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The Landau theory of Fermi liquids is used to calculate the frequency power spectrum of
density fluctuations in liquid He®. Light-scattering intensities from “zero” sound, first sound,
and quasiparticle-hole pairs are computed in detail. Finite-temperature x-ray structure
factors are compared with experimental values and agreement is obtained within the consider-
able scatter of the experimental points, Light-scattering experiments are feasible and would

provide detailed confirmation of Landau theory.

Although the Landau theory of Fermi liquids is
an old and respected theory, ! some of its very
specific predictions for light- and x-ray-scatter-
ing experiments have not been computed in detail.
In a previous letter? the Landau prediction for the
ground -state x-ray structure factor was computed.
These calculations are here extended to the finite-
temperature regime. More important, the recent
advances in light-scattering technology®* make it
feasible to provide much-needed confirmation of the
Landau theory of liquid He®, The purpose of this
paper is to provide detailed numerical predictions
of the frequency power spectrum of scattered light.

The cross section for an unpolarized photon to
scatter off a single helium atom is well known®;
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In Egs. (1), « is the atomic polarizability, £ is the
wavelength of the photon divided by 27, F(Q) is the
electronic form factor, i.e., the Fourier trans-
form of the electron number density, and

Q=(2/4)sinz0 , @)

is the momentum transferred to the photon. For
liquid He® the effects of scattered-amplitude inter-
ference from different atoms can be taken into ac-

count via the fluctuation-dissipation theorem, yield-
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where w=w; — wy is the frequency shift in the scat-
tered photon. We have expressed the scattered-
photon distribution so that 4,,, (the extinction coef-
ficient) represents the inverse-mean-free-path
length of the photon in the liquid. The crucial func-
tion to be calculated is x(@, w), i.e., the linear re-
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sponse in the density 5p to an external periodic po-
tential 6U,,, proportional to e‘9'*"“?), Present
resolution allows x-ray experiments to measure
only
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We have calculated x(Q, w) by putting the external
potential 6U,,; into the Landau~Boltzmann equation
and finding the resulting response 6p in the density
of quasiparticles.? Two approximations were made:
(i) The collision integral was replaced by a single
collision time in a manner consistent with the con-
servation laws, (ii) Only two nonzero Landau pa-
rameters® Fy and F, were assumed in the spin sym-
meteric part of the quasiparticle interaction func-
tion. The resulting x(@, w) can be expressed in
terms of a “dimensionless” frequency

v=w/QVs (5)
and “dimensionless” collision time

0=7.QVF, (6)
where Vj is the Fermi velocity pp/m*. We take’

Te=(1.46x10"% sec °K ?)/T 2 (7)

to assure that the first-sound mode is damped by
the measured viscosity. The final result is in
basic agreement with Abrikosov and Khalatnikov®;
the Landau prediction is

X(Q7 w): XL (Vy 0) ’ (8a)
373 /m* pr)xz (v, 0)

=(1+3F) [V -0y, 0)-1%1, (8b)

where
B=35(1+F) 1 +35F)), (92)
¢=(1+3F)v[(1/3s) 1 +1/W) -], (9b)
s=v+i/o, (9c)
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FIG. 1. Light-scattering intensity plotted against
“dimensionless” frequency v, for several “dimensionless”
relaxation times 0. The choice of o covers scattering
in the first-sound (0=0. 05, 0.1) transition (c=0.3) and
zero-sound (0=1.0, 2.0, and 3.0) regimes.

W=%sln[(s+1)/(s -1)]-1. (9d)

All of the predictions of the Landau theory for the
finite-temperature frequency power spectrum of
density oscillations are contained in Egs. (8) and
(9) in a very implicit form. For this reason we
have made detailed numerical calculations of

Imy, (v, 0 _ Imy(Q, w)
v - w

Qy (10)
Using the values shown in Figs. 1 and 2, together
with Eqgs. (3) and (10), allows one to compute the
frequency power spectrum of scattered light in con-
siderable detail for a range of temperatures and
wavelengths,

In Fig. 1 we have plotted the “zero-” and first-
sound peaks, The peak corresponds to an incident
photon creating one phonon of sound. As the tem-
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FIG. 2. Continuation of the plots in Fig. 1, for small
values of v, where for ¢ » 1 quasiparticle-hole pairs
dominate the scattering.
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perature is lowered, the peak first broadens and
starts to shift from the first- to zero-sound re-
gime. Further lowering of the temperature nar-
rows the zero-sound peak. The shift takes place at
temperatures of the order of 50 °mK and is acces-
ible to experiment.

In Fig. 2 we have plotted the intensity due to a
photon creating a single quasiparticle-hole pair.
The intensity shows up as a broad central peak
which increases® as the temperature is lowered.
This is in contrast to a typical heat-diffusion peak,
which would decrease with lowered temperature
but which is entirely negligible in liquid He® at low
temperatures. The central quasiparticle -hole-pair
intensity is small in comparison with the sound-
wave peak (about 0.1%), but it is clearly distin-
guishable from background effects and would be
most valuable to observe, since it is a prediction
unique to a Landau quasiparticle theory.

Using the sum rule

S(Q) = (/) [ (1 - e™/*7)! Imx(Q, w)dw
_ (1)
one can predict finite-temperature x-ray struc-
ture factors from the Landau function x, (v, 0). By
far the dominant contributor to the integral in Eq.
(11) is the sound-wave peak.

In Fig. 3 we have plotted S(Q) for a range of tem-
peratures and find that finite-temperature effects
are negligible even for the smallest @ values mea-
sured experimentally. Agreement between theory
and experiment is qualitatively good considering
the scatter in the experimental points presently
available, ! What is needed is more precise
experimental points to reduce the scatter.
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FIG. 3. Plot of S4(Q) for temperatures from 0.1 to
0.5 °K, at intervals of 0.1 superimposed over existing
data at T=0.56 (Ref. 11), 0.41, and 0.36 °K (Ref. 10)

represented by triangles, circles, and crosses, respec—
tively.
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In conclusion we wish to make two points: (i) Light-
scattering measurements of the zero- to first-
sound transition in liquid He® would be valuable and
are possible. (ii) More difficult but even more
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valuable would be the detection of quasiparticle-
hole pairs by light scattering, since this would
constitute an experimental confirmation of a partic-
ular prediction of the Landau theory.
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Optimization of the short-range correlation function in the Jastrow—Nosanow—Koehler form
of trial ground-state wave function for quantum crystals, by functional minimization of the
ground-state energy, is proved to result automatically in phonon frequencies which are fully
consistent: frequencies defined from the one-phonon excitation energy and from the Gaussian
portion of the ground-state wave function are identical.

Considerable progress has been achieved!’? in
recent years in constructing wave functions and
phonon dynamical matrices for quantum crystals,
where the possibility of hard-core collisions must
be dealt with explicitly. Nevertheless, certain
disturbing difficulties have resisted treatment.

The major problem? is that of ambiguity in the defi-
nition of the phonon frequencies; those appearing
in the phonon zero-point portion of the ground state
wave function do not agree with those appearing in
the excitation energy of the one-phonon state,
Another problem is the conceptual difficulty of
specifying the separation of the ground-state wave
function into short- and long-range correlation
parts. Although the former is to be represented
by a Jastrow function, and the latter by a phonon
Gaussian function, in fact both are of the same
functional form and cannot be distinguished analyti-
cally. Finally, the problem of how best to choose
the short-range correlation function has given rise

to a substantial literature,!

In this paper we demonstrate that all three
problems are in fact closely related and can be re-
solved simultaneously. We show that when the
short-range correlation function is determined by
the variational requirement of functionally minimiz~-
ing the ground-state energy, subject to a constraint
which uniquely separates the pair distribution func-
tion into a short-range and a phonon part, then the
previous ambiguity in the phonon dynamical matrix
also disappears.

As a starting point we use the Koehler adaptation®
of the method of correlated basis functions, First
a trial ground-state wave function is exhibited for
the solid,

[0) =(gfu(5“))exp(— E} %au‘ Fu "Iu) , (1)

where the Jastrow-Nosanow factors f;; are specifi-
cally intended to account for short-range hard-core



