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A Monte Carlo technique has been developed for evaluating the partition function of a hard-
disk system which should be generalizable to other many-body integrals. Evaluating the parti-
tion function directly, and hence the free energy per particle, instead of simulating the sys-
tem allows much smaller systems to be used as realistic samples of an infinite system since
a canonical ensemble of such systems is actually sampled. This eliminates the metastable-
state problem that tends to lock simulated systems in one phase or another. The free energy
has been evaluated for a 16-particle system with periodic boundary conditions for 0=p=0.9
with p =density/close-packed density. The free energy is below that of a free-volume calcula-
tion which assumes crystallization for p =0.79 and equal to it for higher densities. At p=0.8
the free-volume equation can be extrapolated to N = and gives A(0.8)/NkT =4.01 + 0.04, which
compares well with the 3.96 + 0.01 which Ree and Hoover obtained by integrating the pressure
curve. The pressure in the phase-change region can also be extrapolated to give PV/NET
=7.6, which compares well with the Alder—Wainwright result of 7,72, The phase-change
region, the only part which cannot be easily extrapolated, is 1.25=< V/V,=<1.28 for 16 particles,
which is about the correct density but only about 60% of the width of theirs (1.266 =V/V,
=1,312) for 870 particles because of a combination of 1/N effects and smoothing in fitting to

the A/NRT data.

I. INTRODUCTION

It just does not seem right that 870 particles
and about ten million collisions for each density!
should be required to see a phase change in a hard-
disk system which can have at most nearest-neigh-
bor interactions and for which the crystal unit
cell would contain only one particle. The interest-
ing feature of this phase change is that it occurs
in a system with no attractive interactions which
implies that it can only be due to the packing geom-
etry required to have that many particles at the
given density, and that it occurs in an easily
visualizable two-dimensional system. Unfortunate-
ly such a large number of particles and collisions
destroys a good deal of this simplicity, and one
wonders if they are really needed. Indeed there is
some evidence available that they are not. No
signs of first-order phase transition are evident
from the standard molecular-dynamics and Monte
Carlo studies of hard-disk systems of 4 and 12
particles, yet a two-particle system with periodic
boundary conditions can be shown to have a van der
Waals-like loop at about the density and pres-
sure where the larger systems have a first-order
transition, and possibly even more telling for a
calculation of the type made here, an evaluation of
the configurational integral of a periodic system
of four hard parallel squares shows that it also
has a first-order phase change.? Unfortunately
these systems are so small and specialized that
one cannot be sure that the results are not simply
due to having very small systems. However, if it

1

were possible to find this result in a 16-particle
system with a method that in no way, other than
machine-time considerations, depended on the 16-
particle limitation, the entire system could be
modeled with coins and the connection between
small-system and large-system results should be
fairly easy to see.

The problem in doing this normally stems from
the impossibility of having a two-phase region in
such a small system. This is not a problem here
because the system is not simulated but rather the
configurational integral is calculated from the re-
sults of independent trials with gas and crystal
states entering into these trials according to their
relative abundances. One would expect of course
that some dependence on N, the number of particles,
would certainly be present in so small a system,
making the pressure, free energy, and phase-
change region different from those observed in
the N - limit, and indeed this is the case. For-
tunately, though, the simplicity of such a small
system enables one to deduce in the free-volume
limit, where crystallization has taken place, the
explicit form of the N dependence so that values on
the crystal side of the phase-change region for the
16-particle system can be extrapolated to the N
- limit, giving a free energy A/NkT= - (InZ)/N,
which is calculated directly in this method, at
p/Pep=0.8 of 4,01+0. 04 for the infinite system
deduced from the 16-particle system. This com-
pares well with the value 3. 96+ 0. 01 which Ree and
Hoover obtained by integrating the pressure curve
for the N - limit.® The pressure involves a
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derivative of the free-energy curve and is there-
fore subject to smoothing errors in the polynomial
fit to the A/NRT data. However it still extrapolates
in N - limit to PVy/NkT="7.6, which is close to
the Alder-Wainwright result of 7.72. The
phase-change region on the other hand does not
extrapolate and is therefore subject to both 1/N
errors and smoothing from the polynomial fit and
it gives 1.24=V/Vy=1, 28, which is in the correct
location but only about 60% of the width of the
Alder—Wainwright result of 1,266=V/V,=1,312,

The configurational part of the classical canoni-
cal partition function is

ZWN,V,T)=/N1) [ [ -+

14

X[ ddy - diye W)

The number of dimensions tied together in the in-
tegral suggests the Monte Carlo method as the
cheapest way to evaluate it. The difficulty is that
for a dense system of particles with hard cores
virtually every random choice of the variables
di, ..., dy will contain at least two ¢’s sufficiently
close that they are within the hard-core radius.
This means that virtually all choices give zero as
the value of the integrand and that the machine’s
time is almost all spent in generating ¢’s which
do not contribute to the integral.

For this reason, the integral itself has not nor-
mally been evaluated. Instead the system has been
simulated by allowing N particles to move in the
volume V under the influence of the potential
V@, ..., dy) either in a very direct fashion by
solving stepwise the equations of motion, as in
the molecular-dynamics method, or indirectly by
moving a particle randomly to a new location re-
sulting in a change of potential AV, and then accept-
ing the new location as a new position for the par-
ticle or rejecting it and accepting the old position
according to the Boltzmann probability e™"/*T, as
in the Monte Carlo method.* Thermodynamic
averages are then calculated by averaging over all
of the sets of q,, ..., 4y occurring after equilibri-
um has been reached. Both of these methods are
similar to an experiment in which a system is
prepared at time ¢, and its equilibrium properties
determined by averaging between times #; and #,
after it has hopefully reached equilibrium. There
are two difficulties: First, the details of V(q,

., dy) are needed to determine the values of
di,..., dy entering into the averages, whichmeans
that one cannot compare the results of any two
potentials V4 and V by directly calculating the
difference, but must determine each with its ran-

_dom errors independently to high enough accuracy
to compare them. Second, if metastable states are
present, there is a danger that short times and
small numbers of particles will find themselves

locked in such states so that the system never
really goes to equilibrium.

The method proposed here goes back to evaluat-
ing the integral itself in a Monte Carlo fashion but
with a biased method for picking the random vari-
ables so that an acceptable fraction of the trial
choices contributes to the integral. Although none
are made here, this means that comparisons be-
tween V,(d;, ... dy) and V@, ..., qy) can be
made directly if the bias is such as to satisfy the
more restrictive of the two since the integral
evaluated could be, for example,

Z,WN, V,T)=(1/NY) [ [+
Xf, dds- - diy @A -2 TR/, ()

where the difference is all that appears in the inte-
grand. The metastable-state problem does not
enter at all since the sets of choices are totally
random with respect to each other, which is what
makes it possible to use very small numbers of
particles and fewer trials with this method in re-
gions where metastable states occur than with

the conventional methods. Unfortunately these
advantages are not free. The biased selection
method means that some choicesofq,, ..., qy are
weighted much more heavily than others, which in-
troduces extra fluctuations into the value of the in-
tegrand and thereby increases the number of trials
needed. In addition the biased selection method
usually results in acceptable choices of 4;,..., dy
in the higher-density region for only about 10-20%
of the trials (the percentage can be increased but
also increases the dispersions in the weightings)
so that in some ways the method is inherently
wasteful. More seriously, a midpoint trapezoidal-
rule estimate of the integral is calculated rather
than the integral itself which introduces its error
superimposed on the random error which must

be extrapolated away. Despite this, the advantages
of smaller numbers of particles and the concep-
tual attractiveness in calculating the integral itself
rather than thermodynamic averages probably
outweigh the disadvantages.

II. GENERAL METHOD

The area V of a hard-disk system is taken to
be an equal-sided 60° parallelogram with periodic
boundary conditions along the directions of the
sides, A mesh is superimposed on V such that it
is divided into N, hexagonal regions with a mesh
point numbered from 1 to N, in the center of each
region, where the number is made to correspond
to an address in which information can be stored
about the mesh point. The variables ffl,

., Gy are then restricted to the mesh points so
that the sum
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which is independent of temperature because of the
zero or infinite nature of the hard-disk potential,
is a midpoint trapezoidal-rule approximation to
the configurational integral given by

Z(N,V)=lim Z(Ns, N, V). (4)

Ng=wo

This sum is not actually evaluated directly, in-
stead the number #, of different sets of {q;,...,qx}
with the ¢’s in any order is estimated by com-
paring an observed probability of finding such a

set when the choices are made in a biased manner
with the probability of finding any one such set
which can be calculated from the number of choices
available before each §; was picked. The number
n, of these sets then times the number of permuta-
tions N! of each set is just the value of the sums

in the equation for Z(N¢, N, V) so that

Z(Ns, N, V)=n,V¥/NY . (5)

In order to decide how to bias the random selec-
tion process it pays to look at the 16-particle
system, or equivalently at 16 pennies on a piece
of cardboard. For low densities, the overriding cri-
terion is simply that two pennies cannot be placed
on top of each other, therefore we eliminate any
such possibility from the possible choices of
{4;} and then note the number left in the set and
use it to calculate the bias introduced. At higher
densities it makes a tremendous difference in the
calculated bias which order a given set of ¢’s is
introduced in, with all on one side first giving a
tremendously smaller bias than alternatively on
one side and than the other, so we permute them
and average the bias for a given set of ¢’s. Then
at the highest densities the pennies almost always
form a crystal. Therefore start with crystal lo-
cations but also add all other possibilities to form
a sequence which converges to n, in general quite
rapidly at highdensities, where the crystal locations
exhaust the possibilities, and somewhat slower at
lower densities, where gas configurations can be
observed to come in as the relative numbers from
the crystal locations decrease relative to those
from the random locations.

III. LOW AND MEDIUM DENSITIES *

For low densities the biased selection method
is as follows: A trial value of §, is selected from
the set E of available mesh points E;=Ng. Then
each point within a radius d corresponding to the
diameter of a disk is removed from the set E by

I3

checking the location associated with each point
and storing a number in it, if it does not already
have one, and subtracting one from the number of
available mesh points each time a point without a
number is found, leading to E,, the number of mesh
points available for the choice of ﬁa, which is then
chosen from the set E of remaining points, and
again the appropriate points are removed from E,
leading to E5 points from which the third g can be
chosen, and so on. The number stored to indicate
that the point is no longer in E could be merely

a 1, but in practice it was convenient to make it
the number of the highest remaining available point
so that random numbers picked from 1 to E; could
be redirected to that point if a point not in E was
chosen randomly, leading to an equal probability of
picking any point in the set with no need to discard
any random numbers. The probability w, then of
having made a choice q;, ..., 4y in the specified
order in a given trial is given by

ﬁ 1
Wy P Ei ’ (6)
since at each step ¢ the probability of having chosen
the q; that was picked is just 1/E;. Note that a
trial set of ¢’s might manage to box themselves in,
so that after the 7th choice it is impossible to find
q,.1 without two ¢’s being closer thand. This
leads to E,, =0 and to 1/w,=0 or to infinite w, .

The probability P(w,)dw, of finding a value of w,
in the range dw, for a given trial and finite w, is
just the product w,n(w,)dw;, where n(w,)dw, is
the number of sets of §;, ...,y with the order
specified, which give rise to values w; in the range
dw, when they are chosen. This leads to n(w)dw
=P(w)(1/w)dw which needs to be integrated over
all finite values of w to find the total number of
nonoverlapping g sets in the system. Fortunately
infinite w’s result from 1/w,=0 and these imply
that n (=)= 0, which is just what is needed to extend
the integral to all values of w, so that

w Ny
vt [ (1N L EL
o w w Ne-o Ni g Wy
(7

where the N! accounts for the possible permuta-
tions of each set and N, is the total number of
trials made. Terms appear in the sum with the
probability P(w,) owing to the fact that that is the
definition of P(w).

At low densities (0 - 0. 4p,,), the biased selection
method leads to almost every trial giving a finite
value for w, and also leads to relatively small
fluctuations in the value of w, so that the above is
sufficient. At higher densities (0.4p.5-0.7p.,) w,
begins to vary drastically. In addition only about
one trial in 10 or 20 may yield a finite value for
w:. The reason for the large variations is fairly
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easy to see. Suppose that there were only one

set of nonoverlapping ¢’s in the system. Obviously
they can be picked in any order and sometimes
might be picked so that the first value is from one
side of the system, the second from the other, etc.,
so that each time many points are removed from
the system, making the first few E;’s decrease
rather rapidly. Another time the same values of
g might be picked in an order such that the first,
second, third, etc., choices are almost nearest
neighbors, and the E;’s have only a few points
removed from them after each choice, leading to a
much smaller value for w, than in the first case.
This was not a problem at low densities because
the disks were almost always far enough apart that
all of the points within a radius d were removed
after each choice. It is a problem at higher den-
sities because a large fraction of the points within
the radius d may or may not have been removed
from the set by previous choices so that the order
of making these choices becomes important. At
this point it pays to save the values of any ordered
set 4y, ..., 4y which is picked in the biased
method and to permute the set, making, for exam-
ple, 4t=q,, 4;=3qq, etc. These are then put into
the system in the new order in order to find the
new E,;’s from which w} is calculated for a number
of such permutations and then averaged to give

= (w,), which is the average probability of the
setq,, ..., Qy having been chosen in any order.
The probability of getting a specified value of w

in a given trial is proportional to the number

m (@) of such sets with the appropriate size w
times N! to convert the average into the total
probability independent of order. Therefore, we
have

m(@) N\ div=P(@)(1/)di , (8)

and the total number of sets is given by
© = N
npN1= i’é’”—)dw=<é>=nm L i,
o w w Ny~ Ny 451 Wy
9)

where it should be noted that w, is first averaged
over the permutations of the ¢’s chosen on the tth
trial to form @, and that 1/4% is then averaged over
the N, trials made. A specific example of the
method is shown in the Appendix.

Since the ¢’s are chosen one at a time and in a
random manner from those possible, the informa-
tion about N particles in V is also information
about M < N particles in V so that, except for the
mild dependence on the total number of particles
present in the quantities calculated, a single run
finds these for all densities up to a maximum de-
termined by the failure of the method to yield any
possible nonoverlapping g arrangements. The
inevitability of this failure is easy to see since the

biased selection method employed above is very
similar to randomly throwing things in a closet,
and if one really wants to get to high densities a
certain amount of planning is needed.

IV. HIGH DENSITIES

For densities greater than 0. 7p,, a somewhat
less random selection method is needed. The
first position 4, could be taken as any of the N
points since it specifies the origin of the system.
Then the second choice q, could be made from
any of the points within rings of width 7, and di-
ameters equal to the nearest-, next-nearest, etc.,
neighbor distances that a set of particles equally
spaced in V would have. The second choice having
specified the orientation of the system, the third,
fourth, etc., choices of q; would then be made
from any of the points within circles of radius 7,
centered about the points which would be occupied
by equally spaced particles with one at 4, and
another in the circle specified by q,. The beauty
of this method is that it guarantees finding a set
Qi, ..., dy, since by making 7, sufficiently small
we can limit the possible choices to those which
would allow the system to fill even for the case of
the close-packed density itself. One more addition,
however, is necessary. It is now possible to divide
the possible sets of q;, ..., q for which no two
are closer than d into the categories all chosen
as specified above, the last chosen from the mesh
points which cannot be reached in this way (from
outside of all of the circles of radius 7,), the last
two from mesh points outside of the circles of
radius 7,, etc., with a bit of care needed for the
choice of g, outside of the mesh points of the above
method since it must be not only outside of the
circles but also outside of the rings formed by
rotating the circles. The probability of having
chosen a single set of ¢’s in the order specified is
still given by Eq. (6), with the E;’s not the number
of empty spaces in the space V, but rather the
number of spaces available for choosing in the
manner specified. The number of different permu-
tations of the ¢’s is now subject to the constraint
that N - I of them be chosen from the first region
and I from the second, so that Eq. (7) becomes

1 &
nyN=-I1I'=lim — 2, — (=0, 1, ... ,N),
W =DUL=lim e Ty )
(10)
N
ny=2Jnp (11)
I=0

where again it is possible to average over permu-
tations so that w goes to @ as in Eq. (9).

The #n, calculated in this way is totally indepen-
dent of the size assumed for 7,, since any possible
arrangement which does not appear in one of the
categories of ¢ sets will appear in another and this
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has been utilized for checking that the above equa-
tions work for low densities. The size of 7,,
however, does affect the relative numbers of
particles present in the various categories. For
example, if 7, is made sufficiently large, there
are no points which are not included in the first
category, which becomes equivalent to the biased
selection method used for low densities. The game
is to make 7, sufficiently large that for a given
density most of n, comes from the first few cate-
gories with a reasonable fraction of the trials
giving nonoverlapping g sets.

An approximation leading to a small systematic
error for high densities must be mentioned here.
In principle the second particle is put into one of
the rings and then the circles are formed for the
rest of the particles so that all orientations are
automatically included. In practice, the first
particle was placed at the center of the system,
the circles were formed about the lattice sites de-
termined by it and its periodic repetitions, and
the second particle was also placed in one of these
circles. The resulting n, was then multiplied by
the ratio of the number of points in the rings to
the number in the circles on the assumption that
the number of possible configurations would be the
same for all orientations of the system. This
approximation should be fairly good even at most
crystal densities since there are almost no configu-
rations with particles on the lattice sites, but
rather most have the particles displaced one way
or the other. For orientations other than the one
used the particles will need to be closer together
in some directions but can be further apart in
others so that there should still be about the same
total number of configurations. For a close-
packed system, however, this must break down,
and hence the approximation used introduces a
small error. The result is that at extremely high
densities A/NET as calculated above will go as
[(2N = 3)/N]In(p'/2 - 1) instead of going as the cor-
rect [(2N - 2)/N]In(p™*/2-1). This point will be
further discussed in Sec. V.

V. FREE-VOLUME LIMIT

At sufficiently high densities it is possible to
deduce the results of the high-density method with-
out using a computer. Let b be the distance be-
tween the particles of diameter d when each is
placed in a hexagonal pattern equidistant from its
neighbors, and let V, be the area of a hexagon

circumscribed about one of the disks. Then we
can find the relations
Ng=(V/V,)d?, (12)
(N;/z_le/a):le/a, (13)

p=NV,/V=Vy/V, (14)

| =3

so that the relation between b and d is
b=[(V/NV)/2-1]d=(p/2-1)d . (15)

Now imagine putting the particles into the system
with the high-density selection method: The first
g is chosen anywhere, E;=Ng. The second is
chosen from any of the concentric rings about the
first ¢ corresponding to the appropriate nearest-
neighbor, next-nearest-neighbor, etc., distances
containing ¢, db points, E;=c,db. The third ¢ is then
chosen from any of the remaining N — 2 circles cen-
tered about the equidistant particle points containing
czb?pointseach, E3= (N — 2)c,b% Thefourthqis
chosenfrom N - 3 circles, etc., withthe remaining
¢’s being chosen from the appropriate number of
circles so that we find for (1/w)

(1/w)=Ng cidb (N = 2)! (c,0H)7 2, (16)
which gives n, from Eq. (7) as
np=Nscicg b 3NV - 1)1 (17)

and Z from Eq. (5) as
Z(Ng, N, V)= V¢ cy2dp? 3 N (v - 1) NN
= VY (V/NV,)ced2(b/d)? 2 (v -1)"
= V;Vp-lclcgl-z (p-l/z _ 1)2N-3(N _ 1)-1 ,
(18)
and we find that the free energy per particle A/NRT
= - (InZ)/N is given by

Inp 2N—31
- N

A/NET =Cy + npt?-1) (19)

with

Cy=-InV,- llr\‘lcl _ (N_2(1n02)+ ln(zzl-l) ‘

(20)

Equation (19) contains the same assumption as
the numerical work that the second particle can
occupy any of the mesh points at the correct dis-
tances from the central particle. As discussed
at the end of Sec. IV, this should be reasonable for
most densities, since only a slight adjustment of
already displaced particles is required to account
for the fact that the periodic repetitions of the
system do not quite fit the original system, which
should not significantly change the number of
choices available before each step. At the very
highest densities, however, the second particle
is also limited to the circles owing to the fact that
these adjustments become impossible, which changes
the coefficient of In(p™/2-1) in Eq. (19) from
(2N - 3)/N to (2N - 2)/N. This change probably
occurs gradually and as mentioned at the end of
Sec. IV the numerical work was done in such a
way that it will go as Eq. (19) even at the highest
densities.
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As N- Eq.(19) becomes the familiar free-

volume result, but more importantly for the finite N

it tells us what A/NET should look like in the
crystal region, The reason that this is relevant
for the crystal region and not for the gas is be-
cause for a crystal the vast bulk of the possible
configurations really do have the particles spaced
as in the derivation, while for a gas the configura-
tions with all of the particles within b of a lattice
site make up only a small proportion of the total
number of configurations possible.

VI. TRAPEZOIDAL-RULE ERROR

In a lowest approximation each particle can be
treated as though it were free to move inside a
circle of radius R(N/V) which is determined by
the positions of the other particles so that

Z(N, V)= (27 fo RNV dpr)¥ = a¥R (N, V)2V, (21)

Two sources of error are introduced when the ¢’s
are constrained to be on the Ny mesh points. In
the first place, the other particles are not where
they want to be but are displaced from their
natural positions by an amount proportional to the
distance between mesh points or 1/d, where d is
the diameter of a disk in mesh points. This is a
continuous sort of error in that the particles can
place themselves better and better as d becomes
larger so that R(d, N, V) is given by R(N, V) plus
an error term €(N, V)/d, which gives rise to

Z(1/d, N, V)=1"[R(N, V)+ e, v)/dP",  (22)
and the free energy per particle is given by
A/NET==2In[R(N, V)+ €N, V)/d]-Inm

- _21nRW, V) - Ing - 2 VV/RE, V)]
’ d

b
(23)
so that a linear dependence on1/d would be expected
from this error source. The other source of
error comes after R(N, V) has been determined.
The integral in Eq. (21) still needs to be done and
is done by trapezoidal rule and hence depends on
the number of mesh points within the circle of
radius R (N, V). Unfortunately the ratio of the
number of points times the area of the hexagon
which they represent compared to the area of a
circle of a given radius does not become continu-
ously better as d increases, but rather jumps from
too large to too small and back again many times
as d increases. It is also far from obvious that
the area of interest is exactly a circle, so that a
correction for this would be extremely difficult
with the result that a certain amount of jumpiness
is expected to be superimposed on the general
linear trend of A/NkT when plotted as a function
of 1/d.

VII. RESULTS FOR HARD DISKS

The area V of the system is a 60° equal-sided
parallelogram with periodic boundary conditions
along the directions of the sides corresponding to
a multiple of the expected unit cell for the crystal
phase. Extreme accuracy in Z, whose logarithm
divided by N determines A/NET, is not needed,
only its order of magnitude. The rule adopted here
was to find Z to within a standard deviation, which
was determined by comparing independent trial
runs, of 0= 3Z so that two standard deviations of
error would be required to change Z’s order of
magnitude. This results in a standard deviation
for A/NET of about 0. 03 and is sort of the mini-
mum accuracy possible. At low and medium
densities, where the selection method gave Z for
all N’s up to a maximum, N values between 12
and 20 were used as good approximations to the
N =16 results. At high densities, p= 0.7, N was
fixed at 16 and the area of the system varied to
give different densities. At high densities as
many different values of the disk diameter d as
possible within the constraints that d and the side
of the system be integral were used for each den-
sity and in addition all possible densities for d=12
were used. In the middle-density region d values
of 4, 6, and 12 were used with the substitution of
10 for 12 and then 8 for 12 at the extreme low-
density end.

Since Z itself is obtained directly one should not
be surprised to find that relatively few sets of
{41, ..., 4y} are needed to give the desired accu-
racy. For example, if one was actually doing a
straightforward Monte Carlo evaluation of the in-
tegral in Eq. (1), only four such sets would be
needed to establish the probability of finding a set
of nonoverlapping ¢’s to within 50% and hence Z
to this accuracy. The only additional source of
fluctuations here occurs in w, from Eq. (6) which
we can almost determine without a computer.

For example, at low densities the E;’s of Eq.
(6) are almost always simply the total number of
mesh points Ny minus the number of mesh points
in ¢ circles of radius ! with a small correction to
determine the probability of choosing two q’s suf-
ficiently close that some of the full circle about
the second has already been removed from the set
by the first. The constancy of this plus the fact
that Z is needed only to extremely low accuracy
implies that only about 20 to 50 independent trial
choices were needed at these densities. Even for
the highest densities obtainable by the low- and
medium-density method, only few sets of ¢’s are
needed, although averaging over the permutations
of each set is essential, owing to the fact that the
E’s are still relatively large with only small dis-
persions introduced by the exact positions of the
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{61 yoney duy} sets. Unfortunately a fair number of
independent trials, on the order of 250 to 1000,
is needed just to find 20 or so of these sets, which
makes these densities much more time consuming.
With the high-density method, the E;’s become
smaller while the frequency of finding a set
{41, ..., 4y} becomes larger. Fluctuations in the
number of points comparable to those with the
medium-density method here make up a larger frac-
tion of E;, so that the smaller the E; is originally
the larger will be the fluctuations, which means
that a trade off occurs in determining the size of
the first region, such that a smaller region gives
rise to more sets of q’s but also to larger fluctu-
ations. A success rate of about 10-20% was found
to be about the best combination, and about 50
{4, ...,y sets were then needed to find Z to
the desired accuracy. The final result of about 5
or 6 hon a CDC 6400 computer was 146 such

TABLE 1. The actual values of A,/NkT calculated along
Alp,d)=1(0.144 -0.06/d) + (~0.236 +26.71/d)p + (31,610

ROBERT LYNN

COLDWELL 1
points. These were then put in the form A(1/d, p)/
NET —-A;(p)/NkT, where A;(p) is the free energy
of an ideal gas, given by

A;  In(vY/N1)
NET ~ N
|4 InN!Y'
= - -— — l — —
ln(NVp) InV, (nN N ) (24)
=lnp-1InV,-1, (25)

where the last is the N -~ limit used in the com-
parison. It should be noted that the InV, is just
what is needed to cancel that left over from Eq.
(20), and also that the difference between the
bracketed term for N=16 and for N - « is the
difference to be expected between A/NET and A ;/
NET in the limit as p—~ 0; this difference is 0. 144.
The points were then least-squares fitted to the 14
constants of a two-dimensional polynomial of sixth

with

~301.46/d)p® + (—146. 251 +1331. 06/d) p°

+(309.984 — 2775, 03/d)p* + (— 293. 429 + 2740. 66/d)p’+ (105. 345 — 1042. 80/d) p°,

which was least-squares fitted to these values. All of the values used in this fitting for densities greater than 0.4 are
given here along with a sample of the values for lower densities.

p d A,/NET  A/NT p d AJ/NERT  A/NET p d AJ/NT  A/NET
0 © 0,144  0.144 0.4286 6  1.10 1.16 0.6000 6  1.81 1.93
0.1000 4  0.37 0.34 0.4325 10  1.24 1.19 0.6168 4 1.99 1.95
0.1000 6  0.87 0.33 0.4354 4  1.17 1.17 0.6205 4 2.01 1.97
0.1500 4  0.42 0.43 0.4400 4  1.21 1.18 0.6205 12 2.13 2.12
0.1500 6  0.41 0.44 0.4400 6  1.17 1.20 0.6400 4 2.1 2.08
0.1938 8  0.55 0.54 0.4432 4  1.24 1.19 0.6400 6  2.03 2.16
0.2000 4  0.50 0.51 0.4542 10  1.32 1.27 0.6421 6  2.12 2.18
0.2000 6  0.49 0.54 0.4550 12 1.30 1.28 0.6421 12 2.32 2.27
0.2076 8  0.57 0.57 0.4709 6  1.29 1.32 0.6531 4 2.20 2.15
0.2163 10  0.64 0.60 0.4709 12  1.38 1.34 0.6619 12 2,49 2.40
0.2245 4  0.61 0.56 0.4717 4 1.29 1.30 0.6800 6 2.30 2.43
0.2245 6  0.60 0.60 0.4800 4  1.35 1.33 0.6849 6 2.42 2.46
0.2352 8  0.63 0.64 0.4800 6  1.30 1.35 0.6849 12 2,67 2.57
0.2379 10  0.68 0.65 0.4875 4 1.40 1.36 0.7090 4 2.54 2.50
0.2449 4  0.65 0.61 0.4964 12 1.47 1.45 0.7090 8  2.73 2.69
0.2449 6  0.63 0.64 0.5079 4 1,44 1.44 0.7090 12 2.85 2.76
0.2491 8  0.66 0.67 0.5137 6  1.45 1.50 0.7347 6 2.80 2.82
0.3028 10  0.83 0.82 0.5137 12 1.55 1.53 0.7347 9  2.85 2.91
0.3061 4  0.78 0.76 0.5200 4 1,51 1.49 0.7347 12 2.9 2. 96
0.3061 6  0.76 0.79 0.5200 6  1.45 1.51 0.7617 12 3,16 3.19
0.3460 10  0.95 0.92 0.5319 4  1.58 1.54 0.7901 4 3,01 3.02
0.3469 4  0.88 0.88 0.5387 12 1.65 1.65 0.7901 6  3.26 3.22
0.3469 6  0.86 0.90 0.5442 4  1.60 1.59 0.7901 8 3.37 3.33
0.3673 4  0.94 0.94 0.5565 6  1.63 1.70 0.7901 12 3.45 3.43
0.3676 10  1.02 0.98 0.5565 12 1.75 1.75 0.8202 12 3.63 3.70
0.3893 10  1.08 1.05 0.5600 4  1.69 1.66 0.8521 6  3.62 3. 64
0.4082 4  1.05 1.07 0.5600 6  1.62 1.71 0.8521 12 3.92 3.99
0.4082 6  1.03 1.09 0.5762 4  1.79 1.74 0.8521 15  4.09 4.06
0.4109 10  1.16 1.12 0.5791 12 1.87 1.87 0.8858 4 3.28 3.30
0.4137 12 1.16 1.13 0.5805 4  1.79 1.76 0.8858 8  4.12 4.05
0.4281 6  1.15 1.16 0.5993 6  1.85 1.92 0.8858 12 4.32 4,30
0.4281 12 1.22 1.18 0.5993 12 2,01 1.99 0.8858 16  4.44 4.43
0.4286 4  1.12 1.14 0.6000 4  1.88 1.86 0.8858 32  4.58 4.61
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FIG. 1. Free energy per particle A/NET for the 16~
particle system minus that for an equivalent infinite-parti-
cle ideal gas A;/NkT vs 1/d, the reciprocal of the num-
ber of mesh points across a particle. This enables one
to see the extrapolating away of the mesh. The lines
are from a polynomial fitted to the 146 data points, while
the slashes represent those high-density data points with
p’s, given by the numbers, for which there were more
than two points at the same density.

degree in p and linear in 1/d subject to the con-
straint of being 0. 144 for p=0, 1/d=0. Most

of the points are compared to the fit in Table I,

and the result in the high-density region is shown
in Fig. 1 where the slashes are those points with
more than two points at the same density, and the
lines in the figure are from the fit. The polynomial
has a standard deviation from the points to which

it was fitted of o= 0. 04 which is due in part to the
difficulty of fitting an entire curve by a single
polynomial, in part to the deviations of the points
themselves, and in part to the jumpiness mentioned
in Sec. VI. Extrapolated to 1/d=0, the curve

fit gives

A(p)/NRT - A,;(p)/NkT=0. 144 - 0. 236p + 31. 610p®
—146. 251p% + 309. 984p* - 293, 429p°
+105. 345p° (26)

valid for 0= p = 0.9 with 0~ 0. 04, where the devi-
ation quoted is that of the polynomial from the
points to which it was fitted, which in view of the
extrapolation seen in Fig. 1 and of the strange
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behavior expected near the phase change is probably
as good an estimate of the accuracy of the curve
as any other. This curve is shown in Fig. 2 along
with the curve based on Eq. (19) for the free-
volume limit. The constant C,q for that equation
was found by the requirement that the two curves
agree for the highest density calculated, p=0. 8858,
which gives Cyg=-1.35. The impressive part is
that these two curves agree almost exactly for
densities greater than p=0.79. This agreement
is shown even more clearly in Fig. 3 where the
difference between the two curves is plotted on an
expanded scale. The difference goes to zero at
p=0.79 and within the error of the polynomial
stays there or rather oscillates in the typical
manner of a polynomial trying to adapt to a new
curve,

The free energy A/NET calculated by Ree and
Hoover in the N -« limit by integrating the pres-
sure curve® is also shown in Fig. 2 as the open
circles. For low densities the 16-particle curve
is above their points by about 0. 14 as was antici-
pated in the remarks below Eq. (24). For high
densities the 16-particle results are below their
points which might seem surprising at first, but
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FIG. 2. Free energy per particle minus that of an
ideal gas, A/NkT —A;/NkT vs p=V,y/V. Solid line,
polynomial fit to the data extrapolated to 1/d =0; dashed
line, the 16-particle free-volume limit [Eq. (19)] with
Cy¢=—1.35; open circles, values calculated by Ree and
Hoover by integrating the pressure curve (see Ref. 3).
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FIG. 3. Free energy per particle from Eq. (19) in the
16-particle free-volume limit A;,/NkT minus that from
the polynomial fit to the data in Eq. (26) A/NET vs
p=V,/V. The vertical slash indicates the size of the
standard deviation of the polynomial from the points to
which it was fitted.

is actually due to the fact that the first two parti-
cles have much more freedom than the rest of the
particles and weigh far more heavily in the 16-
particle results than in the infinite limit. Beyond
the phase-change region, this can be seen better,
since there we can extrapolate Eqs. (19) and (20)
to find the N - limit. The only part of these
equations which has been determined numerically
is the constant. Solving Eq. (20) for C.=~Inc,
gives

(27)

C. - Cy+ (Inc,)/N = [In(N - 1)]/N
=" 1-2/N

The constant ¢; can be estimated by simply drawing
the rings for a 16-particle system into which the
second particle could go. Assuming a width for
each ring of 2b gives an area for the second parti-
cle of 10.4db or a determination that ¢,=10.4, so
that

C.=-1.49=-1n[2V3(1.13)7], (28)

where the 1.13 times b gives the effective distance
between particle edges, such that the area of the
hexagonal regions formed by the particles surround-
ing the site for a given particle with each on its
equidistant mesh point represents the free volume
into which the particle can be placed. The fact
that the effective b is larger than the simple one
can be interpreted as owing to the collective mo-
tions of the particles giving rise to larger areas
for each particle than would be present if each
moved independently. The 16-particle result here
then would be expected to still give a free energy

a bit too high, since only those collective motions
involving 16 or fewer particles are possible.
Taking the N -0 limit in the crystal region anyway
gives

[A(0) - A;()))/NET = - 21n(p™ /2~ 1) - Inp - 0. 49,
0.79=p=1.0, 20~0.04 (29)

where the increased accuracy estimate is due to
the close agreement of the fit with the p= 0. 8858
results which determine the constant Cy5. At p
= 0. 8 where Ree and Hoover have also determined
a beyond the phase-change value this gives (4 -A,;)/
NET=4.01+0.04 (two standard deviations) which
as expected is a bit high compared to Ree and Hoover’s
3.96+0.01, probably owing to the truncation of collec-
tive motions as mentioned above. 3

The pressure is related to A/NET by

8A [ NV,\? NkT 8(A/NET)
’(7L> NV, aNV,/V) ’ (30)

which with V4=NV, and p=NV,/V gives

PV,  p®8(A/NET)
NET op : (31)

The free energy per particle A/NET was taken
from Eq. (26) for p=0.79 and from the free-
volume limit [Eq. (19)] for p=0.79. The pressure
was calculated, and the result is shown as a func-
tion of p'= V/V, in Fig. 4 along with the free-
volume curve for lower densities and Ree and Hoo-
ver’s Padé approximant to the N-— « gag-region
data.® The tie line gives a pressure for the phase
change in the 16-particle system of PVy/NkT=6.9
which extrapolates to 7.6 when multiplied by the
factor % which can be deduced from Eq. (19). This
is close to Alder and Wainwright’s 870-particle re-
sult of 7.72. However, the phase-change region

16

(@]

1.2 14 V/ Ve 16 1.8

FIG. 4. Pressure vs p'1=V/V0. Dot-dashed line, P
calculated fromEq. (19), the 16-particle free-volume
limit; dashed line, the Padé approximanttothe infinite-
particle gas region (see Ref. 5); solid line, P calculated
from Eq. (19) for p=:0.79 and from Eq. (26), the poly-
nomial fit for p=<0.79.
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1.25=V/V,=1. 28 is only about 0. 6 of the 1. 266

= V/V,=1.312 given by them.' This may be just
1/N; however, a glance at Fig. 3 will show that the
polynomial had trouble trying to equal zero for
p=0.79 and that if it had been forced to do so it
would have had to be less steep for densities, just
a bit less than 0. 79, and steeper for densities a
bit less. This is in the direction of correcting the
disagreement so that it is a bit premature to blame
it all on 1/N effects. One could conceivably play
with fitting polynomials over smaller regions than
that from 0 to 9.9, but the tendency to play with
the regions chosen would be great, and the devia-
tions of the polynomial when compared with the ac-
curacy of the points really do not warrant this even
though the resulting smoothing of the polynomial is
probably largely responsible for the shrinking of
the phase-change region.

To summarize the results, it has been found
possible to evaluate the partition function for all
densities. It was found that a system of only 16
particles with periodic boundaries could give
enough information to find a good estimate for
A/NET in the crystal region for an infinite system.
In addition a phase change can be seen in the 16-
particle system from which the pressure at the
phase change in an infinite system can be deduced
in fair agreement with that found in an 870-par-
ticle system. In addition, of course, to the physics
concerning nonoverlapping particles, etc., thefact
that for p= 0. 79 the n,’s other than I=0 in Eq. (11)
suddenly became important, while they were not
important before, provides a rather fascinatingpic-
ture of gas states suddenly outnumbering crystal
states for p=0.79. Thispossibly warrantsfurther
investigation.

VII. OBSERVATIONS ABOUT THE METHOD

The biased selection method should be at its
best in evaluating integrals of differences as indi-
cated in Eq. (2), which has not been exploited at
all here. The method also has some conceptual
and practical advantages in regard to evaluating

' quantum-mechanical averages involving Jastrow
wave functions, which are frequently done by solving
an equivalent classical problem, in that it enables
one to evaluate the integral directly. Finally this
method, by avoiding the possibility of metastable
states, enables one to use much smaller systems
than is normally possible.

There are still a few drawbacks: The most
serious problem is that of the trapezoidal rule
which may simply be due to the nature of hard
disks. For a softer potential the error term would
be expected to be of the order of 1/d? rather than
1/d as in this case. Another problem is that at
present most of the computer time is spent re-
moving points one at a time from the set of possible

choices or worse yet checking to see if the points
have already been removed. There are glimmer-
ings of better ways in the author’s mind, and while
it would probably take a fair number of hours to
find A/NET for the eight or ten values of density
and several values of d and N needed for each den-
sity to find out about the properties of the phase-
change region rather than to just locate it, the
better methods should reduce the time require-
ment by a factor of 10 and more likely by 20, there-
by enabling us to see clearly and distinctly whether
or not there is a van der Waals loop and to see
what such things as the order parameter do in the
phase-change region. This, in addition to work

on liquid crystals and helium monolayers using
generalizations of the techniques presented here,
is currently under way.
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APPENDIX

A system complicated enough to illustrate the
biased selection method, yet still simple enough
to follow in detail is the ring of nine lattice sites
and four particles, each of which makes three sites
unoccupiable, which is illustrated in Fig. 5. A
diagram of the possible ways that the biased selec-
tion method might proceed after the first particle
is placed on site 1 is also given. We note from the
last line of the diagram that there are 24 ways in
which one could get four particles in the system
with the first one always going on site 1. Since
the system is exactly the same with the first par-
ticle going on any other site, we can see that there
must be n,N!=216 ways of putting the four parti-
cles into the system. In an honest Monte Carlo
method where each new position is picked inde-
pendently of the last choice there would be a proba-
bility of 216/9*=8/243 of finding the four particles
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FIG. 5. Volume of nine lattice sites tilled with four
particles, along with a diagram of possible biased selec-
tion routes, after particle 1 has been placed on site 1.

to be nonoverlapping. In the biased selection
method there is an equal chance of choosing only
from the E; occupiable sites available before the
ith choice. We see from Fig. 5 then that E, is
always 9 and E; is always 6 and that Eg3=4 and E,
=2for%x3; Es=4 and E,=1for2x $; E;=3 and
Ey=2for% x 3; E;=3 and E,=1 for4+ x £; and
finally Eg= 3 and E,= 0 for £ X § of the choices. If

36 choices are then assumed to have been made with

exactly the statistically expected results, Eq. (7)
gives

npyN1= 35 9x6[(4x 2)6+(4x1)6+ (3% 2)4+ (3% 1)16]
=216

just as it should. Furthermore nonzero estimates
of this quantity occur for § of the trials rather
than for 335 of the trials as in the honest method.
The results of a single nonzero trial, however,
vary from an estimate of n,N!=9x6x 4% 2= 432
ton,N!=9x6x3x1=162, a sufficiently wide range
to consider the possibility of averaging over the
permutations of a given set.

Although there are nine different sets of ¢’s
which can be chosen, it can be seen from Fig. 5
that they must all be equivalent to rotations about
the ring of the set (1, 3,5, 8). Suppose that this
set has been found and that it has been established
that the probability of finding such a set in a given
trial is the § established above. Then noting that
the various permutations with 1 first must give
results identical to equivalent ones with 3 first, and
that those with 5 first must give results identical
to those with 8 first, and that these in turn must

be identical to the permutations of the set (1,3, 5,7)

with 1 first, Fig. 5 can be used to find that out of
the 24 possible permutations of the set found there

are eight with E4=4 and E,= 2, four with F3=4 and
E,=1, four with Eg=3 and E,=2, and eight with E;

=3 and E4,=1. Thus @ is given by
w=[1/6x9x2)} (& +4++4+3)
=16/(3%x24X6x9),

and Eq. (9) yields
n,N1=+4(3x24x6x9)/16=216 .

Assuming that all permutations have entered as
they statistically should, all of the error winds up
in the determination of the ¥ probability of finding
the set on a given trial.

Of course it will not be possible to average over
an infinite number of permutations. However, the
fact that Eqs. ('7) and (9) are almost the same
makes one suspect that indeed in the limit of a
large number of trials n,N! can be accurately cal-
culated no matter how many permutations are
averaged over., This is easiest to see in the case
of an artificial set which we will assume can appear
in only one of two orders which are also the only
two possible permutations of the set. One order
gives rise to w; as its probability of being chosen
and the other to w, as its probability. After a
large number of trials Eq. (7) would yield

npN=wy(1/wy)+wy(1/w,)=2 .

Now suppose that after each choice the set is per-
muted once and the resulting w averaged with the
original:

Wy = 3 (Wwy+wy) half of the time
- 3(y+w;)=w; half of the time
and

Wy = 5 (Wa+w,) half of the time

- Wy half of the time

so that Eq. (9) will now yield

1
zw; X2 1 1 2 1
nyN!= ~—¢—~—-+—+—w2x—————+—
Wy+Wy 2 2 Wa+ 1 2
wy+w
= 1772 . 1-2
Wi+ Wy

as it should. The necessary trick is that the prob-
ability calculated from the order in which the set
was actually discovered must be included in the
average over permu.ations.
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The experimental value of the polarizability anisotropy of a fluid is found to be an increasingly smaller
fraction of the computer-calculated dipole-induced dipole anisotropy as the density is increased. This leads
to the conclusion that the distortion of the polarizability of an individual atom from spherical symmetry
produces an anisotropy which opposes and finally dominates the dipolar density anisotropy in determining

the intensity of the depolarized light scattering.

During the past few years, a number of measure-
ments of depolarized light scattering have been
made on rare gases® and other nearly spherical
molecules. 2 The reason why the measurements
show a light scattering intensity at higher density,
which is an order of magnitude less than that ex-
pected by extrapolation of the gas-phase results,
remains unresolved.® In general, the scattering
in a system of spherical atoms is due to dipoles
produced by a fluctuating anisotropic field. The
primary cause of such a field is a temporary asym-
metric configuration of the atoms. Such an asym-
metric density fluctuation can, however, also dis-
tort the electron density distribution of an atom so
as to produce a polarizability of that atom which
departs from spherical symmetry. In this elec-
tron-density-distortion contribution we include all
the contributions to the macroscopic polarizability
anisotropy due to causes other than the dipole-
induced dipole mechanism. At low density, since
the field a given atom experiences is that produced
by interaction with only one other atom, the light
scattering per atom varies linearly with density.

At high density, since the neighboring atoms are
more spherically distributed, the asymmetry is
smaller, and one expects a decrease in the light-
scattering intensity. The question of whether
asymmetric density fluctuations lead predominantly
to just a fluctuating dipole-induced dipole anisotropy
or whether they lead predominantly to an anisotropy
due to polarizability distortions is important to re-
solve. The calculation of the density fluctuations
is a purely statistical-mechanical problem that

can be considered exactly, and comparison with
experiment can then establish the relative impor-
tance of the polarizability distortion which is dif-

ficult to estimate theoretically.

The statistical-mechanical calculations are diffi-
cult to perform rigorously at fluid densities without
resort to computers since they involve fourth-
order distribution functions. They have been car-
ried out here primarily for hard spheres in the
spirit of the van der Waals theory which assigns
the attractive forces of real molecules a minor
role. However, to check this point, a few systems
consisting of atoms with square-well and Lennard-
Jones interaction potentials have been studied as
well.

The dipolar density fluctuation, which leads to
light scattering is characterized by the second-
rank tensor

1 3X,;Y 4y
TuxY = ,,,‘T“ <5xr - ,,.zjai ) s (1)

where X, Y=x,9, 2. In this formula, the capital-
letter indices label the coordinates and the lower-
case indices the atoms. The distance between
atoms ¢ and j is #;;, and § is the Kronecker 5. The
light scattering per atom, if there is no electronic
distortion, is proportional to the dimensionless
quantity

s o (ir,,ﬁ)a> , (@)

that is, the statistical average of the square of the
value of one of the tensor elements for a system of
N spheres of diameter 0. This expression is valid
in the long-wavelength limit, in which retardation
effects are neglected. The tensor T also enters
the theoretical expressions for a number of other
phenomena such as the dielectric polarization of a
nonpolar fluid* and the nuclear magnetic relaxation®



