
GENE F. MAZZNKO

(Academic, London, 1967), p. 53.
E o P y Gross, Anne Phys, (N, Yo ) 69 y 42 (1972),
J. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).

4R. Zwanzig, J. Chem. Phys. 40, 2527 (1964).
"P. C. Martin, in Statistica/ Mechanics of Equilibrium

and Non-Equilib~ium, edited by J. Meixner (North-Hol-
land, Amsterdam, 1965).

5 R. Kubo, inMagy-Body Theory, I'apt I, edited by R.
Kubo (Benjamin, New York, 1966).

~7K. Kawasaki, Phys. Rev. 150, 291 (1966).
~ This idea has been challenged by the recently dis-

covered "long-time tails. " See Ref. 2.
5~8. J. Berne and D. Forster, Ann. Rev. Phys. Chem.

20, 563 (1971).
The corrections to the approximation QI I=I ~ have

not yet been evaluated, but it is anticipated that they could
be quite important in very dense systems.

6IS. A. Rice and P. Gray, The 8tatisticaI Mechanics of
Simpze Liquids (Interscience, New York, 1965).

G. F, Mazenko, T.Wei, and S. Yip, Phys. Rev. A 6,

1981 (1972).
3g(ro) is the radial distribution function evaluated at

w=xo+0 .
64L. P. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.)

24, 41e (1963).
65A. Einstein, Investigations on the Theory of the

Brownian Movement {Dover, New York, 1956).
66C, L. Pekeris, Proc. U. S. Natl. Acad. Sci. 41, 661

(1e55).
6~G. H. Vineyard, Phys. Rev. 110, 999 (1958).
6~R. Desai and M. Nelkin, Nucl. Sci. Eng. ~24 142

(1966).
SP. L. Bhatnagar, K. P. Gross, and M. Krook, Phys.

Rev. 94, 511 (1954),» L. Sirovich, New York University,
Courant Institute of Mathematical Sciences, Report No.
MF 17, 1961 (unpublished); A. Sugawara, S. Yip, and
L. Sirovich, Phys. Rev. 168, 121 (1968); T. Wei, Mas-
ters thesis (MIT, 1972) (unpublished).

VOJ. R. Dorfman and E. G. D. Cohen, Phys. Letters
16, 124 (1e65).

PH YSICAL REVIE% A VOLUME 7, NUMBER 1 JA NUAR Y 1973

Fully Renormalized Kinetic Theory. II. Velocity Autocorrelation

Gene F. Mazenko~
Dept'tment of I'hysics, &wandeis University, S'altham, Massachmsetts 02194

(Received 15 June 1972)

In a previous paper a general formalism was developed for treating the time-dependent
correlation functions that arise in the theory of self-diffusion. In this paper this formalism is
used in conjunction with the approximation where the two-particle source is approximated by
a sum of one-particle sources. This approximation follows from physical arguments and

from an analysis of the exact equation for the two-particle source. The resulting expression
for the memory function is similar to that found previously by Pomeau and is related to the
ring terms studied by Kawasaki and Oppenheim. It is further shown that this correction to
the Boltzmann-Enskog memory function can be writteninterms of a product of phase-space
correlation functions. This theory, to the extent that the hydrodynamical projection onto
these correlation functions is dominant, provides a microscopic basis for the various mode-
mode coupling theories. The associated long-time behavior of the velocity-autocorrelation
function is shown to go as t 3~ and the coefficient agrees with that found by Dorfman and

Cohen for low densities. For higher densities there are differences. It is further demon-
strated how one can remove the wave-number cutoffs used in other theories, and the velocity-
autocorrelation function is calculated, in a particular approximation, over the complete
range of times with no adjustable parameters.

I. INTRODUCTION

In the preceeding paper' (I) a new approach to
the theory of time-dependent correlation functions
was described. This approach was specifically ap-
plied to the case of self-diffusion and some general
expressions for the memory function p, (12) asso-
ciated with the phase-space fluctuation C,(12) were
derived. The notation here will be the same as in
I. The expressions for the memory function de-
rived in Fare, of course, just a matter of rewrit-
ing the definition of C,(12) in what appears to be a
more convenient form for making approximations.
A crucial step in this rearrangement was a shifting

of attention from the correlation function itself to
the associated "external" one- and bvo-body
sources @, and M. At the end of I it was shown that
the simple approximation M, = 0 leads, for moder-

ensities to the Enskog resolt for the memory
function, transport coefficients, and correlation
functions. This paper will discuss how one can go
beyond the Enskog result to find important new con-
tributions to the memory function. This will neces-
sarily entail a more sophisticated appxoximation
for M, .

The first half of this paper will be concerned with
the determination of the first correction to the
Enskog memory function. This analysis is com-
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pleted in Sec. IV. While the resulting expression
for the memory function suffices to determine
S,(k, u&), the analysis here will be restricted to an
investigation of the velocity-autocorrelation func-
tion (VAF), and the corrections to the Enskog re-
sult.

II "DISCONNECTED APPROXIMATION FOR 3fc

In developing approximations one must deal with
the general equation for p, . This expression has
a rather simple structure as can best be seen from
I (4. 28). P, is determined by processes in the two-
particle vector space l ll), where the two-parti-
cles, labeled by the phase-space coordinates 1 and
1, first interact, and then propagate via C~ to a
new point in phase space, labeled by 2 and 2, where
the two particles interact once more to terminate
the disturbance. To obtain g, one simply inte-
grates over the phase-space variables 1 and 2. Ini
the analysis leading from I (4. 28'I to I (4. 36) the
bare I.~ interactions were replaced with T matrices
which describe complete scattering processes and
can be treated for hard-core interactions. One
can classify all of the contributions to g, in terms
of the particles 1 and 1 and the processes they un-
dergo as they propagate to the final state 1-2, 1- 2. One notes from I (5. 1) that the basic process
in the Enskog approximation is that 1 and 1 collide
and never come back together again. In looking at
I (4. 38) one sees that corrections to this process
consist of recollision processes where 1 and 1 col-
lide initiall. y, and they propagate via some intermedi-
ate state until the particles re collide ending the pro-
cess. These intermediate states consist of various
complicated processes including static and dynamic
shielding of intermediate scatter ing processes.
From phase -space arguments one would expect that
the most important intermediate process is where the
initially colliding particles propagate independent of
one another but interact with the medium. This in-
teraction with the medium then leads to an eventual
recollision. This will be the basic approximation
made in this paper. It will be assumed that a ma-
jor correction to the Enskog memory function is
due to the process where the two initially colliding
particles 1 and 1 are independent in the intermedi-
ate state. As mill be indicated, this assumption
can be given a solid mathematical basis and the
corrections can be investigated systematically.
Thus, using the formalism developed in I, one can
make physical approximations in a controlled man-
ner.

The basic physical assumption discussed above
leads to two basic approximations in dealing with
I (4. 38). First one must consider the associated'
approximation for M„and then one must, in con-
junction with this approximation for M, , approxi-
mate Co(z) in I (4. 38). i

Physically one knows that M, represents the ef-
fect of the medium onthe particles 1 and 1. These
effects are of two primary types. One effect is a
dynamical shielding that changes the two-particl. e
scattering process. The other effect is to modify
the single particle motion of the particles after
their collision. One expects that this renormaliza-
tion of the single-particle motion will be more im-
portant for moderately dense systems. Conse-
quently one expects an important contribution
to M, will be a part that acts as a sum of one-body
sources acting on 1 and 1 in the region where 1 and
1 are uncorrelated. Thus intuitively one could
guess that the approximation

M, (11; 22) = y, (12)5(l 2) + y~" (1 2) 5(12) (2. 1)

represents the effects of the medium on the two un-
correlated particles 1 and 1. One should note that
Q~" (12) is the Enskog approximation for the colli-
sional part of the memory function associated with
the density fluctuations in the system. This quan-
tity has been studied by the author and others. 2'

While the approximation for M, given by (2. 1)
makes good sense, one would like to show that it
follows via a series of approximations from the
general expression I (3. 20) for M, . This analysis
has been carried out and while it is straightfor-
ward, it requires the development of more theo-
retical machinery. Since the result involves no in-
tricate arguments or "leaps of faith" the method
for obtaining this result mill be described qualita-
tively. One follows a path quite similar to that
used for the Enskog result. One assumes that the
dynamics in I (3.20) can be evaluated using the
scattering of the fewest number of particles. In this
case this means that M, depends on a minimum of
three-particle scattering processes. The impor-

~

tant idea is that these scattering processes involve
connected and disconnected processes. Using Fad-
deev techniques4 one can sort out the connected
from the disconnected processes. Given the as-
sumption that the particles 1 and 1 are uncorrelated
or "disconnected" one can neglect the connected
processes in this approximation. It is worth noting
that this means neglecting processes where, for
example, particle 1 collides with particle 1 and
then 1 collides with particle 1. This process will
lead to a dynamical correlation between particles
1 and 1 and will, therefore, be neglected in this
analysis. It does seem plausible, however, that
these terms could be important in dense systems
and their importance should be investigated. One
is now left with scattering processes where, for
example, particles 1 and 1 collide successively
and 1 is a spectator. These events then lead, after
some considerations of the static correlations be-
tween the three particles, to (2. 1).
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Givell tile appl'oxlmation (2, 1) fol' M 0118 11111st

still make some approximations for C@ to be con-
sistent with the assumed uncorrelated motion be-
tween colli81on px'ocesses. It is convenient to x'6-

wz'1'te tile expl'essloll fol' 5$ [I (4. 38)j by using 'tile

fox"mal expression

Ce(s)=(z-l.,- qS, -M.)-'C,
and Ftls. I (4. 1V) and I (4. 18) in commuting C with

M, and [z+ (QS)r] ' to obtain

sq, (12)f,(2) = 1 d Td2 &Ill T(s)C,(z}M.{s)

x [I+(s —La —QZI —MO) lM, ]

x car (- s)P (- s)
l
22),

&(-.)=( +~:)[ +(q~}'j 'c~,'.
This equation is sti.ll exact. One now expects that
the QZ1 that occurs in (z - Lo —QZz —M, ) ' should

be negligible in the region where the "colliding"
particles are mell separated. In the following anal-
ysis QZ1 will be neglected 111 tllis intermediate
propagator. It is straightforward to show that the
corx'ection to this approximation consists of a pro-
cess where the particles 1 and j. Collide thx'ee

times, One expects that the phase space available
fox' such recollision processes will be small.

After neglecting Qgz in the intermedi. ate propaga-
. tor in {3.1) one has, on using the operator identity
I (3. 5) twice, that

sq, (12)f,(2)= 1 dTd2(ITl r(~)

x((~-L,,)-'-[s-L,, -M, (s)]-'] T'(-~)l22) .
(s. 3)

One can now write out the expression for 5@, in

, a form that 18 mox'6 coDvenieDt fox' calculations.
To do this one can introduce 5 functions Rnd eh~6
indices so thRt

sq, (12)fo(2) = f di d2ds ds &(12)(2Tl r(~) l ss)

x(ssl((r, —I.,)-'- [~- I., -M. (s)]-'] l44}

x(4@i f'(-~)isa}5(52) . (3.4)

In the rest of the analysis the following approxima-
tions will be used:

(2Tl r(s)l35}=r, (2T}5(23)5(Ts), (s. s)

«4IT'(- )ls»=X(f )f.(f-)Tl(44'- )

xs(45) 5{4S)g(~,), (S.8)

where

r, (21)=1.,(2T)[s-L,(2T)]- [s-I.,(2T)] {s.'F)

is the usual two-pax'ticle T matrix. In arriving at

xf,(p, )f.(p-, )i.'(55; —s)5(52)g(~, ) .
(s. 8)

One can then integrate by parts twice to find

sp, (12)fo(2)= Jdl d2dsd5 [r,(2T; —z)5(12)]

x(2Tl((x-L,,)-'- [s - L,,-M, (z)]-']
l 55)

xfo(us)fs(ps)g{~0»a{55' s)5») .
(s.8)

lt is then convenient to Fourier transfox'm over r,
and rz (Ref. 5),

sq, (&, p&pa, s)fo(2)

fa(pl, 2) = 8'" '»(pl —p~)

to find

se.(& P1PS ~)fo(P2)

(3. 11)

=g(r, )
' [T,(2T; —g)y;(p„2)]dl d2dsd5

x&»l[(~-~.) '-(s-~o-M. )-'1 ls»fo(~1)

x fo(pg)T1(55; s)f, (p1, 2) . (3. 12)

It is quite interesting to note that this expression
for the cox'rection to the Enskog memory function
is quite similar to an expx'ession found by Pomeau. s

These expressions are in turn related to the "ring-
collision" expressions studied by Dorfman and
Cohen~ and by Dufty. e One difference is that these
last two sets of authors neglect the (z —I.o)

'
term. While it is true that these "free" terms will
not be dominant fox' long times they do plRy R role
for short and intermediate times. This point is
discussed furthex' 1D Sec. V.

IV. MODE-MODE CQUPI. ING FORM FOR 5P,

lt is rather difficult to make mathematical head-
way with the expression (S.8) as it stands. This
is, of course, because of the resolvent operator

(3.8) the approximations given by I (5. 9) has been
used. This is just the assumption that the pair-
distribution function changes most rapidly at the
point of discontinuity at the hard-core separation.
The effects of this approximation hRve been checked
in the case of the Enskog term and one is fairly
confident in assuming these effects are small for
moderate deDs 1t168.

One can now rewrite (3.4) in the form

sq, (12)f,(2) = J dT d2ds d55(12) r, (2 i)

x(2Tl((z - I,,) '- [x - L,, -M, (s)]-'}lss}
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—C (2 1; 55; t) —'L (1 2)C (2 1; 55; t)

—tq,'(Z 3)C,(31;55; t)

-i9,(13)C,(23;5S;t)=0, (4. 3)

where

Co(12; 55; t=0) = 5(25) 5(1 5)f o( p5)f o( p5), (4. 4)

C,(12; 55; )g= if' dte-'"'C (12; 55; t) (4.5).
It is now convenient to define

G, (15; t) = C, (16; t)C, (65)fo(5), (4.6)

(z —Lo —M, ) '. An explicit calculation of this quan-
tity would require solution of an integral equation
with a coupling over two momentum variables. The
problem can be reduced to the solution of two in-
dependent integral equations which are coupled by
only one momentum variable and which are essen-
tially equivalent to solving the Boltzmann equation.
This reduction begins by considering the correla-
tion function

[g —Lo-~.(z)] '15»fo (po)fo(p5).
(4. 1)

This correlation function satisfies the "kinetic
equation"

(z —L (12))C,(2T.; 55) —q,'(23) C,(31;55)

—q, (T3)C,(Z3; 55)

=5(25)6(15)fo(p, )f,(p-, ), (4. 2)

where (2. 1) has been used to approximate M, .o

Since, in the Enskog approximation P, and P are
independent of g, one finds in time space that
(4. 2) has the form

the free-particle case. Then one has
" dld2d5d5

5y, (f,p1 pg, z)fo(po) = ig(ro)

x [~(21;—g)f2(P1 2)]
0

x [G,(25; t)G(1 5; t) —G, (25; t)Go(1 5; t)]

& (55; z)f (P, 5), (4. 12)

and after introducing Fourier transforms for the
internal quantities one finds

d'u
59 (f P1po g)fo(p2) ig(ro) dpi dpodpodp5 (2 )5

x t()5, tt, p-, p-„p„-z)~I
0

X [G2(fi popo, t) G(f —k, p1p5, t)

- G,'(f, p-, p5, t)G.'(f -f, P1P5 t)]

x t(- f, -f, p,p;, p„z), (4 13)

where'
c

t(fi fi p1P2 ~ p1,' z) = f d r12 e' '"

x (g + Lo(l 2)) 8(ro —
~
r12 ~ ) [z+ L(1 2)]

xL, (12)e'"''12~'5(p2 —p, ) . (4. 14)

For hard cores one can evaluate the effect of the
two-particle propagator in (4. 14) to f indo

t(f, k, p1p„p„—g) = f d'r e'" ' "

so that

G, (15; t = 0) = 5(15)fo(p5) (4. V)

x(- 2ip r/ m) (6~ r
~

- r,)e(- r" p)

x [$(P1 —n P) 5(Pl c1 P )]

and there is a similar normalized function for the
full density-fluctuation function C(12, z). Then Co
can be written in the form

C,(21; 55; t) = G, (25; t)G(1 5; t),
since G, and G satisfy the equations

(4. 6)

—G, (25; t) —iLo(2)G, (25; t) —iP, (23)G,(35; t) =0,
(4. 9)

—G (1 5; t) —iLo(1)G(l 5; t) —iq (1 3 )G(3 5; t) = 0,
(4. 10)

G, (2 5; 0) G(1 5; 0)= 5 (2 5)5 (1 5)fo( po)fo( p5) . (4. 11)

It should be clear then that by setting Pg = Pz = 0
in Eq. (4. 2) one finds that the term subtracted from
Co in (3. 12) is just the product of G's evaluated in

= —t(- k~-k~ pkpi~ p1,' z) ~

(4. 15)

P 2 (Pl Po) ) 15 2 (P1+P2), p = p —2r(r P)

The matrix correlation functions that appear in
the integrand of (4. 13) contain two distinct types of
components according to the particular momentum
"states" that are projected onto these matrices. In
other words the matrix can be broken up into sepa-
rate blocks if one transforms from a continuous
space to a discrete space. These blocks are di-
vided between the hydrodynamical states, and the
nonhydrodynamical states. It can be shown that
the hydrodynamical states predominate for long
times. This is because they decay in time with a
factor e ' D&' whereas the nonhydrodynamical

-VRt /Dstates decay at least as fast ase 0' &, where Vo
= (pm) '. Consequently as )t, becomes small the hy-
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drodynamical states will persist for very long
times compared to the nonhydrodynamical states.

With the above reasoning in hand, it is not diffi-
cult to see that for small k and g that the largest
contribution to the integrand of (4. 13) will come for
small k and k and from those momentum compo-
nents that project onto the hydrodynamical states.
By writing the expression for 5Q, in terms of a
product of matrix correlation functions one is able
to pick out these hydrodynamical states in a
straightforward manner and thereby circumvent the
perturbation analysis used by Pomeau, Dorfman
and Cohen, and Dufty in analyzing the intermediate
"propagator" in (3. 12). This observation that the
hydrodynamical components give the largest con-
tribution is essentially equivalent to the mode-
mode coup)ing theories, "where it is assumed
that such a product of hydrodynamical components
are dominant. A big difference between the theory
developed here and the mode-mode coupling theo-
ries is that the results here have been derived via
a number of physically motivated microscopic ap-
proximations and one is free to go back and check
the error made in making each approximation. Al-
so, since the approximations have not been limited
to any particular time or space regime, one does
not have to introduce the wave-number cutoff used
in the mode-mode coupling and "long-time" mic-
roscopic theories. One can in fact, investigate the
legitimacy of using such a cutoff and the magnitude
of such a cutoff if it exists.

The "divergences" of the density expansion for
the transport coefficients can be easily understood
from the mode-mode coupling expression (4. 13)
for 5P, . Clearly one cannot expand C and C, in a
power series in the density. This expansion would
lead to secularities for small k and z. Thus such
an expression of C and C, in (4. 13) would lead to
similar secularities in the expression for 5Q, and,
therefore, in the expression for the associated
transport coefficients. Thus one should not expect
that one can expand the transport coefficients in a
power series in the density.

V. "LONG-TIME" APPROXIMATIONS FOR 5(t),

In order to gain some understanding of the be-
havior of 5Q, it is worthwhile to consider first
those terms in the integrand of (4. 13) that deter-
mine the very long-time behavior of 5Q, . Since
5P, is given by (4. 13) for all times, one can in-
vestigate the approach to this long-time behavior.
In future work the terms which decay faster in time
will be analyzed. In this work the analysis will be
semiquantitative concerning the intermediate time
regime. The long-time behavior will be treated
quantitatively.

The analysis will focus on the velocity-autocor-
relation function, and therefore, as discussed in

G, (k, f)=cos(Ckf)e ' ~r', (5.3)

where C is the adiabatic speed of sound and D~ is
the thermal diffusivity. The presence of the col-
lective mode leads to a long-time behavior that de-
cays exponentially with a decay constant propor-
tional to C. Therefore, one believes, if this rea-
soning is correct, that only the transverse state
should contribute for long times. The analysis
will, therefore, be restricted to what will be re-
ferred to as the long-time approximation for 5P, :

&q (k, z)=e(~p), p

0

x 1 — ~' [G,(k, t)G, (k -k, f))k-k(

—G,'(k, t)G, (k —k, t)] . (5.4)

One can easily show from (4. 15) that

tpp(k) = —fV v Vp f~pp
(sinkrp /krp),

so that

(5. 5)

Sec. V of I, one is most interested in the 2-2 ma-
trix element of 5Q, . 'P Consider now the contribu-
tion of the hydrodynamical states' in the integrand
of (4. 13). The only hydrodynamical state for G, ,

i 1), corresponds to conservation of particles. G

has five hydrodynamical states li), i =1-5, cor-
responding to conservation of particle number, mo-
mentum, and energy. After keeping only the pro-
jections onto these states, one is left with various
matrix elements of the t operators of the form
(2i fi1, i). It is easy to show, using symmetry
arguments, that all of these matrix elements go to
zero as k- 0 except for i= 2. Consequently, the hy-
drodynamical coupling in 5Q, is between the self-
diffusion mode and the current-current correlation
function Gzp(k, t) =(2 1 G(k, t)i 2). One has then

p + pe

5ypp(k, z) =ig(tp)J(
(
')p dt e'

I f„(k)l
0

x [G, (k, f)G„(k —k, f) —G,'(k, t)G,', (k —k, t)],
(5. 1)

where the free-particle term has been treated sym-
metrically with the full correlation functions. If
one did otherwise, unphysical difficulties would result
for short times. One can now note that the current
correlation function that appears in (5. 1) can be
broken into a longitudinal and a transverse part:

G (k, z)= k G, (k, z)+(1 —k~)G, (k, z) . (5. 2)

It is fairly easy to show that the longitudinal cur-
rent correlation function does not contribute to the
long-time behavior of 5gpp. In the hydrodynamical
region one has
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st/, (k, s) = sg(r, )n(W~ V, ~r', )' f dt e""e(k, t),
(5.5)

( )
dk s' kr l( -k)
(ao)' (/harp)'

& f dt'sq„(t-t')v', (t') . (5 0)

This can be further simplified if one notes that the
second term can be integrated by parts to give"

Vo(t) = Vg(t) fdt-(t- t)Spss{t)e "p" ')/~s
(5. 10)

& q „(t)= -g(rp) (~o Vo sero)'e(0, t) . (5. ii)
One can calculate the diffusion coefficient using the
formula I(5. 22) to find

D=D, [i+59„(O,s=O)/q, ', (O, s=O)] ', (5. 12)

where it has been assumed, as a first approxima-
tion, that (21' '12) =((21',12)) ~ and

Sq'ss(0 & = 0) = &g(ro)n(~«o ~srp)' f dt C (0, t) .
(s. 12)

The calculation of the velocity-autocorrelation
function reduces to calculating e(0, t). In order to
evaluate this integral one must choose a form for
the correlation functions that appear in the inte-
grand. This is one advantage of this method over
the small-k expansion developed by Pomeau and
used by Dorfman and Cohen. By using the form
(5.4), one can use all of the information that has
been gathered over the past few years in evaluating
correlation functions over the complete range of
k and g. A reasonable approximation, valid for
large and small k and t, is the Gaussian approxi-
mation for G, . This approximation is discussed in
I. %bile this approximation is usually used for
Q, , it is convenient here to use a similar approxi-
mation for 6, . The justification for this lies in

x[G, (k, t)G, (k k-, t) —GP(k, t) G/P(k-k, t)] .
(s. v)

The analysis here will be concerned with the veloc-
ity-autocorrelation function and consequently one
can take k to zero. A finite-4 calculation will lead
to results for 9, similar to those found by Dufty.
Since the analysis will be semiguantitative (given
the previous approximation), Vo will be calculated
using the "Born" approximation and the approxi-
mate diagonality of Qs:

v, (s)= v', &al[s-v. (0 s)] 'la)
= v'. (.)+ v. (.)s~.s(.)v:(.) .

One has, on inverting the Laplace transform,

v, (t)=v, (t)- f dt v, (t t)-

the observation that G, possesses the same type of
diffusive character as seen in G, . This corre-
spondence can be made closer with an investigation
of certain kinetic models such as those discussed
by Sirovich. ~s It is, therefore, reasonable to write

G (k t) e s w))&t)/s (s. i4)

G (k t) 8 sw e)/s {s.is)

w, (t) = 2D, [t+I), /v'p(e 'o"-'s —1)],
W„(t)=av [t+v /V', (e o'/"& —1)),

(s. is)
(s. iv)

and the transport coefficients are given by the
Enskog results. One has for the diffusion coeffi-
cient

D~ = avp/Bv )/ nrpg(rp)

and for the kinematic viscosity

v, = s v,[isW~~', g(r, )]-'

(5. 18)

x[1+isa))g(rp)+ IS(0.751)))sos(rp)], (5. »)
where )i =

p )/nrp.
One expects that this approximation for the cor-

relation functions is good for large and small val-
ues of k and t. The error for the intermediate
regions have been discussed by Desai and Nelkin. '8

The free-particle correlation functions are given
by the well-known results'~

GO(k t) GP(k t) -s F t /s (s. ao)

Using these results, noting that the correlation
functions depend only on the magnitude of k, one
can easily do the angular integration over f and use
the identity

sinskro = —', (1 —cosakro)

to put e(0, t) in a form where the )'s integration is
in a tabulated form. One then finds that

(s. ai)

a(t) =-.'[g, (t)+ Iv„(t)] . (s. as)

For short times n(t) is given by

/s(t)=t'v', i-~tv,
l
—+—+0(t )

I),ag

and consequently
(s. 24)

V, I 1
e(O, 0) = lime(O, t)=,'„, —+-

144' &0 D~ v~
(s. as)

ao go(e(O, t)=12 s/s~ [ (t)],/, (1 —e p )

(I e-«o/vo/) ), (5. 22)
Vot

where
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TABLE I. The ratio of calculated diffusion coefficient D
to the Enskog value (see Ref. 20) at several densities.

0.0741
0.148
0.247

D/D@

1.07
1.16
1.34

1.05
1.11
1.16

Calculated by AMer, Gass, and Wainwright (Ref. 18).
"Calculated using (5.12), (5.13), and (5.22).

the approximation 5Vo(t) and the results of AGW.
Both the peak position and the width of the inter-

mediate peak are well described. It should be
noted that the peak does move forward as the den-
sity increases as observed by Alder, Gass, and
Wainwright. The long-time comparison in these
figures should not be taken too seriously since
AGW yut an error of about 0. 001 on their results,
and this error is of the same order of magnitude
as Vo(f) in the long-time region. There are sev-
eral difficulties in calculating Vo(t) for long times
using machines. These difficulties are discussed
by AGW.

It can be seen from Figs. 1-3 that as the density
increases the "microscopic" processes persist for
a larger number of mean-free times. It appears
that the asymptotic time region where 5 VD

- s
occurs for mean-free times on the order of 20.

It does not seem likely from this analysis, that
the long-time approximation can give rise to the
negative structure observed by Rahman' and AGW.
It is possibl. e, however, that this negative structure
could come from the other hydrodynamical states
which do not contribute for very long times. This
will be investigated in future work.

A better idea of the val. idity of the l.ong-time
approximation for 6$, is given by the calculation
of the diffusion coefficient since one does not have
to sol.ve an integral. equation, and the "Born" ap-
proximation restriction is avoided. The results
of this calculation are presented in Tabl. e I. It is
apparent from the table that the hydrodynamical.
contribution essentially saturates the enhancement
of the diffusion coefficient for q .07. Above
these densities the contributions from the other
momentum states become increasingly important.

VI. LONG-TIME ANALYSIS

The discussion of the long-time behavior of VD(t)
can be made more quantitative than the discussion
in Sec. V. This is because the asymptotic behavior
of (5. 1) is given by (5. 11) and (5. 26) without ap-
proximation. One finds then that

&V»(f)- —V,'D, 'g '(ro)~(0, f) .
Before evaluating the consequences of this result
it is worthwhile to discuss the results of some

other theories which make predictions about the
long-time behavior of the velocity-autocorrelation
function.

The various microscopic, hydrodynamical, and
machine calculations are in agreement in predict-
ing a long-time behavior for the VAF of the form

V, (f)/V, (0)- ns-" ', (6. 1)

where s = f/7' and 7 is the mean-free path given by
I(5. 29). To lowest order in the density there is
agreement between these theories that

~0 - -. (4v (Do + v 0)~ol (e. 2)

where the transport coefficients Do and vo are the
low-density values. This result also follows from
(5. 26) by using the Born-approximation form
(5. 10) and evaluating D, v, and g(ro) to lowest or-
der in the density.

There are a number of differences in these theo-
ries for higher densities. In the theory of Dorf-
man and Cohen (DC) one simply replaces the low-
density transport coefficients with their Enskog
values

+Dc p t.4v(DZ 8) (e. 3)

In the hydrodynamical theories the low-density
transport coefficients are replaced by the "full"
transport coefficients to give

u„=-', [4v(D+v)~]-'~' . (6.4)

Dufty has ignored Enskog-type corrections in his
work, but he has included some renormalization
effects not retained by Dorfman and Cohen to obtain

o'D = (Dz/Do) o'o, (e. 5)

where D„=Do+ ~D and ~D is the contribution of
the ring terms to the diffusion coefficient. This
will lead to an initial enhancement of ~ over the
Dorfman and Cohen result for moderate densities.
It is shown in the Appendix that in Born approxi-
mation (5. 26) leads to the expression

~3 =g '(ro)~Dc (e. 6)

which leads to an over-all decrease in n from the
Dorfman and Cohen result. The difference in the
factor of g (ro) from the DC results comes from
the full expression (4. 13). DC obtain another fac-
tor of g(ro) in a manner that has not yet been de-
scribed in the iterature. It is not at all obvious
how this extra factor of g(ro) could be obtained in

the analysis leading to (4. 13). It certainly does
not follow from a straightforward use of approxi-
mations like I(5.9), which led to the Enskog mem-
ory function. It is further shown in Appendix A
that corrections essentially equivalent to those
found by Dufty correspond to keeping higher terms
in the Neumann series for 6Vo(f). This analysis
leads to the result
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FIG. 4. Various expressions for the coefficient o. [de-
fined by (6.1)] relative to the value of O.Dc obtained by
Dorfman and Cohen, (6.3), as a function of the density.
The solid line represents the ratio of nt~ [given by (6.7)]
to nDc. The circled points represent the ratio of az
given by (6.4) to G,DC. The transport coefficients in nz
have been evaluated using the results in Ref. 18.

Dt = 8(7j )(Inc

where

(6. 7)

(6. 6)

and fr is an abbreviation for "fully renormalized. "
$(ii) is plotted as a function of 7i in Fig. 4. It is
easily seen that there is fair agreement between
n„and roc up to g-0. 25. For larger values of g
there is essential disagreement. A few values of
z as given by the hydrodynamical theory are also
plotted in Fig. 4. The hydrodynamical form leads
to an enhancement over the DC result and this en-
hancement increases with the density.

In Fig. 5 the absolute values of z are plotted for
the present theory given by (6. 7) and for the DC
theory. It can be seen that z vanishes as g for
small g and then increases rather rapidly with in-
crease in density. It should be noted that both the
fr and DC theories predict a maximum value for
cy. The difference is that DC find this maximum
at g = 0.436 whereas the fr gives a value of g = 0. 29.
The magnitude of e also differs considerably
with n~c =0. 6 and n„'"=0.37. A major reason for
the difference is the disagreement in the g(rs) fac-
tors in the asymptotic expression for 6$, .

dense systems using a first-principles approach.
Explicit numerical results have been obtained
from a set of exact equations via a series of well-
defined and controlled approximations. It has been
demonstrated that in this way one can calculate
time-correlation functions and transport coeffi-
cients to a realtively high degree of accuracy and
with no adjustable parameters. This has been
demonstrated by the calculation of the diffusion co-
efficient for moderate densities. It should also be
apparent that the present theory poses no diver-
gence problems.

The theory is, however, not yet complete since
not all of the various approximations used in ar-
riving at the final numerical results have been fully
tested. It should be pointed out that these approxi-
mations can be divided into two separate types.
Those which lead to the expression (4. 13) for the
correction to the Enskog memory function and the
approximations one makes in analyzing this ex-
pression.

The approximations made in arriving at (4. 13)
were generally of a physical nature, and were mo-
tivated by one's intuition as to what processes
should be important in a dense system. The first
major approximation made was that the important
intermediate state in a recollision process is
where two particles travel independently, but under
the influence of the medium. It is worth noting that
it is this approximation that allows one to bypass
the difficult three-body problem.

The second major approximation that was made
was that the basic structure in the system does not
radically change the dynamics of two-particle col-
lisions. This approximation was enforced when

QZ, was set equal to I.z. This approximation
clearly breaks down as one approaches the solid
state since the structure of the system will play
an increasingly important role in determining the
effective interparticle potential. Consequently,

05-

0.4—

0.3—

O. I

VII. DISCUSSION

In this paper an attempt has been made to cal-
culate the velocity-autocorrelation function for

0
0 0.4O. I 0.30.2

'9

FIG. 5. Plot of the absolute values of nDC (dashed
line) and ef~ (solid line) as a function of the density.
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this effect could be very important in very dense
systems.

It will of course be important to investigate the
regimes of validity of these approximations, and
such an investigation seems to be quite possible
within the framework of the FBKT. However, it
would be of more immediate interest to remove the
restrictions on the final results introduced by the
second type of approximations. These approxi-
mations were those which allowed one to start with
the expression (4. 13) for the memory function and
then arrive at the results presented in Sec. V.
These approximations included the assumed diago-
nality of the various pieces of the memory function.
This assumption allows one to avoid the solution
of various integral equations. One also needs a
better mathematical model for handling the product
of matrix correlation functions. This can probably
be accomplished by using the generalized modeling
techniques due to Sirovich, "which gives one a
practical method for solving the Boltzman equation
over the complete range of frequencies and wave
numbers.
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APPENDIX

The equation of motion for the VAF in the case
of hard cores can be written in the form

dv (t) ~v'= -—a V, (t) — dt Sq „(t t)V, Ci) . -
(A1)

This equation can be partially integrated to give

v, (t) = v, (t) f' dt v-,'(t t)-
0

x f dt'5P»(t- t')Vv(t'), (A2)

V t/Dwhere Vv(t) = e 0' &. lI one defines the devia-
tion from the Enskog result as

(AS)

then

v(t)= —f dt Vv(t —t) f dt'sp»(t-t )Vv(t )

—f dt V', (t-t) f dt'sy(t-»t')v(t') .
(A4)

It will be assumed that this equation can be solved
by iteration. The conditions under which one ex-
pects this iteration process to converge will be
discussed later. This iteration process consists

of taking

vo(t)= —f dt V (t t-) f, dt'&q (t-t')V'o(t')
(A5)

and the yah iteration is of the form

v„(t)=v,(t)-f dt V,'(t t-)f dt'Sq„(t-t')v„, (t') .
(A6)

This analysis will investigate only the long-time
solution to (A4). It is important to realize that the
large time contributions come from the region
where the argument of VD is small. Outside this
region one has exponential decay. Consequently,
these equations can be approximated by

v, (t) = —Sq „(t)f, dt V', (t —t )

x f dt'Vs(t')+O(8- o«s) (AV)

v„(t)=vo(t)- f'dt V,(t-t)
t

xf, dt'&q»(t —t')v„, (t')+O(e '0"'~).
(A8)

One finds, after doing the integrations over the
VD's and keeping the terms that do not decay ex-
ponentially, that

(AQ)

(A10)

where

f(t) = —f dt' sp»(t —t')v„ i( t') . (All)

In analyzing f(t) one can make the scale transfor-
mation y = t'/t and then break f up into three inte-
grals,

1
f(t) = —t f dyv. i(ty)&V»(t(I —y))

—t f 'dy v„,(ty)Sq „(t(I- y))

—f dy v„ i(t y)sq»(t(1 —y )), (A12)
0

where q and q' are small positive constants.
In the middle integral in (A12) one sees that both

v„, and 5$ should be replaced by their long-time
expressions

g
-S/2 g~ ~ D-2g -S/2

in units where V'0=1. Consequently, the middle
term in (A12) goes as t ~, which can be neglected
compared to the g

s/2 behavior shown by the other
two terms. It is easily seen that the other two
terms lead to the long-time result

f(t)=[- o, f' d7Sq„(r)

+ tt, g) f '"dr v„,(r)] t '&' .(A12)-

Combining (A13) with (AQ) and (A10) one can identi-
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n„= ns+[- n„ tDsf

+ nsDs f dr v„ t(v)] . (A14)

One can see from (5. 12) that

Ds f dr ()yes(r ) = —1+Ds/D = —Ds bD/D
(A16)

It is also a reasonable approximation to take

aD= f dr v„,(~) (A16)

if one assumes that the Born approximation gives
a reasonable estimate for ~D. This approximation
should be investigated for higher densities. One
has then that

n„= ns(1+ AD/Ds)+ n„ tDsgD/D
or

0

n„. = ns(l + hD/Ds) 2 (DshD/LP)'+ ns (DsaD/D )"

(A18)

ns ( s (1 [D ~D/Ds]tt+ t)
1 —D bD/D

+n (D b,D/IP)" . (A19)

One eventually wants to take the limit as & -~. It
is clear from (A19) that this iteration approach
will be successful only if

(A20)

This in turn requires that l aD/Ds ( & 0. 38 or D/Ds
& 0. 62. From the data of AGW one sees that this
iteration analysis can be valid only for densities
up to 7)-0.48. In the case where (A20) holds one
has

n„= limn„= + = ns(D/Ds), (A21)
n, ( I+ ~ D/ D)

fx' ll
g D gD

which is similar to the result obtained by Dufty.
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We present semitheoretical estimates for the liquid structure function Sk(x) of He -He solutions at
low-He' concentrations x. Our calculation makes use of a perturbation theory in the representation of
correlated basis functions, a variational procedure for intermediate- and high-momentum transfers,

experimental data on the concentration dependence of the velocity of sound, and an interpolation between

k -0.6 and 1,2 A '. For a 6% solution, the entire Sk(0.06) curve is obtained. Experimental measurements,

presumably by x-ray scattering, are not yet available.

I. INTRODUCTION

Several recent papers' 3 have dealt with the ex-
perimental determination of the liquid structure
function of He . For liquid He, neutron-scatter-
ing experiments are not feasible, on account of the
high efficiency with which neutrons are absorbed
by He nuclei. X-ray scattering, however, does
not face such difficulties: Reliable experiments
have been carried out by Achter and Meyer' and
Hallock, who determined the He3 liquid structure
function at low temperatures over a wide range of
momenta. In spite of the active interest in He-
He solutions over the last decade, there is as yet
no information available on how the liquid struc-
ture function S„changes when a small concentra-
tion of He3 is added to superfluid He . The exten-
sion of x-ray-scattering experiments to dilute He-
He solutions does not appear to involve any tech-
nical difficulty. '

Ke present in this paper a first-order semi-
theoretical estimate of the concentration depen-
dence of S~ in dilute He -He solutions. The appli-
cation of a microscopic theory reported in earlier
publications leads to reliable information on S~ at
intermediate- and large-momentum transfers, say
for 4» 1.2 A '. However, the theory as it now
stands makes use of a variational calculation which
is not sensitive to the long-range behavior of the
wave function. Thus the liquid structure function
obtained is not accurate for small wave numbers.
In that region we must supplement the microscopic
calculation with an alternate procedure. The main

S~(x)-
)

(I+ (x),
2m4c 0

where c(x) denotes the velocity of sound. It is our
goal to determine the coefficient $.

First we carry out a perturbative expansion in
the correlated representation and derive a rela-
tion between the phonon branch of the excitation
spectrum, v~(x), and the liquid structure function
S„(x). The result may be expressed as

~,(x) = (u,'(x) + n, (u, (x),

where &u, (x) is the "I'eynman spectrum"

~ (x)=h k /2m(x)S, (x)

generated by the density fluctuation

(4)

P"= P" +P"
lf 1"

with

body of this paper deals with such a procedure,
which we outline below.

Denoting the Hes concentration by x, with x—= ps/
(p3+ p4), where ps and p4 denote partial number
densities of He and He, respectively, the liquid
structure function at small x may be written as
follows:

S,(x) = S„(0)(I+ ~,x),
where S,(0) is the liquid structure function for
pure He . In the limit k-0, we find


