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cordingly, the success or failure of such an attempt
should be judged by a comparison with the hard-
sphere static structure factor as obtained by ma-
chine calculations. Since such data is not avail-
able to us, we can simply express the belief that
at least in this case, our attempt to modify the AI
model so as to extend it to higher densities should

be well worth the effort. This is obvious because
a variable parameter is built in our model.

However, for any comparison with real liquids
or liquid metals, this attempt seems to be as much
a failure as the AL hard-sphere model itself. This
is, of course, not very surprising in view of the
hard-sphere nature of such models.
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A general formalism is presented for a system whose Hamiltonian is periodic in time. The formalism

is intended to deal with the interactions between bond electrons and an external electromagnetic field,

which can be treated semiclassically, such as electric and magnetic polarizations, optical rotation, and

transitions among discrete levels. A particular bound-state solution of the Schrodinger equation which

belongs to an irreducible representation of the time-translation symmetry group is defined as a steady

state, and the characteristic number of the irreducible representation as a quasienergy. It is shown that
the defined steady states and quasienergies behave in a newly constructed Hilbert space like stationary

states and energies of a conservative system in many respects. It is also shown that for a resonant case
the unperturbed quasienergy becomes degenerate and the transitions among discrete levels can be

accounted for by the familiar degenerate perturbation procedure. Using a suitable Hilbert space, the

steady states are established as firmly as the stationary states stand in the theory of a conservative

system.

I. INTRODUCTION

It is well known in solid-state physics that for a
spatially periodic Hamiltonian, there exist quasi-
momenta and corresponding Bloch wave functions.
Analogously, for a periodical. ly time-dependent
Hamiltonian, one expects the existence of quasi-
energies and Bloch-type states. For these states
Young et al. ' coined the term quasipexiodic states;
we prefer to use the term steady states. Such
steady states have been discussed and used in the
theories of susceptibilities, '~ and in the theories
of multipl. e-quantum transitions among discrete

levels, 3 '
In spite of the widespread utilization of steady

states for the study of the semiclassical interation
between bound electrons and an external electro-
magnetic field, many aspects of steady states have
been discussed only partially and superficially in
the literature and apparently require further in-
vestigation. The essential points missed by pre-
vious workers are the introduction of a Hi'ibert
space suitable for steady states and the uniform
treatment of steady states in this space. The in-
troduction of such a Hilbert space not only makes
the formalism transparent, but also introduces new
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aspects of steady states. Above all, it makes pos-
sible the unification qf two seemingly different the-
ories, namely, the theory of susceptibilities and the
theory of transitions among discrete levels. Fur-
thermore, the approximate nature of the previous
theories of transitions is removed in the new

formalism. The main purpose of this paper is to
show that, using a suitable Hilbert space, the steady
states of a periodically time-dependent system can
beplacedonafoundation equally as firm as that
possessed by the stationary states of time-indepen-
dent quantum mechanics.

In Sec. 0 of this paper, we shall study the prop-
erties of steady states from a more fundamental
point of view than has been done before. We first
construct a Hilbert space suitable for steady states,
and then show that steady states and quasienergies
behave in this Hilbert space in many respects like
stationary states and energies of a conservative
system: Quasienergies and steady states are eigen-
values and eigenfunctions of a Hermitian operator
(which we call the 'Hamiltonian" for steady states);
the variational principle for steady states takes the
familiar form of the Ritz variational principle; and
theorems analogous to the Hellmann-Feynman
theorem and to the hypervirial theorem for sta-
tionary states hold for steady states. The "Ham-
iltonian" for steady states, which is a sum of the
periodically time-dependent Hamiltonian and the
time-derivative operator —ih 8/Bt, plays a central
role in this formalism. Unlike energies (or like
guasimomenta), guasienergies are only defined
modulo nkvd, where w is the frequency of external
field and n is an integer; a zone analogous to the
Brillouin zone is introduced in o.rder to obtain only
physically different steady states.

In Sec. III, a perturbation theory for steady
states is formulated analogously to the Rayleigh-
Schrodinger perturbation theory for stationary
(bound) states. The nonresonant cases (e. g. , linear
and nonlinear optical susceptibilities) can be ac-
counted for by the nondegenerate perturbation pro-
cedure. In a resonant case, the unperturbed quasi-
energy becomes degenerate or almost degenerate;
multiple-quantum transitions and the attendant
Stark shift can be accounted for by the degenerate
or almost-degenerate perturbation procedure.
Previously, these two cases (nonresonant and res-
onant cases) were treated with quite different
formalisms; we treat them on an equal footing, as
just described. Furthermore, we do not need to
restrict ourselves to a finite-dimensionaI. Hilbert
space, the use of which was essential in the pre-
vious theories of transitions. ' Another advantage
of the present formalism is that it provides the
validity conditions for the obtained formulas. These
aspects are demonstrated in Secs. III and IV.

In order to avoid the "secular divergences, "

Langhoff et a/. write a wave function as a product
of a time-dependent regular part and a phase factor;
certain conditions imposed on the regular part
render this partition unique. Although these
authors used the fact that for a periodic perturba-
tion, the regular part is a periodic function of
time, they did not show that the conditions imposed
on the regular part go hand in hand with the peri-
odic properties of the regular part. We shall
clarify this point in Sec. III.

In Sec. IV, we apply the formalism to two spe-
cific examples in order to demonstrate the potential
of this formalism.

II. STEADY STATE AND QUASIENERGY

A. Definition of Steady State and Quasienergy

We shall study a system whose Hamiltonian H(t)
is periodic in time with period 7': H(t+ r) = H(t).
The period 7 is positive, finite, and fixed at some
value. The corresponding frequency is denoted
by a&(—= 2v/r). The Schrodinger equation for the
system is given by

(2. 1)

The vector r in the wave function g(r, f) symbolizes
all the spatial and spin coordinates of the system;
we use this convention throughout.

Let us assume that there exists a solution
g(r, t) of the form

g(r, f) = u(r, f) e 's' ~"

u(r, f+ r) = u(r, f)
(2. 2)

(2. 3)

where u(r, f) is square integrable and 8 is a real
number. If a state of the system is represented by
such a solution, we call the state a steady bound .

state (or simply steady state) and the character-
istic real number 5 the quasienexgy of the state.

We define a time-translation operator T(&t)
by means of

T(ht) ( (r, f+ 4t) = g(r, f)

The time-transl. ation operators

T(q7'), q=0, +1, +2, . . .

(2. 4)

(2. 5)

commute with operator H(t) —ih (8/Bt) and form a
symmetry group of the Schrodinger equation (2. 1).
Since the time-translation group (2. 5) is Abelian,
all its irreducible representations are one-dimen-
sional. The steady-state solution tt(r, f) given by
(2. 2) satisfies

T(qr)g(r, f) =e" ' " g(r, &);

hence it belongs to an irreducible representation
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given by e"~' " for q=0, +1, +2, . . . , where the
quasienergy 8 characterizes the irreducible rep-
resentation. We couM define a steady-state solu-
tion as a bound solution which belongs to an ir-
reducible representation of the time-translation
symmetry group (2. 5).

There is a close analogy between the stationary
states of a time-independent Hamiltonian and the
steady states of a periodically time-dependent
Hamiltonian. For a time-independent Hamiltonian,
the time-translation operators

T(t), —~& t& ~ (2. 7)

form a symmetry group of the Schrodinger equa-
tion. A stationary state can be defined as a state
which belongs to an irreducible representation of
the time-translation group (2. 7); the energy eigen-
value characterizes the irreducible representa-
tion.

We shall discuss the existence of steady states
in Sec. V; for the time being we assume the exis-
tence of steady states.

B. Hilbert Space for Steady States

For the definition of terminology used here, we
refer to textbooks on abstract Hilbert space. '

It is well known that a linear space consisting of
all square-integrable functions on configuration
space r [i.e. , all functions f(r) with finite
f I f(r)13 dr] with the inner product (f,g) defined as
f f*(r)g(r) dr is a Hilbert space, where the range
of integration is the entire configuration space.
This Hilbert space shall be denoted by 8, and a
complete orthonormal set in 6l by (f,(r), fz(r), . . . j,
which contains countable infinite basis functions.
This is the Hilbert space which plays an important
role for the study of stationary bound states of
conservative systems.

I et us introduce another well-established Hilbert
space ~, which consists of all possible periodic
functions a(t) of time t with the period 7' with finite
f', &~s ( a(t) (s dt and which is furnished with the in-
ner product

(a, b) —= (I/r) f a+(t)b(t) dt (2. 3)
-v /2

where v' is a fixed, finite, positive, real number.
The function e""', for q= 0, + 1, + 2, .. . , form a
complete orthonormal set in Hilbert space q-,

where +=2m/r.
We construct the composite space 8+ V consist-

ing of all possible functions u(r, t) which are peri-
odic in the time with period v' and for which

f, f iu(r, t)i'drdt (2. 9)

is finite, where the range of integration variable r
is the entire configuration space as before. This
co nposite space (R+ V' is a linear space; the inner
product of the functions u(r, t) and v(r, t) in 6l+ &

q=O, +1, +2, . . . (2. 11)

form a complete orthonormal set in the composite
Hilbert space N. + &. This is the Hilbert space
which we shall use to study steady states.

Once we have defined the composite Hilbert
space, we can define operators in that space ac-
cording to the theory of abstract Hilbert space.
The definition of a linear operator in 8+ g" is ap-
parent. A Hermitian operator ~ in I,+ & is defined
as an operator which satisfies

«u, &v»=(«u, v» (2. 12)

for any function u(r, t) and v(r, t) in 8, + V'. A linear
Hermitian operator in 6l (or V') is also one in the
composite Hilbert space (R+ &. The time-deriva-
tion operator —ih (8/St) is a linear Hermitian op-
erator in 7'and Q, +f'.

I should mention here that Okuniewicz also has
been using the similar Hilbert space for the study
of steady states. 8

C. Properties of Steady State and Quasienergy

"Hamiltonian" for steady states. Let us intro-
duce the operator defined by

(2. 13)

where H(t) is the Hamiltonian of the system con-
cerned, which is periodic in time with period 7' as
before. This operator 3C is linear and Hermitian
in the composite Hilbert space 6'+ K. Using this
operator K, the steady-state Schrodinger equation
(2. 3) can be written in the form

X'u(r, t) = hu(r, t) (2. 14)

where the solution u(r, t) is located in 6l+ &. Clear-
ly 3C is analogous to the Hamiltonian for stationary
states of the time-independent Schrodinger equation;
we shall call the operator the "Hamiltonian" for
steady states. Quasienergies and steady states
are eigenvalues and eigenfunctions of the "Hamil-
tonian" BC. Since K is Hermitian, every eigenvalue
(quasienergy) is real, and two eigenfunctions
(steady states) belonging to different eigenvalues
(quasienergies) are orthogonal.

Physically equivalent steady states. If
(h, u(r, t)]. is a solution of the steady-state eigen-
value equation (2. 14), then

is defined by

&(u(r, t), v(r, t))) -=(I/r) f f u*(r, t)v(r, t) dr dt
-T /2

(2. 10)
which satisfies the conditions required to be an
inner product in Hilbert space. The composite
space (R+ E furnished with this inner product is
again a Hilbert space, and the functions u„,(r, t),

u„,(r, t) =f„(r)e""', n=1, 2, . . . ,



2206 HIDEO SAMBE

g' -=g i qft(g u'(r, t) =u-(r, t) e""'

is also a solution for any integer q; the complete
wave functions of them are, however, the same:

{r t) &-est in u'(p t) &
$s''-tin

satisfies the relation

dg{X) = ((u, (SX'/8X)u)&/((u, u)),

g (X) =-((u, Ãu))/((u, u))
(2. 2o)

In other words, a.ll solutions given by (2. 15) are
physically equivalent. It is evident that one can
always reduce any quasienergy 8 to a point in a
zone

E- & S(d & 8 &E+ & Sv (2. IV)

specified by a real number E; therefore physically
different steady states can be characterized (par-
tially) by their reduced quasieuergies, which lie in
the same zone. The choice of zone (i. e. , the
choice of E) is, however, arbitrary; we shall make
use of this freedom from time to time.

If (g, u (r, t)] and (g„, u„(r, t)j are solutions of
Eq. (2. 14) and if the quasienergies g„and g„ lie
in the same zone, then the eigenfunctions u (r, t)
and u„(r, t) satisfy

(u„(r, t), u„(r, t)) = ((u„(r, t), u„(r, t))) . (2. 18)

This relation implies that one can always choose
the eigenfunctions u„(r, t) such that (u„,u„) = 5 „,
since it is always possible to choose the eigenfunc-
tions such that ((u„,u„)) = 5 „.

From now on, we assume that quasienergies of
a "Hamiltonian" lie in the same zone, so that Eq.
{2.18) holds and corresponding complete wave
functions represent different physical situations.

Vacational P~inciPle. The variational form of
the steady-state Schrodinger equation (2. 14) is
given by

5g[u] = 0, g[u] -=((u, Ãu)) /((u, u))

where .u(r, t) and its variation 5u(r, t) are both in
(R+ V'. The eigenfunctions u„(r, t) of Eq. {2.14)
are given by the stationary solutions of the varia-
tional equation {2.19), and the corresponding
eigenvalues S„are given by the stationary values
g[u„] of the functional g[u]. We can easily show,
analogously to the time-independent case, that the
variational principle (2. 19) is equivalent to the
steady-state Schrodinger equation (2. 14). The
variational principle plays a central role for the
determination of approximate eigenfunctions and
eigenvalues, as in the case of stationary states.

Hel'lrnann-Feynman theorem. A theorem ana-
logous to the Hellmann-Feynman theorem for
stationary states in a conservative system holds
also for steady-state solutions in a periodically
time-dependent system. If the Hamiltonian H(t, X)
of a system depends on a time-indePendent Param-
eter A. and the periodic relation H(t+ r, X) = H(t, A)

holds for any A. , then the solution (g(A&, u(r, t, X)]
of the steady-state Schrodinger equation (2. 14)

The proof is analogous to the corresponding proof
for stationary states, '0 and will be omitted.

IIype~vi~iaL theo~em. The steady-state solutions
also satisfy a theorem analogous to the hyper-
virial, theorem'~ for stationary states: If u(r, t)
is a solution of Eq. (2. 14) and if operator (E is
periodic in time with period 7, this theorem states
that

((u, [V, +]u)& = 0, (2. 21)

where [X,tt.] is the commutator of K and 8.. This
hypervirial relation (2. 21) has a. wide range of ap-
plication depending upon the choice of the operator
8. For a particular choice of @, namely, &= —,'Q
x (r„~p„+p„~ r„), where r„and p„are the position
and linear momentum operators of the nth particle
in the system concerned, Eq. (2. 21) yields the
virial-theorem analog for steady states:

2((u, Tu&) =((u, (P r„~ 7'„V(t))u&) (2. 22)

which is a Hermitian operator in the composite
Hilbert space 6l+ F; the solution u(r, t, A) is located
in 8+ & for any A.. Note that the complete wave
function g(r, t, A) is given by

where H(t) = T+ V(t), T is the kinetic energy, and
V(t) is the potential energy, which is of course
periodic.

A remark. Relations with((, )) for steady states
have analogs of (,) relations in the stationary ease,
as seen before; relations with (, ) for steady states,
however, have no special standing and must be ex-
pected to differ from the stationary case in gener-
al.

III. STEADY-STATE PERTURBATION THEORY

A. Preliminary Remarks

Let the Hamiltonian H(t, A.) of a given system be
given by

(3. 1)

where II' ' is a time-independent Hermitian opera-
tor, the operator V(t) is a,lso Herm'itian but peri-
odic in time with period 7', and A. is a small, real,
expansion parameter.

The steady-state Schrodinger equation for the
system is given by

(3.2)

where
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((r, t, x) = u(r, t, x) e ' '1" " Since $C(0) is linear, the 8(0) and u(r, t, 0) given by
(S.4)

u(r, t+ r, X) =u(r, t, &(),

where (g(A), u(r, t, X)}is a, solution of Eq. (S.2).
We demand, of course, that u(r, t, X) varies con-

tinuously with A., and adopt the normalization

$(0) =E, ,

u(r, t, 0) = c„f, (r) + c„f„(r)e(~"'

+ c„.f„.(r) e"'"'+ ~ ~ ~

(S. 12a)

((u(r, t, X), u(r, t, X)» = 1 (3. 5)

Ã( )u(r, t, 0) = 8(0)u(r, t, 0) (3.7)

where u(r, t, o) is located in (R+ &. Let E„and
f„(r) be discrete eigenvalues and eigenfunctions of
the operator H+', namely,

Jf (0)f„(r)= E„f„(r);
then the solutions of Eq. (3.7) are given by

S(0) =E„+qh(d, u(r, t, o) =f„(r)e""'

(3. 8)

(3.O)

where q is any integer. A choice of the zone
(2. 17) for the unperturbed quasienergies g(0) de-
termines the integers q uniquely. As mentioned
before, if ($(X), u(r, t, X)}is a solution of Eq.
(3.2), then (8(X)+qhv, u{r, t, X) e""'}is also a
solution representing the same physical situation.
Owing to the continuity of the solutions (8(X),
u(r, t, X)}with respect to X, a choice of the zone
(2. 17) for the unperturbed solutions (8(0),u(r, t, 0)}
fixes the time-dependent phase factors e""' for
all X.

Consider now an eigenvalue E„of II' ' and sup-
pose that H' ' has eigenvalues E, E ., E ", . . . ,
which satisfy

Ea=Em+p@ ~ Em'+p @ ~ Em" +p
(3. lo)

for some integers p, p, p, . . . ; then the functions

f.(r), f.(r)e""', f. (r)e""',

( )
(p"(u(

(3. 11)

are eigenfunctions of X' ' and belong to the eigen-
value E~ of X(0). (Note that several E„may be the
same. ) This shows that even if the eigenvalue E„
of H' ' is nondegenerate in 8, the eigenvalue E~
of K' ' could be degenerate in 8+ v. If the eigen-
value E~ of H' ' is degenerate in N., then E~ is cer-
ta.inly a degenerate eigenvalue of $C' ' in Q+ F.

which is equivalent to (u, u&= 1 so long as u(r, t, A)

is a solution of Eq. (3.2), and which assures,
therefore, the normalization of the complete wave
function, namely, (g, ({)&=1. The phase factor of
u(r, t, X) will be fixed by the standard phase con-
vention, '~ namely,

((u(r, t, 0), u(r, t, X)» = ((u(r, t, X), u(r, t, 0)))
(3. 6)

which is always possible.
The unperturbed eigenvalue equation is given by

is also a solution of Eq. (3.7), where c„, c, c„.,
.. . are arbitrary complex numbers; the corre-
sponding complete wave function g(r, t, o) is given
by

0) u(r t 0) e (h'(-0&(/&)

c f (~r) e-(&(&&/»+ c f (r) e (z ( /-&)

+ c„.f„.(~r) e +. . .-fE st /g (3. 12b)

Equation (S.12b) clearly shows the physical sig-
nificance of the coefficients, c~, c, c ..
namely, the probability amplitudes of finding in the
stationary states with the energies E~, E, E,,

One can see here the reason why degenerate
perturbation theory for steady states can explain
transitions among discrete levels.

8. Perturbation Theory

The Hayleigh-Schrodinger (stationary-bound-
state) perturbation theory is formulated for an
eigenvalue equation in the Hilbert space 8; the
analogous theory for the eigenvalue equation (3.2)
in 8+ & can be formulated by simply translating
the formulas for 8 into the corresponding ones for
8+ W. We shall simply write down the formulas
which will be used in Sec. LV.

Nondegenerate case. Expanding 8(X) and

u(r, t, X) in Eq. (3. 2) according to

8(&) = 8"'+ &((& "'+X'8"'+. . .
u(r, t, X) = u"'(r, t)+ /(u(&) (r, t)

+ X'u(3)(r, t)+ ~ ~ ~

u(")(r, t+r)=u(")(r, t), n=o, 1, 2, . . .

(S. 13)

and equating the coefficients of the same powers
of X, one obtains the following sequence of equa-
tions:

[x(0) —8")1 "'=o, (3. 14a)

[W"& - 8("]u")+[V(t) —8")]u"'=O, (3.14b)

(3.15a)«u"', u"'» =1,
«u"', u("»= O,
((u (0& u o))» 1 ((u (1) u (1&))

Expressions for the purturbation eigenvalues are

(3. 15b)

(S. 15c)

[v"' 8"'] '"+[v(-t) 8"'] "'-8'-" "'=o
(3.14c)

The combination of normalization and phase condi-
tions (S. 5) and (3. 6) yields another sequence of
equations,
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g()& ((u(0) V(t) u(0)))

g (2) ((u (0) V(t )u (1
&))

(3.16a)

(3. 16b)

Let us first make the transformation such that
v(r, t, )() satisfies the conditions

Degenerate case. Suppose that the unperturbed
eigenvalue 8 0' in question is degenerate and that
one set of corresponding orthonormal eigenfunc-
tions are uP'(r, t), . . . , uP'(r, t); then the first-
order eigenvalues 8,"' and the corresponding "cor-
rect" zeroth-order eigenfunctions u,' '(r, t) are
given by 88(t, X) 0=(u, [a"'+ )(V(t)] u) —g()(), (s. as)

(v (r, t, )(), v(r, t, )(.)) = 1

(s. 24)

(v(r, (, A), —v(r, (4=, —v(), t, x), v(r, t, xl)
8 8

The corresponding 8(t, A) has to be real and satisfy

P
~

((u' ', V(t)u( ')) —g,"'6„„~c„„=o,
n=1

m=1,
N..".'(-., t) =Z .."'(-, t).... ,

(s. 17)-

{s.26)

where we have used the fact that the operators
V(t) and e' "'")~" commute. Suppose that 8(t+7', X)
= 8(t, )(); then, integrating Eq. (3.25) with respect
to t over the period 7', one has

g (x) = ((u, [H (0) + ){V(t) ]u)).

then the first-order approximate solution

g(){)——'(g' '+ g' ')+)(g"'+O(z )

u(r, t, X) = fc,uP) (r, t) + czuP) (r, t)] + O(X)

is given by the secular equation

(s. 19}

(
~~i+ & —~ (1&

~~a

~3& ~u ~ &a()
(s. 2o)

~ = (g(" —g(o))/2) V -=((~(" V(t)u(') ))

C. Transformed Perturbation Equations

We now transform the eigenvalue equation (3.2)
by introducing a factor e' "'~)~", where 8(t, )() is
a function of t and A. :

v(r, t, )(.) = e' "'"' "u(r t )()

(
x"' + &('(t) — ' —(({x))v (rt, z) = 0 . ,

(3.22)
The complete wave functions g(r, t, ){) is now given
by

g(~r t ) ) v(r t ) ) e i(so, )t+e((yx-)) /)) (3. 23)

where the index g distinguishes between the values
of eigenvalues g,"' and the index ~ in the eigen-
vector (c.. . cz, , . . . , c„,„)distinguishes be-
tween the eigenvectors belonging to the same eigen-
value 8,"'. We can always choose the coefficients
c„, to constitute a unitary matrix; then the N
eigenfunctions u(~) (r, t) are again orthornomal.

Almost-degenerate case (Ref 13).. Let gP' and
(('( ) be two nondegenerate eigenvalues of X'(0) and
u() )(r, t) and u(0)(r, t) be the corresponding eigen-
functions, respectively. The expansion parameter
I, is now considered as a fixed finite number, which
is small enough so that one can still put forward
the solution of Eq. (3.2) as a power series. If the
unperturbed eigenvalues 8,' ' and S~ ' are so close
together that they satisfy the relation

i

(g"' —g"')/)
i

' i((u,"', V(t)~"))i, (S. 18)

This equation, of course, does not hoM in general.
Hence neither 8(t, A.) nor v(r, t, ){) can be a periodic
function of time with period ~. In other words,
the conditions (3.24) and the periodic relation

v(r, t+ v, )() = v (r, t, )() (3.27)

(((r, t, X), g(r, t, X))=1,

(v(r, t, o), v(r, t, ){))=1
(s. 29)

In the following paragraphs we shall show that one
can always choose 8(t, )() so that v(r, t, X) satisfies
both the conditions (3.28) and the periodic relation
(3.2V).

In order to satisfy Eqs. (3. 27) and (3. 28a), the
corresponding 8(t, )() has to be real and periodic
in time with period v. For any given 8(t, X) which
is real and periodic in time with period &, the cor-
responding solution v(r, t, X) of Eq. (3.22) satisfies

8—(v, v)=0,

——ln ' = —[8(t O)-8(t )()]
iS 8 (v('), v) $ 8

2 et {v,v'") et

(s. so)

()] „, (, () "')'

(s. sl)
where g ( ) = g (0) and v(0) =—v(r, t, 0). Equation
(3.31) is the key relation to prove the statement.

do not hold simultaneously. It is important to
notice the close relation between the conditions
imposed on v(r, t, )() and its periodic property
(3. 27).

As stated by Langhoff et al. , one can avoid the
"secular divergences" by imposing the conditions

(v (r, t, )(.), v (r, t, ){))= 1 (3. 28a)

(v(r, t, O), (vr, t, ~))= ( (vr, t, )),(v(r, t, O))

(S.28b)
on v(r, t, X), or by imposing another set of condi-
tions,
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The eigenvalue g(X) is given by

g(t() = (I/r) j g(t, t() dt,
-T /2

(S. 32)

g(t, ~)-=g«& ~R+ e ( „&p&) (3. 33)

[X(p)+ t(V(t) —g (t, t()]v(r, t, X) = O, (s. 35)

—[(v ', v)/(v, v ')1= 0 (s. s6)

where the second equation follows from Eq. (3.31).
If v(r, t, X) is a solution of Eq. (3.35), then
c(X.)v(r, t, X) is also asolution, where c(X) is anarbi-
trary complex function of X. Using this freedom
and Eqs. (3.30) and (3.36), one can always make
a solution v(r, t, X) to satisfy the conditions (3.28a)
and (3.28b).

Thus we have shown that the conditions (3.28)
imposed on v(r, t, X) go hand in hand with the peri
odic relation (3.27). Similarly one can show that
Eqs. (3.27) and (3.29) hold simultaneously. For
this case, however, the corresponding 8 (t, X) is
not real, and the transformed "Hamiltonian, "
K(P)+ XV(X) —88(t, X)/8t, is no tonger Hermitian in
S+ O'. Because of this disadvantage, we prefer the
conditions (3. 28) to (3. 29) in order to avoid the
secular divergences.

To sum up, the equations for the desired
v(r, t, X) are Eqs. (3.35), (3. 33), and (3.28), and

the solution v(r, t, X) of them must be located in
(tt+ %The e'i.genvalue g(X) and the phase function
8 (t, X) are given by Eq. (3.32) and Eqs. (3. 34),
respectively, where v(r, t, t() in the g(t, t() is the
solution of Eqs. (S. 35) and (S.33). The complete
wave function (I&(r, t, X) is given by (S.23). Since the
solution v(r, t, X) of Eq. (3.35) automatically sat-
isfies Eqs. (3.30) and (3.36), the conditions (3.38)
are equivalent to the conditions

((v(r, t, A.), v(r, t, X)))=1,
(3. 37)

((v(r, t, 0), v(r, t, X))) = ((v(r, t, X), v(r, t, p))),

so long as v(r, t, X) is a solution of Eq. (3.35). The
solution v(r, t, X) of Eqs. (S. 35), (S. 33), and (S.28)

as is seen from Eq. (S. 31). We choose the func-
tion 8(t, X) such that

8(t, X) = g(t, X) —g(X), j 8(t, A.) dt= 0

(s. 34)
where the function v(r, t, X) in the g(t, t() is the cor-
responding solution for this chosen 8(t, X). In
order to be self-consistent, the function 8 (t, X) de-
fined by Eqs. (3. 34) must be real and periodic in
time with period 7; using Eq. (S.32), one can easily
show the self-consistency.

For this specially chosen 8(t, X), the correspond-
ing v(r, t, X) satisfies

satisf ies

(s. s8)((v"' V(t)v))=((v, V(t)v"'))

Note that in general the relation (v'P', V(t)v)
= (v, V(t)v«') cannot be expected to hold.

Expanding g(X), g(t, X), 8(t, X), and v(r, t, X) ac
cording to

g())=p t"g&», g(t, ))=p )'g&"&(t),
A=O k=0

(s. s9)

8(t, ~)=Z "8"'(t), .r., t,.) =Z ".&"r., t),

and substituting into Eqs. (3.35), (3. 33), and
(S.28), one obtains

[~&p& g(p)] v&p) p ( (p& (p&)

g (p) (t) g(p)

and for n=1, 2, . . . ,

[X( ) —g«) ]v&~) + [V(t) —g&1)(t)] v(~ ()

(s. 4o)

A-"2

g(«) (t)v(n-«) p (3 41a)

(v(p) v(n)) & p (v(«& v(n-«))
&=1

(S.41c)

One can solve the sequence of equations (3.40) and

(3.41) progressively. The g(«) and 8(«)(t) are
given by

g'"'=(I/~) j'" g"'(t)dt,
(3.42)

8, («)(t) g(«)(t) g(«) j~+ 8(«)(t) dt 0
dt -v /2

Incidentally, the variational equation for the
v("(r, t) is given by

5F[u (r, t)] = 0,

E[u] -=((u [X' ' —g' ']u)) (s. 4s)

+ 2Re((v' ', [V(t) —(v«', V(t)v«')]u)),

where u(r, t) and 5u(r, t) are inN+ K.
Remarks. Let us consider an inhomogeneous

equation with an auxiliary condition

H&P)
itt~

—
~

--Zp v(r, t)=w(r, t),
I et)

(s. 44)
(f()(r), v(r, t)) = o

where H «'fp(r) = Ep fp(r) and the given function
w(r, t) is periodic in time with period T. If v(r, t)
isasolutionof Eqs. (S.44), then the v'(r, t) givenby

v (r, t)=v(r, t)+ P c„f„(r)e" p n" ~" (3.45)
n (&0)

n-1
g'"'(t)=Re(v& ', V(t)v'" ")-P g&«'(t)(v& ', v" «'),

&=1

(S.41b)
n-1
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is also a solution of Eqs. (3.44), where Z„and
f„(r) are discrete eigenvalues and eigenfunctions
of B( ', and the coefficients c„are arbitrary. This
shows that the solution of Eqs. (3.44) is not unique
and in general not periodic in time with period v'.

The fact that u}(r, t) is a periodic function of time
does not ensure that solutions (}(r,t) of Eqs. (3.44)
are periodic in time. ' One should establish the
periodicity of the solution (}(")(r,t) of Eq. (3.41a)
on the basis of the steady state u(r, t), as we have
done before. Finally we emphasize that the trans-
formed equation and the original one are equivalent
as long as the period v' is finite.

IV. APPLICATIONS

We shall now apply the steady-state perturbation
theory to the case when the perturbing operator
V(t) is harmonic, namely,

V(t) = 2 V" ' cosset

where V' ' is a time-independent Hermitian oper-
ator, and &u = 2((/v WO; we shall study iwo examples
for demonstration.

A. One-Level System

In this section we consider the case when the
discrete eigenvalue Eo of II' ' in question is non-
degenerate in {R, and when there is, besides Eo, no
discrete eigenvalue of H( ' in the vicinity of Eo,
Eo+@(d~ Eo+2@~ and Eo+3

Time dependence of the perturbed u}a(&e function.
Let us first assume that there is no discrete eigen-
value E„of II' ' which satisfies E„=Eo+q@~for
some nonzero integer q; namely, the eigenvalue
Eo of K' ' is nondegenerate. We shall use the trans-
formed perturbation equations (3.40) and (3.41),
because of the desirable limiting behavior of the
perturbed wave function at ~ = 0; the same nota-
tions as in Sec. III C will be used in this section.

We choose the zone (2. 17) such that the zeroth-
order eigenfunction v' '(r, t) is time independent:

[H"'-Z, ]f,( )=0, &f,(-), f,(-)&=1,
(4. 2)

h"&=z, , c(0)(r, t)=f, (r) .
Knowing (}(0)(r, t), one can calculate (('("(t) from

Eq. (3. 14b), namely,

l('((t)=2 "Z' c(uots, Z"'=—&f, V"'f
& .

(4. 3)
Since the first-order eigenfunction (}"'(r,t) is a
periodic function of t with period 2w/(d, it can be
expanded in a Fourier series, namely,

~(1)(r t) P f (i)(r) s(»»( (4. 4)

where function f,"'(r) are in 8,. Substituting (4. 3)
and (4.4) into the first order equatio-n of (3. 41a)
and (3.41c) and using the fact that &o Wo, one obtains

(H' ' —Z + h(d) f' '+ (V"' —Z ")f =0

&fo, f!'i' =0&,

(H(0) -z, +q@cu)f,")=0, & f„f,")&=0,

(4. 5a)

(4. 5b)

c(i)(r t) f(1)(P) cia( f (1) (~r) -i t» (4. 7)

where the functions f,',"(r) satisfy Eqs. (4. 5),
respectively. Note that Eqs. (4. 5a) yield Eqs.
(4. 5 ).

From Eq. (3.4lb), one has

h' '(t) = 2Z +'(1+ cos2~t),

Z (2} i
&f V(i&(f (1) f (1))&

(4. 6)

it is easy to see from Eqs. (4. 5a) that& f0, V")f(i)
&

are real. By similar manipulation, one obtains

~(R)(r t) f (2)(r)8(2(ut f (2) (r) -(2(u( 2f (2) (r)

(4 9)
where the functions f(~z)(r) and fo(3)(r) satisfy

(H'O' —Z +2h(d) f '+ (V "—Z' ') f' ' —Z' 'f =0

(H(0) Z ) f (2) i (V(i& Z(i&)(f (i)+f (i)) Z(2)j 0.
(4. 10)

&fo& f'a'&=&fo& f-'a'& = —-'&f."i'& f'i'&~

(4. 11a)

&fo& fo ')=- ~(&f+i" &
f&i''&+&f-'i'& f-'i" &); (4 lib)

note that Eqs. (4. 5a) and (4. 10) yield Eqs. (4. 11a).
From the formulas (3.42), one obtains the eigen-

value 8( ) and the phase functions e+)(t), namely,

g(o) E g(1) 0 g(2) 2E (2) g(8) 0
(4. 12)

8"'(t) = O, t) "&(t)= 2Z ('& sin+t/+,

e "&(t) =2Z('& sin2~t/2(g .
(4. is)

Thus the complete wave function g(r, t, A.) to the
second order, is given by

g(r t )() [f + )((f(i) e(»(+f (i& 4)tc)~ )(2(f (I& (&(sot

+&(2) e-~2~&+2&(2)s 1 -~n(to)/n

(4. 14a)

)l(t, X)=Z,t+2)(Z") """+2)('Z(3) t+
'""

+ ~ ~ ~

(d 2&d

(4. 14b)
where f,'i' satisfy Eqs. (4. 5), and f@& and fp'

for q 4+ 1 . (4. 6)

From the assumption we made, there are no non-
vanishing functions in 8, which satisfy Eqs. (4. 6);
therefore, the functions f,'"(r) must vanish except
for q=+ 1. Thus the first-order eigenfunction
(&")(r, t) is given by
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satisfy Eqs. (4. 10) and (4. 11).
The second-order quasienergy eigenvalue 8'3' is

the quantity of physical interest; for example,
when V' ' is the x component of the dipole moment
operator, —8"' gives the frequency-dependent
polarizability (z„„((()).

APPlicabiBty conditions. Suppose this time that
there are functions gq (r) in 6l which satisfy

[H"' —Eo+qh(Q]g, ,(r) =0, g,„g2 = 5,2

(4. 15)
for some nonzero integer q, where the second
index n in g; (r) distinguishes between the eigen-
functions belonging to the same eigenvalue Eo —qS+
of H(0&; then the functions fo(r) and g, (r) e""'
belong to the eigenvalue Eo of K' ', and Eo is no
longer a nondegenerate eigenvalue of X'O'. For this
case, one has to use the degenerate perturbation
method.

If the functions v(o&(r, t), v"'(r, t), and v' '(r, t)
given by Eqs. (4. 2), (4. 7), and (4. 9) satisfy

to the Eo+ 25~, Eo —2S(d, or Eo, then the solution
f 2'(r), f'2'(r), or fo '(r) againbecomes large
Hence the applicability condition for (g' '+ Xg" &

+ X g' ', v' '+ Xv( &) is that besides Eo, there exists
no eigenvalue of H' ' at the vicinity of Eo, Eo+$~,
and Eo+ 28&. Similarly the applicability condition

r (g(0) ~ )„g(1) )(2g(2) ) Sg(3) v(Q& ) V(1& )(2)(2))1S
that besides Eo there exists no eigenvalue of H' ' at
the vicinity of Eo, ED+5&, Ez+ M~, and Zo+31(g.

Limiting behavior at co = 0. If Sv is much small-
er than the difference between Eo and the closest
eigenvalue of H' ', then there will be, besides E0,
no eigenvalue of H' ' in the vicinity of Eo Eo+ k(0,
Eo+25+, and ED+3@(d; hence one may consider
Eqs. (4. 1)-(4.14) valid in the neighborhood of
(o=O.

At the limit (d =0, the functions fq()&(r), f,'2'(r),
andfo '(r) become

f"'(r) -=f"'(r)=f '"'(r)

((I etqo) t ([V(f) g(1&(f)]v(m-)) Q g(2 ) (t)v(tn -2) j» ()

for all q(2 (4. 16)

for m= 1, . . . „(n+ 1), where g("(t) and g( &(t) are
given by Eqs. (4. 8) and (4. 8), then the function
v' '+ ~ ~ ~ +X"v'"' satisfies the degenerate perturba-
tion equations up the to nth-order with the eigen-
value g' '+ ~ ~ .+ A."g'"', and g'""' is an eigenvalue
of the (n+1)th-order equation, where the eigen-
value g'"' are given by Eqs. (4. 12).

We still assume that Eo is a nondegenerate eigen-
value of H(0&. For m=1, Eq. (4. 16) yields

&g,~, V" f&)0( „5+ 1+5, , 1)=0 for all q(2; (4. 1V)

hence if Eo+ h~ are not eigenvalues of H, then
(g' ' = 0, v( &(r, t) =f0(r)) is a solution of the first-
order degenerate perturbation equation, and further
more the solutions f,',"(r) of Eqs. (4. 5) are unique.
If there exist the eigenvalues of H' ' which are
close to the ED+@co or Eo —@~, then the solution
f(1&(r) or f',"(r) becomes large. Therefore the ap-
plicability condition for (g(0&+ Ag(1&, v(0&) is that
there exists no eigenvalue of H' ' at the vicinity of
Ep k 54tl,

For m=2, Eq. (4. 16) yields

(g [V(1& E (1&]f (1»5

+&+ [V(1) E (1)]f (1)&5 0

for all q(2,' (4. 18)

where f"'(r) and f( &(r) satisfy the stationary per-
turbation equations, namely,

[H "& - Zo]f, = 0

[H(0' —H ]f(1'+ [V("—&f, V("f&jf, =0

[H(0& E ]f(2)+ [V(1& (f V(1)f &]f(1) (4. 20a)

(4. 20b)

When 0) -0, the complete wave function g(r, t, A)

smoothly joins the stationary solution of the Ham-
iltonian H( '+ (2X)V ",

((r t y) [f + (2)()f(l&+ (2) )2f(2)+ ] e iq(t, x)/2-

(4. 21)
r((t, X) = t[EQ+ (2X)&fo, V 'fo)

+(2X) (f V' 'f '&+ ]

for any finite t.
This limiting behavior is due to the transforma-

tion we made; the original eigenfunction u(r, t, A)

does not have this limiting property. If one wishes
to expand the perturbed wave function in powers
of (d, then the limiting property we obtain is in-
dispensable.

Variational method. The variational equations
for the solutions f,',"(r) of Eqs. (4. 5) are given by

if ED+28+ are not eigenvalues of H' ', then
(g'2', v' ')is a solution of the second-order degener-
ate perturbation equation, and the solution f~&(r) and

fo '(r) of Eqs. (4. 10) and (4. 11) a,re unique. If
there exist the eigenvatues of H ' which are close + 2Ite&fo [V"' -&fo V"'fo&] It, &

(4. 22)
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SP'=E, , u("(r, t)=f,(r),
ga(0& = E, - @(d, ua(0& (r, t) =f,(r) e ' ' (4. 23)

The eigenvalues of Eq. (3.20) are given by

b',"=+ [t&,'+ l&f„v"'f &l']'"

6= (E, —Ea+ K(d)/2X;

the corresponding eigenvectors (c(+, ca+] and (c, ,
ca ] are determined up to a phase factor from the
equations

(4. 24)

lc„l'+ lc„l'=1V(»f
&

cg~

(4. 25)
Thus the first-order solutions are given by

g, (r, t, x) = [c„u&(0&(r, t) + c„ua(0&(r, t)]

g(0& & (g(0& g(0&)

-1&8 +xS, &t /a
(p) (l)

(4. 26)

Suppose that the system is in the state f, (r) at
t= 0; then the wave function g(r, t, X) at subsequent
values of t is, in first-order, given by

(ca- 4 ca+4/(ca c(.—ca+c&-)

e-f8 t /5

[(g -(& s ( /&& g (xs( ( /&& )-f

s-(s&t( (xs t /&& e-(&,s ( /&& )f ] (4 27)

since &t(r, t, A) is the first-order solution of the
Schrodinger equation, and satisfies &&/(r, 0, A.) =f, (r).
The probability Pa(t) of finding the system in the
state fa(r) at the time t is given by

These equations can be obtained from Eq. (3.43),
or merely by inspection.

A remark. If one adopts another normalization
and phase convention, namely, &g, $)=1 and

&v ', v&=1 with complex 8(t, X), then one obtains
somewhat more complex equations than Eqs. (4. 1)-
(4. 14)."

B. Two-Level System Connected with Single-Quantum Transition

We shall now study the case which obtains when
two discrete nondegenerate eigenvalues E, and E~
of H' ' satisfy E~~E&+@~, and there are, besides
Ej and Ez, no eigenvalues of H' ' in the vicinity
of Ey+ SQp and E~+@('d; the eigenvalue E& of BC' ' is
then almost degenerate. We can treat this prob-
lem by the almost-degenerate perturbation method
as developed in Sec. GJ. In particular, the eigen-
functions and eigenvalues are determined by Eqs.
(3. 19) and (3.20); we shall use the same notation
here as was used there.

Let f, (r) and fa(r) be the eigenfunctions of H'0'

belonging to the eigenvalues E, and Ez, respective-
ly; choosing the zone (2. 17) suitably, one has the
eigenvalues and eigenfunctions of $C~ ' in the form

p (t) l (
(& s(»(/» -es(»(/»)/(fl ~ ) l

a

(4. ae)
substituting (4. 25) into (4. 28), one obtains

l&al&f&, V'"fa)la sin((d(»t) 2

~(&)
~E

(4. 29)

0&"& = [—(E( —Ea+)I0&) + A, l&f(, V' 'fa)
l ] / /ft.

It is easy to show that the probability P&(t) of find-
ing the system in the state f, (r) at the time t is
given by P, (t)+ Pa(t) = 1. The formula (4. 29) is
nothing but the well-known Rabi formula. '

The applicability conditions for the formula
(4. 29) are given by Eq. (3. 18), namely,

l(E(-Ea+&~)/l I-'l&f& v"'fa&l (4. 30)

and by the requirement that there are-, besides E,
and E2, no eigenvalues of H' ' in the vicinity of
E, + A~ and E2+ N~. The presence of eigenvalues
of H' ' in the vicinity of E&+ qkv and Ez+ q@&d for
l q [ ~ 2 does not change the final result (4. 29).
These applicability conditions give the conditions
for the two-level-system model to be valid in the
first-order-transition-probability calculation.

V. DISCUSSIONS

Existence of steady-state solutions. Most of the
Hamiltonians which one encounters in practice are
of the form H(0&+ XV(t), where H(0& is a time-in-
dependent Hermitian operator, V(t) is also Her-
mitian but periodic in time, and A. is a small real
parameter. If the steady-state Schrodinger equa-
tion (3.2) and (3. 3) for the system has a discrete
eigenvalue h(X) and its eigenfunction u(r, t, X) in
tA+ &, then we certainly have a steady-state solu-
tion, since u(r, t, A)e 's(~" /" is a bound solution of
the Schrodinger equation and has the required form.
Hence the question of the existence of steady states
can be reduced to the question of the existence of
the perturbation solutions of Eq. (3.2) and (3. 3).

The unperturbed Hamiltonian H' ' that we are
interested in usually has bound-state solutions in
6l and therefore the operator $C( ' (=H(0& -i@8/Bt)
has discrete eigenvalues and corresponding eigen-
functions in(R+%, namely, steady-state solutions
[see Eqs. (3.7)-(3.9)]. The solutions that we
are interested in are such that the eigenvalue h(X)
approaches one of the discrete eigenvalues of K'P',
when A. -o. The question on the existence of such
perturbation solutions can be treated analogously
to the static case"; again the difference is the
Hilbert spaces we use, tA. or 8+ &.

By analogy, one can expect that for some V(t)
(including the perturbing operator for the Stark
effect), there exist only asymptotic eigenvalues and
eigenfunctions; in other words, the perturbation
equations have solutions only up to some order. '7



STEADY STATES AND QUASIENERGIES OF A ~ ~ ~ 2213

For this case, one has asymptotic steady states,
which is sufficient to explain phenomena such as the
Stark effect. Young et a/. have also given an argu-
ment on the existence of asymptotic steady states. '

Szvitching function In. this paper we have inten-
tionally avoided use of a switching function, which
describes how the oscillating part V(t) is turned on
and reaches its asymptotic form. We simply re-
gard steady-state solutions as asymptotic solutions
of the Schrodinger equation which has a switching
function, and expect that steady-state solutions are
valid at times long after the oscillating part has
reached its asymptotic form, namely, a periodical-
ly time-dependent form. As is well known, the
static Stark effect has been treated in similar
manner. In this way, we avoid tricky arguments
on switching functions and hope the above statement
is correct. Langhoff et al. have included a switch-
ing function in their formalism and somehow ob-
tained essentially the same equations as ours for
the one-level system.

P~osjects. Just recently the multilevel theory
was proposed for the simultaneous occurrence of
Stark shifts and multiple-quantum transitions by
Hicks et al. '; in essence, they solve a steady-
state Schrodinger equation for a perturbed system
[for example, Eq. (3.2) with a finite A] within a
specially chosen subspace of the composite Hilbert
space (R+ &, which is composed from several eigen-

functions of the unperturbed operator H' ' and the
functions e""' with small integers q. As is well
known for the Stark-effect calculation, the unper-
turbed eigenfunctions of II ' are not suited to ex-
pand the perturbed portion of the wave function,
since so many unperturbed eigenfunctions, including

those belonging to the continuous spectrum, are
required in order to obtain reasonably accurate sus-
ceptibilities. One avoids this difficulty by choos-
ing the basis functions properly. We can refor.-
mulate the multilevel theory within our formalism
by developing a higher-order almost-degenerate
perturbation theory. Research along this line is
in progress and the results will published in the
near future.

The Hellmann-Feynman theorem and the hyper-
virial theorem are expected to yield useful rela-
tions which can be used to check the accuracy of
calculated, induced charge and current densities
of an atom (or a molecule) in an external electro-
magnetic field. This will be considered subse-
quently elsewhere.
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