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tion vo/v= 0. N along with the experimental melting
density of solid helium yields a hard-sphere diam-
eter a=3. 32 A, which is unreasonably large.
Therefore we can only take the above comparison
of n values as an indication that condensate-frac-
tion estimates may be quite sensitive to the shape
of f (x) assumed in JWF which adequately repre-
sents 'He.

In conclusion, we have estimated the condensate

fraction n~ for ground-state 'He solid using the
JVifF of Ref. 3, obtaining a value orders of magni-
tude larger than estimates~ using experimental data
for ~He. If no JWF can provide a qualitative2y ade-
quate description of solid 4He, ~ then ~2 could con-
ceivably be zero (no Bose-Einstein condensation in
the solid). Otherwise, our value nz=0. 01 may
still be significantly conditioned by the shape of
f (x) used in the JWF.

*Permanent address: Instituto Venezolano de Investi-
gaciones Cientificas, Apartado 1827, Caracas, Venezu-
ela.

~Supported by the National Science Foundation.
O. K. Harling, Phys. Rev. Letters 24, 1046 (1970);

Phys. Rev. A 3, 1073 (1971); R. A. Cowley and A. D.
B. Woods, Can. J. Phys. 4~9 177 (1971); H. A. Mook,
R. Scherrn, and M. K. Wilkinson, Phys. Rev, A 6, 2268
(1972).

H. A. Gersch and J. M. Tanner, Phys. Rev. 139,
1769 (1965) (n =0.06).

W. L. McMillan, Phys. Rev. 138, A442 (1965); D.
Schiff and L. Verlet, Phys. Rev. 160, 208 (1967) (Qp
=0.11).

O. Penrose and L. Onsager, Phys. Rev. 104, 576
(1956) (&p = 0 08)

'A. J. Leggett, Phys. Rev. Letters 25, 1543 (1970);
R. A. Guyer, Phys. Rev. Letters 26, 174 (1971); W. J.
Mullin, Phys. Rev. Letters 26, 611 (1971).

W. Kohn and D. Sherrington, Rev. Mod. Phys. 42,

1 (1970).
G. V. Chester, Phys. Rev. A 2, 256 (1970). See

also L. Reatto, Phys. Rev. 183, 334 (1969).
8Argument;s in support of this possibility are given by

J. P. Hansen and E. L. Pollack [Phys. Rev. A 5, 2651
(1972)).

PB. J. Alder, W. G. Hoover, and D. A. Young, J.
Chem. Phys. 49, 3688 (1968).

Such restriction of the relative coordinate [r~ -x~ ~ I

leaves unchanged the value of 0.'in the limit N, V
N/V= p.

~The expectation values ((1/r)"), n= 6, 7, 12 are
tabulated in Ref. 3 for fixed density pp and different
values of the pair wave-function parameter a. The re-
quired values at different densities are obtainable from
these by a scaling procedure described by Schiff and Ver-
let (Ref. 3).

~2T. L. Hill, Statistical Mechanics (McGraw-Hill,
New York, 1956).

PHYSICAL REVIEW A VOLUME 7, NUMBER 1

PVT Surface of He~ near Its Critical Point*

JANUARY 1973

Henry A. Kierstead
Argonne Nationa/ I aboxatory, Axgonne, 8/inois 60439

(Received 18 May 1972)

High-resolution measurements of the pressure coefficient (BP/eT)~ of He are reported in
both the one-phase and two-phase regions close to the critical point. The data consist of 29
isochores covering the density range —0.2 & ~ & 0.2 and the temperature range —0.020 & t
&0.032, where Dp= (p- p~)/p, and t= (T —T~)/T~. The intersections of the isochores with the
coexistence curve locate 28 points on the coexistence curve. These points fit the equation
IDpt =(1.395+ 0.020)t, with p=0.3554+0.0028 and p =69.580+ 0.020 mg/cm . Parameters
are reported for the best fit of the data to the "linear model" of Schofield, Litster, and Ho, in
which the critical exponents have the values n =0.115+ 0.006 and y=1.1743 s 0.0005, and to
a more accurate parametric model in which & =0.067 + 0.006 and y=1.2223 + 0.0017. The
more accurate model does not have the avmlnatry reauired. by tXe scaling, hypothesis.

I. INTRODUCTION

Recent advances in the theory of critical phe-
nomena have emphasized the need for high-quality
experimental data and, through the scaling hypo-
thesis of Widom, ' Griffiths, ' Kadanoff, ' and oth-
ers, have provided a means for analyzing the data
in a simple fashion. The scaling hypothesis as-

sumes that sufficiently close to its critical point
the chemical potential of a fluid can be written

p(r, p) =- p.(r)+ &p,

n p, = np j
b p ~

h(x),

where the chemical potential p,, on the critical iso-
chore is assumed to be an analytic function of tem-
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modynamic properties of He fall short of satisfy-
ing this need.

The pioneering PVT measurements of Roach'
lacked sufficient resolution in pressure and tem-
perature, and they were subject to an unknown and
possibly large gravity error. The heat-capacity
measurements of Moldover' had insufficient den-
sity resolution and suffered from thermometer
drifts and spurious heat leaks. Both experiments
used ill-defined temperature scales above the cri-
tical temperature. Therefore we have measured
the pressure coefficient (BP/BT), along 29 iso-
chores in the density range —0. 2& Lp&0. 2 and the
temperature range —0. 020& t & 0.032.

II. EXPERIMENTAL

K»

FIG. 1. Critical-point cell, shown in half-section.
(A) 0. 8-mm-i. d. && 2. 1-mm-o. d. Cu vacuum-jacketed pres-
sure-sensing tube; {8)heat-switch rod, oxygen-free-
high-conductivity (OFHC) Cu; (C) liquid-He bath; (D)
brassvacuumcan; (E) 0.3-mm-i. d. &&0. 5-mm-o. d. 30%
Cu-Ni capillary; (F) and (H) 3.2-mm-o. d. x0. 25-mm wall
stainless-steel support tubes; {6)brass fitting for pres-
sure-sensing capillary, at midplane of sample space; (O

germanium resistance thermometer; (J) manganin wire
heater, 2000 0; (K) sample space 1.0 mm high, 5.2027
cm3 volume at 5 K; (L) OFHC Cu cell 10.2 cm o.d. && 2.9
cm high.

perature; h(x) is an analytic function of the single
variable

with t and Lp, the scaled temperature and density,
given by

(4)

(5)

and 5 is a critical exponent.
In an earlier paper' on the critical isochore of

He4, we presented evidence that p., is an analytic
function of temperature and that the pressure on
the critical isochore has the sort of anomaly re-
quired by Eq. (2). However, measurements at the
critical density can only verify (or contradict) cer-
tain consequences of scaling. A detailed check of
the scaling law and determination of the form of
h(x) requires accurate measurements of some
thermodynamic property over a range of both den-
sity and temperature. Available data on the ther-

The apparatus and experimental techniques were
the same as were used in the author's study of the
critical isochore5; therefore they will be de-
scribed only briefly here.

A diagram of the low-temperature part of the
apparatus is shown in Fig. 1. It is designed to
minimize gravitational effects, assure good ther-
mal equilibrium, and maintain a short thermal
time constant.

Pressure differences were measured with a dif-
ferential fused-quartz Bourdon gauge of 300-Torr
range and 10 '-Torr resolution. Its reference
capsule was maintained at a constant absolute
pressure which was monitored by an absolute
fused-quartz Bourdon gauge' of 2500- Torr range.
This gauge could detect a change of 10 ' Torr, al-
though its absolute accuracy was about 0. 1 Torr.
For this reason, the derivatives (BP/BT), are con-
siderably more accurate than the absolute pres-
sures. A set of internally consistent pressures
can, of course, be obtained by integration using
our previously reported' critical pressure,
1706. 12 + 0. 10 Torr, as an integration constant.
The random error in (BP/BT), caused by the resolu-
tion of the pressure gauge was about 0. 1%. There
may also be a systematic error of the order of
0. 2% associated with the temperature scale (see
below), which would affect all points about equally.

For each of the three cooling runs included in
this experiment, the initial density was deter-
mined by measuring the He gas condensed into
the cell. Subsequent changes in density were made
by withdrawing gas into a volumetric micrometer.
The resolution of the volumetric micrometer was
2 x 10 5 mg/cm3, much better than was needed.
The over-all accuracy of the density measure-
ments was about 0. 02%. Because the amount of
helium gas in the dead volume increased with
pressure, no two experimental points were mea-
sured at exactly the same density. No attempt has
been made to correct the data to standard iso-
chores.
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Temperatures were measured with a pair of
germanium resistance thermometers which had
been used for our measurements of the critical
isochore and were then calibrated by the National
Bureau of Standards on the NBS Provisional Scale
2-20 K (1965)" (the acoustical thermometer
scale). Vapor-pressure measurements indicated
the calibration of the thermometers had changed
by about 0. 5 mK between the two experiments.
The magnitude of the shift was independent of tem-
perature. within the temperatqre range of this ex-
periment. Therefore all temperatures measured
in this experiment were corrected in order to
make the critical temperature (determined from
the coexistence curve) agree with that previously
reported. The validity of this correction is con-
firmed by the agreement between the pressure-co-
efficient measurements in the two experiments
(see below). The two thermometers agreed with
each other within 0. 2 mK before and after the NBS
calibration. The temperature resolution was 0.3
p, K.

The principal source of error in the temperature
measurement was the NBS calibration. Calibra-
tion points were at about 1 K intervals and their
error was stated to be + 2 mK relative to the NBS
scale. Hence the error in temperature intervals
could be of the order of 0. 2%, but is probably much
smaller since most sources of error are not
strongly temperature dependent. All temperatures
and temperature derivatives reported in this paper
refer to the NBS Provisional Scale 2-20 K (1965).
The deviation of this scale from the thermodynam-
ic scale is not known at present. Advantages of
this temperature scale for He critical-point work
have been discussed in an earlier paper.

III. EFFECT OF GRAVITY

The sample space was 1.0 mm high and of uni-
form horizontal cross section, and the pressure-
sensing tube was arranged to measure the pressure
at the midplane. The total hydrostatic-pressure
difference across the cell was 5x10 ' Torr (3x10 '
times the critical pressure) at the critical density
and 6&&10 Torr at the largest density.

If h is the height of the cell, g is the accelera-
tion of gravity, and J(L» p.» and p, , are the chemi-
cal potentials at the top, center, and bottom of the
cell, we have

(6)

In a cell of uniform cross section, the difference
in pressure between the bottom and top of the cell
is given by

P3 —Pg= p, gA', ,

where p, is the mean density in the cell (mass of
sample divided by total volume). The pressure

and density at the midplane, P~ and p» must be
obtained by inverting the equation of state, subject
to the conditions (6) and (7). By standard thermo-
dynamic techniques it can be shown that the pres-
sure coefficient at constant mean density is given

by

(BPR p2(S3 —Sl)
\ BT p ps —ps

where p» p» p, and s&, s» s3 are the densities
and entropies per unit volume at the top, center,
and bottom of the cell. Note that in the limit of
small h, Eq. (8) reduces to the Clapeyron equa-
tion if p, is in the two-phase region and to the
Maxwell relation

(8)

(9)

V. COEXISTENCE CURVE

The temperature at which each isochore crossed
the coexistence curve was determined from the
discontinuity of the pressure coefficient in the fol-
lowing way. On the two-phase part of the isochore
the pressure was represented by an integrated
form of the vapor-pressure equation reported in
our earlier paper [Eq. (9) of Ref. 5]; on the one-
phase part the pressure was represented by a
cubic equation in t fitted by least squares to pres-
sure measurements close to the crossing. The

if p, is in the one-phase region.
If pressures are measured at the midplane, the

gravity correction is extremely small when b p, = 0
because the compressibility is very nearly sym-
metric in hp. It is also small when Ap, is large,
since then the compressibility is small. At values
of hp where the correction may be large, there
is no simple expansion of Eg. (8) which can be used
to estimate the magnitude of the effect. There-
fore we have done numerical calculations by meth-
ods similar to those of Hohenberg and Barmatz'
for various values of t and Ap, . These calcula-
tions show that the gravity error in the pressure
coefficient does not exceed 1,0 ' for any of the
points reported here.

IV. PRESSURE COEFFICIENT

Measurements of the pressure coefficient (BP/
BT), , the temperature t=(T —T,)/T, , and the den-
sity Sp= (p —p,)/p, are plotted in dimensionless
form in Figs. 2 and 3. The units for the pressure
coefficient and temperature are those reported in
our earlier paper'. P,/T, = 328. 209 Torr/K and

T, = 5. 19828 K (NBS). The densities are reduced
using the critical density determined in this ex-
periment: p, =69. 580 mg/cm3. Tables of the data
are available from National Auxiliary Publication
Service. "
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FIG. 2. Pressure coefficient {8P/8T}~of He4 inunils
of P~/Te =228. 209 Torr/K. The values of 4p for the iso-
ehores ahovrn are, from top to bottom: 0.1993, 0.1844,
0.1696, 0.1546, 0.1400, 0.1265, 0.3.127, 0.0994,
0.0858, 0.0720, 0.0571, 0.0532, 0, 0437, 0.0305,
0.03.14, and 0,0015. The iso@bore for hp=0. 0114 f.s one
reported in Q,ef, Gs

'pith the %'eighting factox' Ap, The best values of
the fitting parameters frere found to be

temperature of intersection Gf the two curves was
determined by Newton- Haphson iteration. The
corresponding density was taken from, the point
closest to the intersection, since the vaxiation in
density from point to point was very small. These
data are presented in Table I.

They were fitted bp' the method of least squares
to the equation

(T, T)/T, =wc —(p- p,)/p, ~'~',
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If Eg. (10) is expressed in the more usual form

~&p~ =&(- t)',

TABLE I+ COGxisteMe cUxve of He i DeQSM88 and
temperatures have been reduced using p, =89.880 mg/cmt,
T~=5.19828 K.
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FIG. 3. Preasux'e coeff icient
{8P/8T}» of He4 in units of P,/T,
=328.209 Tox'x'/K. The values of hp
for the ksochores Sho%'Q are, fro59.
top to bottom: 0.0015, -0.0094,
-0.0279, -0.0418, -0.0555,
-0.0703, -0.0839, -0.0977,
-0.1112, -0.1249, -0.1386,
—0.1525, -0.1670, —0.1813., and
-0.1953. The iaochoxe for hp
=-0.0094 is one reported in Ref. 5.



246 HENRY A. KIERSTEAD

x-2
C3
CO
C)

-5-0.2 -0. 1 0.0 0. 1 0.2

FIG. 4. Coexistence curve of He4. The curve is
calculated from Eqs. (10)-{12).

The data were taken in two cooling runs subsequent
to the NBS calibration of the thermometer. Since
the calibration of the thermometer may have
changed each time it was warmed to room temper-
ature, T, in Eq. (10) was fitted separately for the
two runs, but the other parameters were con-
strained to be the same. The values of T, were
found to be 0. 530+ 0.085 and 0. 600+ 0.081 mK
larger than the value we reported previously. ' All
temperatures in this experiment were corrected
so that the critical temperature would agree with
that of the earlier work.

The standard deviations given in Eqs. (11)-(15)
are those of the least-squares fit and reflect the
internal consistency only. If allowance is made
for errors in gas measurement and cell volume,
we have

p, = 69. 580+ 0. 020 mg/cm (i6)

This is more accurate an~hghtly smaller than
our earlier value' (69.64+ 0. OV) and agrees exact-
ly with Moldover's value' (69. 58+ 0.OV). It is con-
sistent with that of el Hadi, Durieux, and van
Dijk' (69. 76+ 0.20), but not with those of Ed-
wards ~ (69.451+ 0. 069) and of Roach (69.0). The
values of 8 and P given above are consistent with
those of Edwards" (1.4166+ 0. 0032 and 0.3598
*0. OOOV) and of Roach' (1.42 and 0.354 ~ 0. 010).
Edwards's 4p's are 0. 001-0.002 smaller in mag-
nitude than ours, whereas Roach's are 0.002-
0. 0.05 larger.

Agreement of our measurements with Eq. (14)
is shown in Figs. 4 and 5. The greater errors for
small values of 4p result from the fact that the
discontinuity in (SP/BT), approaches zero as b p
approaches zero. It was for this reason that we
used a weighting factor of gapa.

Vfe tested the effect of allowing for the slope of
the rectilineg, r diameter by fitting the equation

where dpi'/dT is the slope of the rectilinear diam-
eter, for which we used the value —0. 0214p, K '
calculated from Edwards and %oodbury's' refrac-
tive-index measurements. The fit to Eq. (1V) was
slightly worse than to Eq. (14), and the parameters
were not significantly changed except that p, was
0. 04 mg/cm~ smaller. If, as is suggested by the
measurements of el Hadi et al. ,

~4 dp~/dT becomes
smaller in magnitude near T„ then the effect would
be even smaller. In view of this and of the compli-
cations that would otherwise occur in the equation
of state, we will assume the coexistence curve to
be symmetric over the temperature range of these
experiments.

b p. = p —p, ,= ax"' 8(1—& ),
where p, , is the chemical potential on the critical
isochore, a and b are constants, P and y are the

-i1-3.5 -3.0

1nlhpf
-1.5

FIG. 5. Coexistence curve of He4. Logarithmic plot:
plus signs; p & p~: circles, p & p, ; the line represents Eq,s,
Q.O)-{12),

V. PARAMETRIC OF EQUATION OF STATE

The scaling hypothesis very much simplifies the
task of finding an equation which adequately repre-
sents the pressure as a function of the two inde-
pendent variables, density, and temperature. The
parametric equatbns proposed by Schofield" are
particularly attractive because: (i) they satisfy
the scaling law; (ii) they are manifestly analytic
everywhere in the one-phase region except at the
critical point, and the singularity is confined to
the one variable x, which is always positive; and
(iii) the equations for the common thermodynamic
functions all have a particularly simple form.

Schofield proposed the transformation

(i6)
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hp = r 8g(8), (ao)

with g (6) an analytic function of 6 which is to be
chosen to fit the experimental data. Schofield,
I itster, and Ho found that if g (8) is taken to be
a constant, very good fits are obtained with ex-
perimental data for the critical point of He4 and the
Curie point of CrBr, , especially if the constant b
is chosen to satisfy the equation

b'=(y-2P)/y(1-2P) .
They call this particular choice for g (8) and b the
"linear model. " Barmatz and Hohenberg' ' use
the term linear model and the abbreviation LM to
refer to any model satisfying Eqs. (18)-(20) in
which g (8) is constant, regardless of the value of
b. We will use the same convention. They refer
to Eq. (21) as the "minimization condition. " We
will call it "condition M."

To the theoretical physicist, p. and t are a nat-
ural pair of independent variables in terms of
which the transformation to z and 8 can be defined.
From the point of view of the experimental physi-
cist, it is inconvenient to use as an independent
variable a property (p, ) which cannot be measured.
Therefore we will define the transformation by the
equations

critical exponents, and z and 8 are new indepen-
dent variables replacing 6 p and t. In these vari-
ables the critical point is represented by x=0, the
critical isochore by 8 = 0, the critical isotherm by
8 = + 1/b, and the coexistence curve by 8 = + 1. In
the one-phase region, x and 8 are confined to the
intervals z & 0 and —1 & 8 & 1. Schofield then pro-
posed the equation of state

choose y to fit our pressure-coefficient data. We
regard o.'and S as defined by the scaling relations

n=-2 —y- 2P, (as)

s =- (y/p)+1. (as)

where

+(am/ab') (I,, +I,,6'+I,, 6') r "'", (2V)

y- 2P - b' c(y
o.(l —o') (2 —u)

(28)

b'~(a-2P- 2~)- b'(y- 2P)
o.(1 —o.)

b'(1- 2P ao.)-
L3=

(as)

(3o)

In Eq. (27) Ao(t) is the nonsingular part of the
Helmholtz free energy per unit volume and is an
analytic function of the temperature. The pres-
sure coefficient in the one-phase region is given
by

We will make use of & where it simplifies our ex-
pressions, but we will have no need for 5.

In view of the success of Schofield, Litster, and
Ho in fitting Roach'se PVT data with the linear
model and of Barmatz and Hohenberg in fitting
Moldover's C„data and Barmatz's ' sound- ve-
locity data with the same model, we first tried to
fit our pressure coefficients to the linear model.
In the linear model, the pressure is given by

P= A, (f—)+a6(1 8') r-"'

t=r(1 —b 8 ),
ap= m8z' (aa)

and write for the chemical potential

n p = ar ~ 8 (1 —8 )f (8 ) ~ (24)

with f (8) to be determined by experiment. The
factor 8(1—8 ) is necessary to make h p. vanish on
the coexistence curve and the critical isochore.
The linear model is characterized by f(8) = 1.

If f (8) is an even function (n, i(, antisymmetric in
Lp), Eq. (24) can he integrated with respect to p to
obtain an analytic expression for the Helmholtz
free energy, from which all the common thermo-
dynamic functions are obtained by differentiation.
If f(8) is not an even function, the free energy, the
pressure, the entropy, and the heat capacity can
generally only be obtained as series expansions.

Since our model [Eqs. (22)-(24)] satisfies the
scaling hypothesis, only two of the critical ex-
ponents n, P, y, and 5 are independent. We have
determined P from the coexistence curve and

Comparing Eqs. (22) and (23), remembering that
I 8 t

= 1 on the coexistence curve, we find that m is
given by

m= ~(b'- 1)'. (S4)

Since 8 and P are already determined from the co-
existence curve and n is defined in terms of y by
Eq. (25), Eqs. (31) and (32) have six adjustable pa-
rameters: y, a, b, and the three e's. They were
fitted by the method of least squares with all-the

and in the two-phase region by

dP„ i am[y-2P- b'(1 —2P) (y+2P)jr ""'
dr ab'u(1 —a)

(aa)
Here Ao(t) is the derivative of Ao(f). It can be ad-
equately represented by a quadratic function of t:
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Parameter Value Parameter Value

pc

Coexistence curve [Eqs. (10) and (14)]:

69.580+ 0.20 mg/cm3
0.3554 + 0 ~ 0028

Linear model [Eqs. (27), (33), and (34)];

0.392+ 0.013
1.395+ 0.020

1 ' 1743 + 0 ' 0005
l.1683 + 0 ' 0042
0 ' 1148 & 0 ' 0056
0 ' 975 + 0 ' 018

C(

C2

C3

6 ~ 053 + 0 ~ 016
3 ~ 93125+ 0 ~ 00015

—3.448 + 0.062
—16~ 9+1~ 7

TABLE II. Parameters of the model equations. 4p. Because of these asymmetries, it is not pos-
sible to improve the fit by substituting various even
functions for f(8) in E'l. (24). On the other hand,
if f(6) is not even, it is impossible to derive an
expression for the pressure in closed form.
Therefore to obtain a better fit it is necessary to
abandon E'l. (24) and construct a trial e luation
similar to Eg. (27) with more general functions of 8;

P= —Ao(t)+6(1 —8 ) P(8) r"

Ff

H1

H2

1~ 2223 + 0 ~ 0017
1' 2030 + 0 ' 0051
0 ' 0668 + 0 ' 0058
1 ' 048 + 0.020
9.053+ 0 ~ 119
0.514+ 0.029

-4 ~ 291+ 0.188
—1' 248 + 0.053

G1
G2

G3

G4

G5

C1

C2

C3

6 ~ 921 + 0.317
—17~ 232+ 0.863

11~ 235 + 0.719
2.052 + 0 ~ 571

-0 ~ 676+ 0.288
3.93023+0~ 00020

-14.03+ 0 ~ 74
-5 ~ 1+ 2 ~ 7

Best parametric model [Eqs, (33)-(40)]:
+IG(8)+8(1—8)H(8)]r" . (35)

Since at constant temperature

dP=.(1+6p) dp, (35)

it is easily shown that the singular term of lowest
order in r must be the same in b, p as in I'. Hence

'p=8(1 —8) F(6)r"'+O(r "~) . (3V)

points equally weighted. The best-fit values of
the parameters are given in Table II and the de-
viations from the fitted equation are plotted in
Figs. 6 and 7. The standard deviation o of the fit
is about 1.5 times the experimental error. It de-
pends only weakly on b but is a minimum for the
value of b given by condition M using the fitted
value for y.

Inspection of Figs. 6 and 7 shows that the fit is
generally good, but there are systematic devia-
tions, and the deviations are not symmetric in

F(6) = Ei+ F28,

G(8 ) =G, +G28 +G36 +G48 +G56',

(38)

The factor 8(1 —8 ) is needed here for the same
reason it is needed in E'l. (24). The factor 1 —82

multiplying 8H(8 ) is needed to make the pressure
single-valued on the coexistence curve (when 8
=+ 1).

After trying various functions for I", G, and II,
we obtained a good fit with the polynomials;
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z(e')=a, +a, s'. (40)

Ao(t) was fitted by a quadratic as before. Best

values of the 14 parameters are given in Table II,
and deviations from the fitted equation are plotted
in Figs. 8 and 9. Again, the best value for b is
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that given by condition M. The standard deviation
is about equal to the experimental error, so no
significantly better fit can be obtained by adding
more terms. In fact, nearly as good a fit can be
obtained without the two highest terms in G and the
highest term in II. The improvement in fit over
that for the linear model is due principally to the
term in Fz8 in Eq. (38). Because of this term, the
chemical potential and the pressure are not anti-
symmetric in Lp even very close to the critical
point. In this respect, the model does not obey
the scaling hypothesis.

The value of the exponent n calculated from this
fit (0. 067+0. 006) agrees very well with that ob-
tained by Barmatz and Hohenbergsc (0.07+ 0. 005)
directly from the heat-capacity data. The value
of n derived from our linear model fit (0. 115
+0.006) is nearly twice as large, and this differ-
ence illustrates the fact that the values of critical
exponents derived from experimental data are
model dependent.

VI. COMPARISON WITH EARLIER MEASUREMENTS

Using Eq. (35) and its temperature derivative
together with the constants in Table II to represent
the measurements reported here, we can com-
pare these measurements with other PVT data.
In Fig. 10 are plotted the deviations from Eq. (35)
of the three isochores reported earlier' by us,
showing the good agreement between the bvo ex-
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FIG. 10. Deviations from the best parametric model
of the pressure-coefficient measurements of Kierstead
(Ref. 5), in units of P~/T~.

periments. Figure 11 is a similar plot of Roach's
pressure measurements, using only those data
which are within the density and temperature lim-
its of our experiment. In order to minimize the
effect of systematic errors, the pressures, tem-
peratures, and densities have been reduced using
Roach's critical constants (p, = 69. 0 mg/cm', T,
= 5. 189 K, P, =1705.0 Torr), which are slightly
different from ours. Aside from using Roach's
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0. 02

T„we have not tried to correct his temperature
scale, since it is not, well defined above T,. Fig-
ure 11 shows that there is not any large systematic
deviation bebveen his measurements and ours.

VII. CONCLUSIONS

curacy to provide a sensitive test of any proposed
equation of state, and they axe referred to a well-
defined temperature scale. %e have also pre-
sented a set of values of temperature and density
on the coexistence curve which are consistent with
the pressure-coefficient measurements, and we
have obtained from them a new value for the cri-
tical exponent J3 (0.3554+ 0. 0028),

The linear model of Schofield, Litster, and Ho~9

fits the data well enough for applications not re-
quiring the very highest accuracy. However, the
values of the critical exponents y (1.1743+ 0.0005)
and n (0. 115+0. 006) associated with this model
probably do not represent the true limiting be-
havior.

We have proposed a more elaborate parametric
model which fits the data well enough for the most
exacting applications. This model is not entirely
in accord with the scaling hypothesis, but the de-
viation is not lax'ge enough, compared to the ex-
perimental ex'rox', to w'arrant a firm conclusion
regarding the validity of scaling. In this model
y is 1.2223+0. 0017 and o.'0. 06V+0. 006.
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