermi-
liquid theory if the (statistical) quasiparticle energy
were analytic at the Fermi surface. s Anderson'
pointed out that the data at that time could be fitted
quite well by a T lnT behavior, and suggested that
the nonanalytic behavior might result from the
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coupling of quasiparticles to collective modes.
Following this, Balian and Fredkin explored the
coupling of quasiparticles to zero sound and showed
that this could lead to a contribution to the specific
heat of order TlnT or T(lnTI'+. In these calcula-
tions the coupling between quasiparticles and zero
sound was assumed to be long range, similar to
that between electrons and phonons in piezoelectric
crystals. Subsequently, Engelsberg and Platzman,
among others, showed that this assumption led to
inconsistencies and argued that the coupling should
be of a deformation-potential type, ' in which case
the nonanalytic contribution to the specific heat
would behave as T3lnT, just as Buckingham and
Schafroth" and Eliashberg' earlier had found for
the interacting electron-phonon system. More re-
cent calculations indicated, however, that the
T3 lnT contribution to the specif ic heat coming from
the coupling of quasipartieles to zero sound is too
small in magnitude to account for the experimental
data.

The next development was the discovery by Don-
iach and Engelsberg, '3 and by Berk and Schrieffer'4
of the importance of incoherent spin fluctuations.
Owing to quasiparticle interactions the magnetic
susceptibility of liquid He' is very much greater
than that of an ideal Fermi gas, "and this leads
to strong coupling between quasiparticles and low-
lying states containing spin fluctuations (quasi-
particle-quasihole pairs in triplet spin states).
Coupling of quasiparticles to such spin fluctuations
was shown to give a Ts lnT contribution to the
specific heat rather than the T lnT behavior sug-
gested by Anderson. ' However, the theoretical
estimate of the T3 lnT term was of the right order
of magnitude to account for the experimental data,
and moreover the T3 lnT dependence was not incon-
sistent with the data.

Nonanalytic contributions to the quasiparticle
energy, which give rise to the T' lnT terms in the
specific heat are a very general feature of all nor-
mal Fermi liquids, and their existence does not
depend in any way on the fact that liquid He3 is
almost ferromagnetic; such contributions were, in
fact, obtained in Galitskii's' work on the dilute
Fermi gas, but their magnitude in the ease of
liquid He was appreciated only after studies of
almost ferromagnetic Fermi liquids. Amit, Kane,
and Wagner'~ showed that the nonanalytic contri-
butions to the dynamica/ quasiparticle energy could
be calculated in terms of Landau parameters, and
they then evaluated the entropy by inserting these
energies into the quasiparticle expression (I).
Similar calculations were also performed by
Brenig and Mikeska' and by Emery. ' Further
work by Brenig, Mikeska, and Riedel, by Riedel '
and by Brinkman and Engelsberga~ on models of
almost ferromagnetic Fermi liquids showed that

this way of calculating the entropy, while it does
give the term linear in T correctly, does not give
the correct result for the T'lnT term: it gives a
result three times larger than the true answer. In
these models the physical process taken into ac-
count was repeated scattering of a particle-hole
pair. Riedel showed that the entropy could be ex-
pressed as the usual quasiparticle expression (I)
evaluated using dynamical quasiparticle energies,
plus an additional "Bose" contribution coming from
interacting particle-hole pairs. ~ The Bose contribu-
tion has two distinct terms. The first comes from
true collective modes (such as zero sound, in liquid
He') which correspond to isolated poles in the
particle-hole propagator; it has the same form as
the entropy of a system of noninteracting bosons
whose energies are given by the poles of the
particle-hole propagator. However, at low tem-
peratures it is of order T, and can therefore be
neglected here since we are concerned only with
T'lnT terms. a The remaining part of the Bose
contribution to the entropy comes from the particle-
hole continuum and includes a contribution from in-
coherent spin fluctuations, which are not true col-
lective modes of the system. Thus in Riedel's cal-
culation the entropy to order T lnT is expressed
as a sum of the d~amica/ quasiparticle contribution
and the Bose contribution coming from the particle-
hole continuum. However, Balian and De .

Dominicis~ and Luttinger4 have established that the
entropy is given by the quasiparticle expression
evaluated using statistical quasiparticle energies.
It is therefore clear that Riedel's Bose contribu-
tion coming from the particle-hole continuum may
be regarded equally well as being due to the dif-
ference between dynamical and statistical quasi-
particle energies.

Two obvious ways to calculate the T3lnT term
better are either to extend Riedel's analysis to
more general terms in perturbation theory, or to
calculate statistical quasiparticle energies from
microscopic theory. Here we adopt a simpler ap-
proach based on Landau Fermi-liquid theory, .

rather than microscopic theory. [We note that
quasiparticle energies entering the Landau-theory
calculations satisfy the relations (3) and are there-
fore sfatistica/ quasiparticle energies. j In a com-
panion paper we derive the Landau-theory results
from microscopic theory; there we also discuss
the difference between statistical and dynamical
quasiparticle energies and show how this difference
is related to Riedel's Bose contribution to the en-
tropy. '4

Previous work suggests that the major part of
the T' lnT contribution to the specific heat of
liquid He3 comes from interactions between quasi-
partieles whose momenta are almost equal. ' We
shall show that this part of the TslnT contribution
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may be expressed in texms of Landau parameters,
and that the logarithmic behavior is due to the fact
that the quasipartiele interaction

previous ones, and in Sec. V me give numerical
results for liquid Hes.

Gay

«5+@

1188 R contribution wlllcll VRI'les Rs (p ~ qI) ill 'tile

limit q-0. ' This term in the quasipartiele inter-
action also leads to (p —pI,.)' lnl p —p« i terms in the
(statistical) quasiparticle energy (Pris the Fermi
momentum). The physical process responsible for
the (P ~ q) terms is the repeated scattering of a
quasiparticle-quasihole pair; it is therefore con-
venient to consider the quasiparticle-quasihole
interaction, which is just —f&,«„-, rather than the
quasiparticle-quasiparticle interaction itself. The
amplitude for a quasipartiele and quasihole with
small total momentum to scatter each other may
be expressed in terms of Landau parameters; the
essential problem that remains is to relate energies
of intex action to scattering amplitudes. It has
often been assumed that the energy of interaction
and the real part of the forward-scattering ampli-
tude are identical. However, this is not true in
general, since it is well knomn that for tmo intex-
acting particles the energy of interaction is pro-
portional to the phase shift 5, whereas the real
part of the formard-scattering amplitude is pro-
portional to sin5cos6. ~6 We take over results from
the two-body problem and apply them to the case
of a quasiparticle-quasihole pair. We find that in
calculating the T3 lnT contribution to the specific
heat it is essential to take into account the dif-
ference betmeen the energy of interaction and the
forward-scattering amplitude. As me shall see, to
the order to which me are morking the energy of
interaction is related to the statistical quasi-
particle energy in the same way as the real part of
the forward-seattexing amplitude is xelated to the
dynamical quasiparticle energy. With the statisti-
cal quasiparticle energies the quasiparticle ex-
pression (1) for tbe entropy is correct to order
T3 lnT, while with the dynamical quasiparticle
energies it is not. 33

This paper is organized as follows; In Sec, D we
assume that tbe quasiparticle interaction f;;;,
has contributions varying as (P ~ g)« in the limit
q'-0, and show that they give rise to (p —P„)«
&ln) p —p&t terms in the quasipartiele energy and
T lnT terms in the specific heat. In Sec. III we
show that. the quasipartiele interaction indeed has
the assumed behavior. There we first discuss the
difference between forward-scattering amplitudes
and energies of interaction, and then apply the re-
s ltstoe al atethee e gy f' t acto ofa
quasipaxticle with a quasihole. In Sec. IV me dis-
cuss the difference between our calculations and

In this section we shorn that contributions to the
quasiparticle interaction f«,«~; which vary as
(P ~ q) as q-0, lead to (p-PJ) 1nlp- p~l terms in
the quasiparticle energy~7 and T3 lnT contributions
to the specific heat. In Sec. III me show that this
is the correct form for fg;~; and calculate the coef-
ficient of this term as a function of the Landau
parameters.

The quasiparticle interaction f5 ««~«c depends on
the momenta of the quasiparticles p and p+q and
on their spins 0 and o, and may be expressed in
terms of the spin-symmetric and spin-antisym-
~etric parts f' and f' by the usual relation~«

S g m mlJ««5+@p =fg j4jf +fg jt+f & ' &

where o and 0' on the right-hand side of this equa-
tion are the Pauli spin matxices for the two quasi-
particles. As we shall show in Sec. III, for small
q, and p close to the Fermi momentum pI„, f«, M de-
pends only on P ~ q, and is an even function of this
quantity. For calculating the T«lnT contribution
to the specific heat we need only f«„-,g evaluated
for p= pI, , since tbe dependence of f on the magni-
tude of P gives rise to contributions of highex ordex
in the temperature. As we shall see, the T3 lnT
contribution to the specific heat comes from small
values of P ~ q. We therefore expand f in powers of

p 0:

f«,«.=f'(0)+&'(P 0)'+&[(j g)'1, q«p

where the superscript A. is either s, for the spin-
symmetric case, or a, for the spin-antisymmetrie
case, and f1(0) =f1««~ evaluate-d at p ~ g= 0. Note
that when evaluating properties of a Fermi liquid
in the extreme low-temperature. limit the appro-
priate quasiparticle interaction to use for small q
is f1(0), since when q is small, p ~ q [= (6«~ —6«)/
vzq] for tbe quasiparticle states excited appreciably
at temperature T is of the order of AT/v~q, where
v~ is the Fermi velocity. Therefore, for any
flIllte VR1116 of q', tile typlcR1 VR1116 of p ~ g 'tellds to
zero as T-Q.

We nom investigate the consequences of expres-
sion (6) for the quasiparticle interaction. First,
me consider the contribution to the quasiparticle
energy mhich is due to interactions between a
quasipartiele of momentum p and other quasiparti-
cles whose momenta differ little from p. The quasi-
particle interaction f is the functional derivative
of the quasiparticle energy &g„with respect to the
quasiparticle distribution function 8;.; [see Eq.
(4) l:
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«S.= ~h. ,S.~"[nr. ]S S ~"
qa'

(f -f )'»
em2 ~ q,

«y = 2&' Z (P ~ q)' n I„-(T)
q(a&ac&

(9)

where n- ~(T) is the equilibrium quasiparticle dis-
tribution function given in Eq. (2).

Since q, «P~, the curvature of the Fermi sur-
face may be neglected and the sum over q in Eq.
(9) is easily performed using cylindrical polar co-
ordinates; then (P ~ q) = q„ /(q„+ q~ ), where q„ is
the component of q parallel to p (the polar axis),
and q~ is the component perpendicular to p. At
zero temperature the quasiparticle distribution is
just a step function 8 (Pz-P); substituting this into
Eq. (9), one finds~9

In general, Eq. (7) cannot be integrated simply,
since f depends on the quasiparticle distribution

ny, . However, here we are concerned with the
nonanalytic contribution to e~ due to interactions
of the quasiparticle with other quasiparticles whose
momenta differ little from p. To evaluate this
contribution we integrate Eq. (7), taking into ac-
count values of q less than some cutoff momentum

q, which is small compared with the Fermi momen-
tum p~; only a small fraction of the total number
of quasiparticles are in this region, and therefore
in integrating Eq. (7) the dependence of f on n~

'can be neglected, The total contribution to the
quasiparticle energy coming from integrating (7)
over this region is given by

Z A„f, n,,~, .0

(«ac&e

where f stands for f[n I,] evaluated using the equi-
librium distribution function ng. As one can see
from the work in Sec. III, to the order to which
we are calculating it is unnecessary to take into
account the temperature dependence of f; in Eq.
(8) we can therefore use the value of f for the
ground state of the system.

For a Fermi system in equilibrium, the (P-P~)~
&& ln lP —P~ I contribution to the quasiparticle energy
comes from the (p ~ q)~ term in the equation for f
[Eq. (8)]. We are concerned here with calculating
the specific heat of a paramagnetic Fermi liquid in
the absence of a magnetic field; therefore the
quasiparticle distribution function is independent
of spin. Thus the contribution to the quasiparticle
energy may be written

(18)
bs

(P P~) [(P P~—)'v ~+ v—'ks T']
6m v~

max[(P —Py)vy ~ ks T]

where T, -vz q/ sk.s6 eg(T) vanishes at the Fermi
surface, and therefore there are no T2lnT correc-
tions to the chemical potential.

The entropy is given by the usual quasiparticle
expression (1); the nonanalytic contributions to the
quasiparticle energy 4 e~ give rise to the T' lnT
contribution to the entropy, which to lowest order
in 4eg is given by

~S=Q ~a~(T) (15)
$0'

20 ~ +kaB' ln (i7)

where

TJ =g/2m*ks (18)

The integrals here (and in the remainder of this
section) have been performed to logarithmic ac-
curacy, and therefore the cutoff in the logarithms is
not determined. It is easily verified that terms in

f varying as even powers of p ~ g higher than (p ~ q)~

do not give logarithmic contributions to the quasi-
particle energy; their leading contribution to the
quasiparticle energy varies as (P —P~)s, which

gives rise to T3 terms in the specific heat.
In calculating the leading contribution to 4 eg at

finite temperatures from Eq. (9), we may neglect
the dependence of n;,g on both the temperature-de-
pendent contributions to the quasiparticle energy
and also the nonanalytic terms in the quasiparticle
energy. That is, we take ~0~ to be (e@'~+' ~&'"&

+ 1),where the Fermi velocity vz is pz/m, m~ being
the quasiparticle effective mass. Substituting this
expression for no into Eq. (9) and performing the
integrals one finds

00

bS
& &g(T) = —

p l dq„q „ ln —"
8&&„„~z»r

2Y'
ae, (T=O) =

ePg
ks

a2m

2 2
ag II

dqII
~0

dq„q„'ln q"

C

2

«(qi') p
"

+qz

(io)

is the Fermi temperature,

n =@/8v'

is the particle number density,
8'= v(o)b'

and

(19)

(2o)
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v(0) = m"Pl, /v'

is the density of quasiparticle states at the Fermi
sulface. To the order to which we ale working
the temperature dependence of the chemical po-
tential, whose leading term is of order Ta, can
'be neglected since it does not affect the coefficient
of the logarithm. The corresponding contribution
to the specific heat per unit volume is' ln' (22)

We 8'tl'ess 'tilat Eq. (22) 18 all exact expl'essloll
for the Ts lnT contribution to the specific heat
coming from the interaction between quasiparticl. es
whose momenta are close to each other. Amit,
Kane, and Wagner" have shown that there are ad-
ditional T3 lnT contributions to the specific heat
coming from interactions between quasiparticles
whose momenta. differ by -2Pz, we shall return to
these contributions in Secs. IVand V. Vfe now turn
to the evaluation of B'.

where m is the reduced mass and ~, is the phase
shift for the Eth partial wave. Qn the other hand the
forward-scattering amplitude has the form

r(7 = — Q (2l+ 1) 8 & sin61
27r

(24)
(vnk

g

and its real part is

Rer(",k= — Q (2l+1) cosh, sin5,
2m

mu

III. QUASIPARTICLE INTERACTION

In this section we show that the quasiparticle
interaction for small momentum differences has
the form (6), and we evaluate the coefficient B'
which enters the expression for the specific heat,
Eq. (22). First, we consider the relationship be-
tween energy shifts and forward-scattering ampli-
tudes for two-body potential scattering, ae and then
apply the results to the case of a pair of excitations
ln a Fel ml llquld.

A. Interaction Energies and Scattering Amplitudes

For two particles with relative momentum k in-
teracting via a central potential it is well known
that the interaction energy, which is the shift of
the energy levels of the system produced by the
potential, is given by

AE„=——Q (2l+1) &,
2p

4 E and T in terms of the reactance matrix, or K
matrix, whose magnitude in the Eth partial wave is
given in terms of the phase shift by the relation

Z; = —(21(/mk) (2l+1) tan &, (26)

From Eqs. (23), (25), and (26) we obtain the fol-
lowing expressions for BeT~ and hE)",:

E')

1+ [(mk/211)k, /(2l + 1)] (2V)
'

4 E"= Q (2l+ 1) arctan
2m mk E~ } . (as(
ma 2m 21+ 1

To bring out more clearly the importance of van-
ishing energy denominators, and to facilitate ap-
plication of the results to the case of a quasiparti-
cle-quasihole pair, it is convenient to express the
results in a more general notation. The X matrix
is defined by the operator equation

Ic(z) = v+ vP(E-II, ) 'Ic(s), (29)

where Ho is the kinetic energy operator for the two
particles, E is the energy, V is the interaction po-
tential, and P denotes a principal-value integral.
The T matrix is given formally by the equation

r(z) = v+ v(z-z, +fg)-' r(z), 1)-+0
which, when written in terms of the E matrix be-
comes

r(Z) =IC(z) —zvIC(z)&(z Z,)r(z)—
= Z(z) [1+fv&(s —a,)IC(Z) ]';

(»)
(22)

~E=S(z) 1+2 [ 6(zva, )IC(z)]-~
os

( 1)(a

, 2n+ 1

its real part is

Rer(Z) = [1 —fvtC(z) &(E-a,)]-'

x K(E)[1+2775(E —H, )IC(E)]-' (22)

= IC(z) (1+ [v6(z -a,)Z(z) 1'}-'

=ac(z(I(+ r(-(("[.s(a. -sade(sa('"I
n=l

= Sr(z) v'IC(z) 6(z—-a,}IC(z)&(E -e,)lC{z)+ ~ ~

(26)
On the other hand, the interaction energy in the
state g, AE„ is given in terms of E by the diagonal
matrix elements of the operator

Only in the limit 5, 0 do the expressions for 4 EP
and BeTpp agree. As we shall see, the difference
between + Ep 'and BeT pj", arises from te1Qls ln pe1-
turbation theory which have vanishing energy de-
nominators. It is therefore convenient to express

=z(z) —'~'&(E) 6(z e,)fc(z) &(E -a,)lc(z)+ ~ ~~--
{36)

evaluated for E=E„where E, is the energy of the
state a in the absence of the potential. The right-
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hand side of Eq. (37) is essentially an expansion of
the arctangent of the Z matrix [cf. Eq. (28)]. Tofirst
olde~ in K, &E, [Eqs. (3V) and (38) ] and Her„(S, )
[Eqs. (35) and (36)] are identical, but higher-order
terms, which take into account real transitions,
are different. This difference is one of the es-
sential features in our work, and the factor-of-3
difference in the K terms is intimately related
to the discrepancy of the same factor encountered
in model calculations of the Ts lnT contribution to
the specific heat of an almost ferromagnetic Fermi
liquid. ~o ~3 In Sec. DIBwe apply the results of thi. s
section to the scattering of quasiparticle-quasihole
pai1 s,

B. Energy of Interaction of Tvvo Quasiparticles

As we remarked in Sec. I, the important physical
process that leads to the (P ~ q)~ term in f; ~~ in
the limit q-0 is the repeated scattering of a
quasiparticle-quasihole pair; it is therefore natural
to investigate the quasiparticle-quasihole interactior.
energy —f~,~~, rather than the quasiparticle-quasi-
particle interaction itself. We first consider scat-
tering of a quasiparticle-quasihole pair and deter-
mine the K matrix; then we evaluate the interaction
energy of the pair in terms of the K matrix, using
the results of Sec. IIIA.

Consider first the scatter1ng of two pgltscles:
The 7 matrix satisfies Eq. (30), which takes in ac-
count repeated scattering by the bare potential V';

this equation is represented diagrammatically in
Fig. 1(a), where the dashed line corresponds to the
bare potential, and the shaded circle to the full T
matrix. The K matrix is given by Eq. (29), which
differs from the equation for the T matrix on)y in
the way in which vanishing energy denominators are
treated. The equation for the K matrix may also
be represented diagrammatically by Fig. 1(a),
provided one evaluates contributions from vanishing
energy denominators as principal parts. The E
and T matrices for the scattering of quasiparticles
by quasiholes are given by a similar diagrammatic
equation shown in Fig. 1(b); this takes into account
repeated scattering by the ba~e quasiparticle-quasi-
hole interaction, which is represented by the un-
shaded circle. We denote by i" (q, e) and 0 (q, ~)PPg
the T and K matrices for scattering of quasi-
particles by quasiholes, where p+q and p are
the momenta of the initial quasiparticle and quasi-
hole, and p&+q and yz are the momenta of the
f inal quasiparticle and quasihole, respectively;
(d is the total energy of the pair. To determine the
bare quasiparticle-quasihole interaction we ob-
serve that the energy of interaction of two quasi-
particles in the states po and p, o, is f;» ~;„
=f$~, +ff & o ~ o, . The effective Hamiltonian de-
scribing interactions between l.ong-wavelength ftuc-
tuations in the quasiparticle distribution function

is therefore30

Sly& = 6 y& gg gz + 0 g& 0 g gq ', (40)

{8oSC)g = o S~ oS+C~ +8~ F54~

(«g;)„+i(hogg), = 2ag, ay~,

(hoity)„- i(8oyg)„= 2ag, a5~,

(42)

{43)

One g destroys a quasiparticle-quasihole pair in a
singlet spin state, whereas Cog' destroys pairs in
the triplet spin states. (5o~g)„+ i(5o~~), and (Going)„
—i(8o'y~)~ are just the usual spin-raising and -low-
ering operators. From Eq. (39) we see that f/'
and ff», play the role of the bare quasiparticle-
quasihole interaction in the singlet and triplet
states, respectively. The algebraic equations for
the quasiparticle-quasihole T and E matrices are
therefore [cf. Eqs. (30) and (29)l

i~ (q~ (d) =f]y&

nf -n$-
+ 2Z f-"- — .—t » y (q, &u), (44)M2 QP —Qy gyp' +gg ~P 1

8+

n n+I
k~y g, (q, u)) =f~gg, + 2PQ fy y,

2:g ~g g (q, (u),

(a)

FIG. 1. Diagrammatic equations for the T {orX)
matrices. (a) Equation for particle-particle scattering,
Eq. (30) for (29)J; the dashed line represents the bare
potential V and the shaded circle represents the full T
{orK) matrix. {b) Equation for quasiparticle-quasihole
scattering, Eq. (44) [or (45)J; the shaded circle repre-
sents the full T (or E) matrix and the unshaded circle
represents the bare quasiparticle-quasihol. e interaction.

where the density fluctuation operator &ng~ and
spin fluctuation operator 50'I ~ are defined in terms
of quasiparticle creation and annihilation operators
g~ and g by the relations
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where I denotes the prlnclpal value. The com-
bination of occupation numbers»« ~—»I ~ is
the difference of ») (1 —»I ~) and»~g„,»|1 —»9 );
these two factors correspond to the two possible
time directions for the quasiparticle-quasihole
bubble in Fig. 1(b). The factor»of, (1 —»$ „.) cor-
responds to the initial pair being scattered to a
state with a quaslpartlcle of momentum pa+ qq and
a quasihole of momentum pz, while the second term
corresponds to the annihilation of the initial pair
by a virtual pair with a quasihole of momentum

pa+ q and a quasiparticle of momentum p, . Equa-
tion (44) is the Bethe-Salpeter equation for scat-
tering of a quasiparticle by a quasihole, and was
first discussed by Landau. 3' The index A. can be
either s (for spin symmetric) or a (for spinantisym-
metric); the decomposition of the T and E matrices
into spin-symmetric and spin-antisymmetric parts
is given by expressions similar to that for f [Eq.
(5)]. Tile T Rnd K matr1ces fol" scR ttell'llg o'f a
quasiparticle-quasihole pair are 2t' and 2k' for the
singl. et spin state, and 2f' and 2k' for a triplet
state. "

The energy of interaction of a quasiparticle with
a quasihole is given in terms of the E matrix by the
quasiparticle-quasihole version of Eqs. (SV)-(38):

+ & « I = ~ 58{qt &dna) 3 v (2) ~ ~ « 1& (q& ~«e)

xf» —» g] 6(&dg&l —
&tlat g)k" y (q &dy g)f»g -Q ~1

&&6(&tt11 «
—&dg ()& (q, &tty&f) + ~ ~ ~ (46)

(4V)

The corresponding equation for- the real part of the
forward-scattering ampl&tude ~s

Petya(q (ug-) = kgg(q &d- -) —1&'(2)' Z 0'-g (q (ug-)
Eg8g

~ [»t »ti ~] 5(&tltta ~« ~)"««(qt ~R)

particle-quasihole interaction, one f inds

For evaluating the specific heat we need the spin-
symmetric part of the interaction

f;-,f&.g=-'(ff& „-.g, +f-, tt. -) = —-'(~;;-+3& y;). (51)

Now we consider how the E matrix and the inter-
action energy f;;„»depend on q. Since q is small
compared to P~ and the temperature is low the dis-
tribution functions in the equation for the K matrix
[Eq. (45)] constrain P2 to be close to the Fermi mo-
mentum. %'e may therefore make the replacement

O 0
&42 —+)pa+ q Pa

' 9'
|)&&y P) p

Qp 6» ++ E» $ pg Q'
Qp+ q, Dp

(52)

(53)

In the second term on the right-hand side of Eq,
(45) we may neglect the dependence of f;; on the
magnitudes of p and pa, in particular the terms
-[P (p —p,)/ip-p, i] in f;;, for ip —p, i «p~ can
be neglected since intermediate states with lp —p~I
«P~ and P (p —pz)/ip —p, 1 different from zero
give a vanishingly small contribution to the E ma-
trix in the low-temperature limit. Also similar
contributions to f;;„ the first term on the right-
hand side of Eq. (45), can also generally be ne-
glected, since in most cases p —p, is not smaLl.
However, to calculate h~ [Eq. {46)] we need a
diagonal element of the K matrix [Eq. (45)]; the
first term is fg;= limf&. „~f~;. , which is not well de-
fined unless one specifies how the limit is to be
evaluated [cf. Eq. {6)]. For our present purposes
this is unimportant, since we are interested only
in the q dependence of A~;;. Thus in Eq. (45) we
may replace the f;g. by their values for p and P
equal to p„„and perform the usual expansion in
terms of I egendre polynomials of the angle be-
tween p and p

&&[»l -»'-, g]6((egg-&d- -)u'- -(q, &us;)+ ~ ~ ~ . (46)
&(o)f';„- =& &"&I'&(P p'), p=p =pp . (54)

2d ~i'„-~ and 24~~~ are the interaction energies of a
quasiparticle and a quasihole in the singlet and
triplet spin states, respectively. A pair consisting
of a quasiparticle (p+ q4) and a quasihole (p4) is
in a triplet spin state, and therefore the interac-
tion energy is 2d ~'»-. Qn the other hand, a pair
consisting of a quasiparticle (p+q0) and a quasi-
llole (p0) 11Rs equRl probablllty of belllg R sillgle't ol'
a triplet; its interaction energy is therefore
~(26&de;+ 24&@'-). Finally, since the quasiparticle-
quasiparticle interaction f&;„-is minus the quasi-

From Eqs. (45), (52), and (54) it is clear that the
E matrix 0';y, (q, &u) depends only on s =~/u~q and
on the angles between the vectors p, p„and q,
which we specify by the values of P ~ q, P, ~ q, and

P, the angle between the plane containing p and q,
and the plane containing p, and q. Thus we may
write

&yy", ('qt & &) —= & {P' Vt Pl ' Qt 4't s) t P =Pl =Pe t

&tt «Pz, and &tt «p, . (55)

{We note that for on-energy-shell matrix elements,
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=~ (0)~ ~ qe(f q-f q), (.56)

we may write Eq. (46) as

v(0)&(o;,"=X (P. q, / =0) ——
m (

—p ~ q)~

where

x X'( p . q, p, + p, ) + ~ ~ ~, (57)

X~(s, P) = v(0) k (s, s, P; s) (56)

is the on-energy-shell element of the K matrix.
We note that the contribution to h&o of order (X~)2""
has 2n intermediate-state summations, and there-
fore, according to Eq. (56) carries a factor
(g ~ q) ~. Since X has a finite limit as P . q -0, and
we are calculating only the contribution of order
(p ~ q)2, all terms beyond the X~ term may be ne-
glected. X~(s, g) may be expanded in terms of its
eigenvalues X' (s) corresponding to quasiparticle-
quasihole pairs whose angular momenta about the
direction of q have definite values:

XX(8, b) = g XX (S)elms (59)

Substituting (59) into (57), we obtain

~(0)&~'„-= & K(P q)

—3+(~2i q)'[X'.(i q)]'+

which are required in evaluating ~+, P ~ q=P, ~ q
=s). The intermediate state sums in Eq. (46) can
be converted into integrals in the usual way and the
integrals over the magnitudes of the momenta can
be performed immediately since the 6 functions in-
volve only the angles; the E matrix elements are
independent of the magnitudes of the momenta.
Using the fact that

fP'+'(4-4. ») ( I-~r»)

+l
I+E, /(2l+ I) (66)

In the above expression for 8' the terms quadratic
in A, come from the second derivative of 3'.,„ in Eq.
(60), whereas the cubic terms, which are propor-
tional to n, come from the X~ term in the same
equation. Generally, when one includes higher
Landau parameters, the X' term gives rise to con-
tributions to B'-

m A~g, A~+)~, while the second de-
rivative of X gives rise to quadratic and cubic
terms in A~ (without a factor m ). The expression
for 8 ' taking into account all Landau parameters
with E & 2 is derived in Appendix A.

One deficiency of the Landau-theory calculations
described above is that they do not give the correct
result when P ~ q=o. From Eqs. (49), (50), and

(57), and the fact that X~(P ~ q=o, /=0) is g", OA~

[Eq. (A3)], we see that the calculations give in this
limit

where the spin multiplicity factors ~ are zv, = 1
and zv, =3.

In order to illustrate the essential features of the
calculation we shall assume here that only Eso and
j'z are nonzero. Calculations which include the
effects of Landau parameters with l & 2 are per-
formed in Appendix A. When f», ~z is independent
of p, and pz, the solution of Eq. (45) is simple;
k(P q, P, q, s; P) is independent of the angles
and depends only on s. It has the form

Ã'(s) -=v(0)k';;, (s) =E /~0[I +Et Reg(s)],

where

X(s) = 1 ——,'s In[(s+ 1)/(&- 1)]

= 1 ——,'s ln [ (s + 1)/(s —1)
(

+ i-,' vs 8 (1 —
[ s j ) .

(63)
It is obvious from Eqs. (58) and (59) that

X'(s, p) =Xo(s) =&'(s) .
Combining Eqs. (61)-(64) we obtain for B'
B'=--.'[(A;)'(I-~HA;)+3(A;)'(I -ILdw', )], (65)

where

Since X~ (P q) may be expanded in even powers of

p ~ q it is clear that h&u;» and f$,;,»= —2(baF~
+ 36~'-) [Eg. (51)] contain (p ~ q)2 contributions, as
assumed in Sec. II. The coefficient B' that enters
the T3 LnT term in the specific heat is proportional.
to the coefficient of the (P ~ q)~ term in the expan-
sion of f$,y, » for small p q. One finds

v(0) f'(0) =-—P (A;+38;),

Using the forward-scattering sum rule34

Z (A(+A;) =0,

(67)

(69)

v(0) b' =B'= —— 5 w,
1

X-"s ya

1 d'X' s ——[3.'. (o)y), (m)
2 ds2, 0 12

we may rewrite Eqs. (67) and (ee) as

~(0)f (0) = QA,
l

On the other hand f'(0) may be determined directly
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from the defining equation for the Landau param-
eters, Eq. (54). f"(0) is the energy of interaction
of two quasiparticles whose momenta are equal,
evaluated when the angle between the momenta
tends to zero. It is therefore given by Eq. (54)
evaluated for p ~ p'= 1:

(71)

The inconsistency of Eqs. (VO) and (Vl) is due to
the contribution f;; to 6(d being treated incorrect-
ly; in Appendix 8 we discuss this inconsistency and
resolve it on the basis of microscopic theory.
However, we stress the fact that the inconsistency
in no way affects the calcuI. ation of B'.

IV. COMPARISON WITH PREVIOUS CALCULATIONS

Previous calculations of T3I.nT contributions to
the specific heat fall into two classes. First, there
are those that use the quasiparticle expression (1)
for the entropy, but insert into it dynamical quasi-
particle energies' '9; we shall refer to these cal-
culations as the dynamical quasiparticle approxi-
mation. Second, there are calculations for models
of almost ferromagnetic Fermi systems, starting
from thermodynamic perturbation theory, which
lead to results different from the dynamical quasi-
particle approximation. ~ ~

Our calculations, like those using the dynamical-
quasiparticle approximation, start from the quasi-
particle expression for the entropy; however, we
use statistica/, not dynamical quasiparticle ener-
gies when evaluating the entropy. By making com-
parison with the workof Amit, Kane, and Wagner, '
and Emery' one can see that the nonanalytic con-
tributions to the dynamica/ quasiparticle energy
due to interactions between quasiparticles with al-
most equal momenta may be obtained from a rela-
tion similar to Eq. (8) for the statistical quasi-
particle energyby replacing the interaction energy
f„,~g, i there by the corresponding real part of the
forward-scattering amplitude. That is, fg, ,~g,
= -(&z~gg + 4(d~gg) is replaced by —Re[i, g(q, (dye)

where b, ~~ and t&~; (q, (d;;) are given in Eqs. (46)
and (48). The nonanalytic contribution to the
dynamical quasiparticle energy has the same form
as the statistical quasiparticle energy [Eq. (14)],
but with the coefficient b' replaced by b~, which
is related to the real part of the forward-scat-
tering amplitude t;; (q, (();",) in the same way
that b' is related to ~(dye. Explicitly one finds

& Z — ( ) ——'w'[ x "(0))') (72)
m 2 ds .s~0

The only difference between this quantity and B'
itself [Eq. (61)] is that the X term in BD is three
times larger; this reflects the same factor of 3 in
the K contributions to &E [Eq. (38)] and ReT
[Eq. (36)]. In Sec. V we shall show that the differ-
ence between 8 and B~ is very significant for
liquid He, since the largest contributions come
from the X term. This intimate relationship be-
tween the scattering amplitude and the self-energy
Z is what one would expect, since both t and Z are
calculated using the scattering boundary condition
(in other words, the imaginary parts of energy
denominators all have the same sign); since the
boundary conditions are the same, real transitions
are treated in the same way in the calculations of
t and ~.

In these calculations we have considered inter-
actions only between quasiparticles with almost equal
momenta. However, Amit, Kane, and Wagner'
showed that interactions between quasiparticles
whose momenta differ by -2P~ give an additional
nonanalytic contribution to the dynamical quasi-
particle energy, which affects the T lnT term in
the specific heat; this contribution to the dynamical
quasiparticle energy can also be calculated in terms
of Landau parameters. To evaluate the T lnT term
in the specific heat due to these interactions one
needs their contribution to the statistical quasipar-
ticle energy, which is not known. In Sec. V we
shall use their contribution to the dynamical quasi-
particle energy to estimate their effect on the
specific heat.

For an almost ferromagnetic Fermi liquid the
Landau parameter Eo approaches —1, and there-
fore Ao is large and negative. The dominant con-
tribution to B' is then Sv (A.o), and the correspond-
ing result for the specific heat agrees with the re-
sults of the model calculations if one replaces the
vertex functions that occur there by fully renor-
malized ones „ it is, however, three times
larger than the corresponding dynamical quasi-
particle result, ' ""since the dominant term in this
limit comes from the X contribution to B' and BD
[Eq. (V2)]. In Sec. V we shall see how important
the differences between the present calculations
and previous ones are by giving numerical results
for liquid He' at low pressure.

V. APPLICATION TO LIQUID He

The T lnT contribution to the specific heat is
usually expressed in terms of the coefficient I'
defined by the equation

b C„=nks I' T' ln(T/T, ) .
Comparing Eqs. (22) and (73) we see that the theo-
retical value of X' coming from interactions be-
tween quasiparticles with almost equal momenta
((I 0) is given in terms of B', the coefficient of
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the (p ~ q) term in the quasiparticle interaction,
by the relation

Detailed calculations of J3' are givenin Appendix A;
if Landau parameters with l &2 are neglected the
corresponding result for I &,„is

I'„„=40 (v /T~ ) Z ~~[(AO) (I+A, - +v'Ao)
X=8 s a

+ (A')' (1 —~&'A,') - 2A,'A', ], (75)

0 I I I I I I I I I I I I I I I I I I I

—10 -05 0 05 10

FIG. 2. Theoretical values of I'i~, Eq. (75), calcu-
lated neglecting Landau parameters with l &1, as a func-
tion of A& (lower scale), and 5 ~ =A~/(1 —3A~) (upper scale).
The Landau parameters Pq, Pp, and E~' have the values
given in text.

Experimentally, X' is not well known, since the
data do not exhibit a well-defined T lnT behavior;
but from a forced fit to the data Mota, Platzeck,
Rapp, and Wheatley' estimate X' to be 57. 4'K 3.

This number would be consistent with the theoreti-
cal value if E& were + 0. 2V (A&=+ 0. 25); other es-
timates of E', are —0. 66 (A~= —0. 84) (from finite-
temperature contributions to the thermal conduc-
tivity), —0. 58 (A;= —0. 72) (from finite-tempera-
ture contributions to the spin diffusion coefficient),
and —0. 69 (A~&= —0. 91) (from the forward-scatter-
ing sum rule); also recent measurements of spin
echoes in high magnetic fields indicate that E& is
small, but give no indication of the sign. How-

ever, in view of the uncertainties in the experimen-
tal value of ~ and in the values of E& obtained from
other experiments, the difference between this
number and other estimates of E& is notparticularly
significant. Also one must bear in mind that the
above calculation using Eg. (V5) neglected the ef-
fects of Landau parameters with l & I, and also
neglected contributions to X' coming from interac-
tion of quasiparticles whose momenta differ by
rv 2pg

To estimate the importance of Landau parameters
with l & 1 we have calculated ~'i,„taking into ac-
count E&, the expression for J3' is derived in Ap-
pendix A, and the results for 1 q,„as a function of
A2 (E2) and A& (E&) are shown in Fig. 3. For Eo,
E&, and Eo we use the values given earlier. " We
assumed E2 to be zero, since the spin-symmetric
Landau parameters con.tribute little to j, &,„, and

experimentally E2 is know to be small.
We note that even if [AP is no bigger than 0. 5,

where w, = 1 and w, = 3. The A, are defined in Eq.
(66).

In Fig. 2 we show theoretical values of I'&, for
liquid He at low pressure as a function of the
parameter A; (E,'), which is not well known. The
parameters Eo, E'„and Eo (and the corresponding
A' s) are well known from measurements of equilib-
rium properties; we used values Eo= 10.76 (Ao
= 0. 91), E', = 6. 00 (A ~

= 2. 00), and Eo = —0.67 (Ao
= —2. 00). ' For an almost ferromagnetic Fermi
liquid Eo 1 (Ao ~), the dominant contribution
to 1"„„is

(76)

I.O

0.5

0
A) 0

-0.5

-0.5
F2

0 0.5

1.0

0.5

0
0 F)

-0.5

For liquid He' at low pressure this has the value
29. 2 'K, which is only -60%%ua of the value for I'&,„
evaluated for Ej= 0. Consequently, for liquid He
it is a poor approximation to neglect all but the
dominant term in the almost ferromagnetic limit.
We note that the contribution to I'&,„coming from
spin-symmetric Landau parameters is remarkably
small, only 0. V7 K, which for most values of

E& is no more than a few percent of the total.

—I.O 0.5 1.0-0.5—1.0 0
A 2

FIG. 3. Contours of constant I'&~ as a function of A&

and A2. The units of I'&~ are 'K . The Landau parame-
ters Ep, Sp, and E& have the values given in the text, and
other Landau parameters were neglected. Values of E&
=A&/(1-3A&) are given on the right-hand vertical scale,
and values of E& =A2/(1 - 5A2) are given on the upper
horizontal scale.
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rf,„=—
+,

v'(B', /r~), (78)

where Bn is given in Eq. (V2). If all Landau
parameters with /(2 are included in the calcula-
tion, ~1,„is given by the same expressions as
I'„„[Eq. (75)] but with the (Ao) and (A~) terms
multiplied by a factor of 3. We see that for the
values of F; considered, F„&~ is generally small
compared with both I'&,„and ~&,„, however, for
values of A', between —4. 6 and —1.0 (- 1.8 & E',
& —0. 75) Irh|~ I is greater than one-third of r»„,
and is many times j"&,„when A&=- 2. 3. The low-
est estimate ofA

&
is —0. 91, obtained from the forward-

scattering sum rule; for this value the high-mo-
mentum contribution to X' is probably appreciable.

TABLE I. Theoretical estimates of I'('K ) as a function
of E,.

its contribution to I'&,„is appreciable and can
amount to about 25-50%%u~ of the total, depending on
the value of 4;. The contribution to I'&,„increases
with decreasing A.z, and increasing A1. Roughly
speaking the contours of constant 1 1,„are lines
of constant A. 1-A.2. A measurement of F may
therefore be used to estimate A;-Az (if one assumes
higher Landau parameters may be neglected), but
it is of little value for estimating A,

&
and A~ sepa-

rately, unless one has some additional information.
It is also possible that Landau parameters with
3 &2 make significant contributions to I'&,„. For
example, the (Ko) contribution to B' contains terms
of the type (Ao) Aa„with a coefficient that falls off
rather slowly with increasing n; these may well be
important since lAo) is about 2 for liquid He'. '

Some indication of the importance of interactions
between quasiparticles whose momenta differ by- 2Pz may be obtained by estimating their contribu-
tion to the entropy in the dynamical quasipa'rticle
approximation; this is given by the difference be-
tween the calculation of Amit, Kane, and Wagner'
and that of Emery, namely,

rn|~ — 830m4T~ (Ao+ ~|SA;) (ADA;+ SAOA, ) . (77)

(Here we again neglect all Landau parameters with
i &2. ) Numerical values of rh, ~ are given in the
third line of Table I, for several values of I';. In
Table I we give for comparison the results of the
present calculations of j"&,„, and the low-momen-
tum contribution to the entropy in the dynamical
quasiparticle approximation. The latter is defined
by an equation analogous to Eq. (V4) for 1'„„:

We are grateful to Professor Gordon Baym for
many stimulating discussions and helpful criticism,
and to Professor David Pines for his constant en-
couragement. Part of this work was carried out
while one of the authors (C. Z. P. ) enjoyed the hos-
pitality of the Aspen Center for Physics.

APPENDIX A: EVALUATION OF B'

Here we evaluate B' [Eq. (61)] in terms of Lan-
dau parameters. First we consider the (X ~)

term. For s = 0 the equation for the E matrix re-
duces to

0
On»

~ t —f4 t + ft ~

PQg QP1 ~ DQ~
92 92

(A1)

which is the same as the equation for the T matrix,
since when s = 0 no real transitions occur. k'g;9 91
depends only on the angle between p and p„and
Eq. (Al) is easily solved by expanding k and f in
Legendre polynomials. The result is

v(0)~'(p 4', p, q, y; s=O)

Clearly, it is necessary to evaluate the high-mo-
mentum contributions to the statistical quasipar-
ticle energy before definitive statements can be
made. Another point to notice is that for the range
of values of E1 considered, the results of the pres-
ent calculations are smaller than these of the dy-
namical quasiparticle approximation by a factor
which varies from about 2-4. It is also interesting
that the contribution to r|,„coming from spin-
symmetric I andau parameters is —3. 97 'K which
has the opposite sign and is considerably larger
in magnitude than the contribution we find (+ 0. 7V
oK 3)

To summarize, we have shown. that the small-q
contributions to the T lnT term in the specific heat
of a normal Fermi liquid may be calculated using
the quasiparticle expression (1) provided the quasi-
particle energies are determined using Landau's
definition, Eq. (8). This statistical quasiparticle
energy is not the same as the dynamical quasipar-
ticle energy defined by the poles of the single-par-
ticle propagator, In our calculations no Bose con-
tributions of the type found by Riedel appear, al-
though our results are consistent with the earlier
calculations. A detailed discussion of Bose contri-
butions is given in a separate paper. One prob-
lem still unsolved is how high-momentum processes
contribute to the statistical quasiparticle energy.

ACKNOWLEDGMENTS

Present calculation

—0.75
—1.0

I'l~ 17.7

—0.50
—0.60

28. 4

0.50
0.43

48. 0 64.1
= K' (P ~ 0, P, ~ 0, |P; s = 0) = ZA ~ P, (P ~ P,), (g2)

l
Dynamical low momentum
quasiparticle

high momentum

I 1 71.2

Chic 5.9 —4. 1 -1.4 0.6

80.0 99.5 115.3
where the A, are defined in Eq. (66). To obtain
the on-energy-shell matrix elements of K [Eq. (58)]
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we note that on the energy shell (s =p ~ q =p, q) and
for s = 0, p ~ p~ is simply cosp. Therefore from
Eqs. .(56) and (A2) one finds

K (0, 0, p; 0)=X (0, p) = ZAl pg(cosp) . (AS)

The coefficients X"(0) [Eq. {59)]may be evaluated
using the identity4

J, (cosP) = Z g„g, cos(l —2n)Q, (A4)

1 (2n) I
&n =

2 an („{)a ~

One finds

From this equation the X term in the expression
for B' may be evaluated directly.

For liquid He there are large contributions to 8'
coming from the [Xa(0)] term in Eq. (61), since
)Ao) has the large value of approximately 2. Ac-
cording to Eq. (AS) Xa is given by

-Z &,', Reft"...,(S)Z', ,",,(s), (A9)
'3

(l, —[m()1 11 l l p,
=(I + ~ ~)

(Alo)
This equation has the same form as the equation
for the T matrix (scattering amplitude),
v(0)ta~;, (q, &o), except that in Eq. (A9) one finds
Beg, » instead of Q, » .

Using Eq. (AS) we see that the on-energy-shell
matrix elements of the K matrix X„"(s)[Eq. (56)]
are given by

X'(s) = Z E,""...(S)PI, '(s)P,', '(s) . (A11)
g

2

Neglecting all Landau parameters with E &2, and
solving Eq. (A9) we obtain the following results for
X"(s). For m=0 we find

C'(s)
1+D"(s)+C'(s)Reg(s) '

where

C'(s) = (Zt+X,'sa)[I ——a'~a'Pa'(s)]+~a'[P'a(s)]a, (AIS)

Xa(0) =Ha+ &&a+$4A4+ ~ {Ar)

The coefficient of Aa„ in Eq. (AV) falls off rather
slowly with increasing e, and approaches the value
I/vn asymptotically as n- ~. Thus, because of the
large value of )Ao), there may be appreciable con-
tributions to 8' coming from terms involving rather
high-order Landau parameters.

To evaluate the term involving the second deriva-
tive of X„in Eq. (61) we solve the K-matrix equa-
tion for arbitrary values of s. Expanding E in
Legendre polynomials,

z"(j q p, q y s)=v(0)k"--(q, (o)

and X(s) is defined in Eq. (63).
For m=1, we find

II' { )='(--'+[P'( )l'X( )] .
For ill = 2~ we find

&a '

aa(')=&i i+Z'Re '(s) [ '{')] ' (AIV)

Z yL
x~ (s) Pltnl(P ' q)Plml(P ' q)slate (AS)

il25

and substituting into the equation for the E matrix
[Eq. (45)] one finds the following equation for the
coefficients X,",, :

~„( )
(l~- [m))l
(l + )m()t

where

n,',(s) =-L+(1/4i)P', (s)+(I/4l)[Pa(s)]'~(s). (A16)

The X„(s)for m & 2 all vanish.
Computing the second derivatives of X", substitut-

ing them into Eq. (61), and adding the [X„"(0)]'con-
tribution (neglecting Landau parameters with l & 2),
one obtains for B' the expression

a'= —— Z ~ „[(X,"P(1+A,') '(X+,")'+2&,'A," -h v'{A,'+-.' a,')'—
)taas a I

(A19)

where zo, = 1 and sv, = 3. In the above equation the
first line comes from the m = 0 term in Eq. (61),

the second line from the I m I = I terms, and the
third line from the ) m ) = 2 terms. The contributions
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p p+k

FIG. 4. Two particle vertex
r@, p'; k).

p+k

APPENDIX 8: QUASIPARTICLE INTERACTION FOR p q = 0

Here we resolve, on the basis of microscopic
theory, the inconsistency found in the calculations
of f;;„-for small q and P ~ q=0. The reason for
the discrepancy is the many-body nature of the
problem, which, as we remarked in Sec. III, leads
to ambiguities in evaluating the "f;;"term in the
expression for the energy of a quasiparticle-
quasihole pair. The energy of interaction of two

quasiparticles of momenta p and p'—= p+q both of
which are on the Fermi surface, is directly pro-
portional to the forward-scattering amplitude,
since there are no states available for real transi-
tions, which lead to the differences between ener-
gies of interaction and forward-scattering ampli-
tudes discussed in the body of the paper. To be
precise, the quasiparticle interaction is then given
by the relation '

,f-=a'F'«="(j P') (Bl)

where a is the renormalization constant and
1"«(P P ') is related to the two-particle vertex
shown diagrammatically in Fig. 4 by

I'"(p 5')=I [F(P, P'; k)I
0

proportional to v' come from the (X')' term in Eq.
(61), while the others come from d'X„'/ds' in the
same equation.

in Fig. 5, which is the analog of Eq. (44) [Fig.
1(b)] in Landau theory. Here we have put P '=P+ q,
since we are interested in the limit q-0. We as-
sume that all incoherent parts of particle-hole
propagators have been removed by renormalizing
the vertex functions in the usual way, and therefore
all particle lines represent the coherent part of
the propagator, and they may be regarded as quasi-
particle lines. The unshaded circle in Fig. 5 cor-
responds to I' evaluated for s, =&/u~lq(=~, since
the quasiparticle-quasihole propagator in the sec-
ond term vanishes in this limit. (Note that the en-
ergy variable q corresponds to co in the Landau-
theory calculations. )

In evaluating f«;„using Eq. (B1), one needs the
vertex function evaluated for s~= ~. The only
terms which depend on the value of s„ in the limit
k-0 are ones which have an intermediate state
containing a single quasiparticle-quasihole pair of
total momentum k; graphs representing these
terms are shown in Fig. 6. All of these terms
occur in the first term on the right-hand side of

the integral equation for I', Fig. 5; the remaining
terms have at least one intermediate state contain-
ing a single quasiparticle-quasihole pair with total
momentum q, and it is therefore impossible for
them to have an intermediate state containing a
single pair with total momentum k. To determine
f,»,«„- in the limit q-0, the first term in the equation
for the vertex (Fig. 5) must be evaluated in the
limits q-0, s, - ~ (as discussed above) and k-0,
s„-~ [from the expression for f in terms of I',
Eq. (Bl)j.

In the Landau-theory calculations the first term
in the equation for the T or K matrices was re-
placed by lim««fg«, where both p and p, are on

evaluated for p and p' on the Fermi surface and
the energies P and P' equal to the chemical poten-
tial. Here we use a four-vector notation —for
example, k=-(k, ko). (For simplicity we suppress
spin indices in most of this Appendix. ) As we shall
see, it is crucial to notice that I' is to be evaluated
in the lim"'t k 0, but s~ ~; this limit was treated
incorrectly in the Landau-theory calculations.

I' satisfies the equation shown diagrammatically

p+q p+q+k

+ ~ ~ ~

p+q p+q+ k p+q p+q+k pi-k

p+k

FIG. 5. Equation for I'(p, ply; k). The unshaded cir-
cle corresponds to I" evaluated for s =q /v&lq) =, and
the shaded circle corresponds to I' itself.

FIG. 6. Graphs which contribute to the difference be-
tween the s& =0 and s~=~ limits of the vertex function I'
(Fig. 4). The circles in the diagrams represent the part
of the vertex function irreducible with respect to a single
quasiparticle-quasihole pair of total momentum k, and
therefore correspond in the limit of small k to the s&=~
limit of the vertex function.
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the Fermi surface. To see what this corresponds
to in the microscopic calculations we make use of
the fact that an expression for f;„;pfor p and p+k
both on the Fermi surface may be obtained by ap-
plying relation (Bl) to the crossed channel:

hm &l~ I+ I'(0 0+0 k)II .'(+s)
a 0 s~=e()/v&I@I

The energies Po and po+ ko are to be put equal to the
chemical potential. Thus in the Landau-theory cal-
culation the first term corresponds to the vertex
function evaluated for s, =P 5=0 (since p and p+k
are on the Fermi surface) and s,-~ [from the ex-
pression (BS) for the Landau parameter]. As we
have seen, the vertex should be evaluated for s~ = ~.
The difference between the 8~ =0 and s~ = ~ values of
the vertex function comes from the graphs shown in
Fig. 6; the circles in the figure correspond to the
part of the vertex irreducible with respect to a
single quasiparticle-quasihole pair of momentum k.

The contribution from these graphs may be evalu-
ated by applying Landau's equation for quasiparti-
cle-quasihole scattering to the k channel, since k is
small. The contribution from these graphs vanishes
for s~ = ~, and therefore the Landau-theory calcula-
tions overestimated the quasiparticle interaction
v(0)fg„;g by an amount equal to the value of the con-
tribution for s~=0, which is

g (&s )'/(2I+I) P (~„F),
1+E, /(2 I+ 1)

Subtracting this term from the result of the Landau-
theory calculations, one recovers the correct re-
sult ('71). It is important to notice that the p ~ q de-
pendence comes from the second term in the equa-
tion (Fig. 5) for the vertex, and is therefore not af-
fected by the considerations of this Appendix. %'e

also note that calculations of transport coefficients
are also unaffected since processes in which both
jp and q are small are unimportant there.
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