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A generalization of the Ash«oft-Lekner (AL) hard-sphere mode for calculation of structure factor is
proposed. The AL model is derived from the Wertheim-Thiele solution of the Percus-Yevick integral

equation for the case of hard spheres. This generalization introduces a correct hard-sphere equation of
state for dense fluids into the AL model. This allows us to determine one coefficient of the AL model

exactly and gives a condition on the other two coefficients in terms of the packing fraction. However,
in order to determine all the three coefficients uniquely, we need a third condition which is proposed
to be obtained from a fit to the experimental data at one point. Our generalization of the AL model is

expected to yield a structure factor for dense systems in better agreement with the experimental data,
at least for machine calculations on hard-sphere systems.

I. INTRODUCTION ' II. ASHCROFT-LEKNER (AL) MODEL

Recently, there has been renewed theoretical
interest in calculating the static structure factor.
This renewed interest stems from the recent ac-
curate experimental measurements of the static
structure factor S(k) for liquid sodium and potas-
sium. In particular, the Ashcroft-Lekner (AL)
hard-sphere model' has been used to calculate the
structure factor. This model has achieved consid-
erable popularity particularly in the theory of liq-
uid metals because, so far, it is the only closed-
form expression for the structure factor. Green-
field, Wiser, Leenstra, and van der Lust' tried to
generalize the Ashcroft-Lekner (AL) structure
factor S~(k) by introducing the hard-core diameter
0 as an adjustable parameter in different regions of
k. This generalization' gives a better fit to the
experimental data than the AL model but suffers
from the same problems as the AL model itself.
For example, no account is taken of the tail of the
potential, and also, since the interaction is hard
sphere, the potential has infinite discontinuity at
the hard-sphere diameter 0.

However, in this paper we are not concerned
with these difficulties. In particular, we concern
ourselves with the problem that neither the AL
hard-sphere model' nor its recent generalization
by Greenfield et a/. ' yields a correct equation of
state for- dense fluids. In this paper a generaliza-
tion of the Ashcroft-Lekner hard-sphere model is
proposed which incorporates correct hard-sphere
equation of state for dense fluids. Our proposed
generalization leads to a formulation having one
independent parameter. This independent param-
eter can be determined either by a fit to the ex-
periment data at one point or by a further varia-
tional computation to give lowest root-mean-square
deviation from the experimental data.

The Ashcroft-Lekner hard-sphere model' is
based on Wertheim-Thiele (WT) solution of the
Percus-Yevick (PY) equation for hard-sphere
systems. In the AL model
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n being the average number density of the mole-
cules.

The compressibility equation of state obtained
from the WT solution [Eq. (3)] is

nk~Tyr= (1 —q) /(1+ 2,q) =—1/n. (5)

In Eq. (5) Xr is the isothermal compressibility, T
is the temperature, and k& is the Boltzmann con-
stant. Notice, that Eq. (5) corresponds to Eq.
(31) of Thiele. Furthermore, since in the limit
k-0, S(0) = nkvd 1"yr, we conclude that

correspond to the WT solution of the PY equation
for hard spheres. The packing fraction q is relat-
ed to the hard-sphere diameter a by
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lim S(k) = I/e .
A»0

(6) C(0) = —8q (n + —,
'

P + ~ y) .

Note that Eq. (6) can be directly obtained from Eqs.
(1) and (2) by calculating C(k) in the limit k-0.

Thus, a knowledge of the number density, the
temperature, and the isothermal compressibility
gives S(0) and, therefore, fixes n from Eq. (6).
Equations (3a) and (4) then yield appropriate values
of g and v. Solution of Eqs. (1)-(3) is straightfor-
ward and gives the Ashcroft-Lekner hard-sphere-
model structure factor SAL (k).

III. PROPOSED GENERALIZATION

As pointed out before, the compressibility equa-
tion of state, Eq. (5), obtained from the WT solu-
tion of the PY equation for hard spheres is known
to be quite inadequate for dense hard-sphere fluids
studied by machine calculation. In fact, hard-
sphere machine data on equation of state has been
analyzed by Carnahan and Starling. e On the basis
of this analysis, they proposed an equation of state
given by

This equation of state has, in fact, been confirmed
by Verlet and Weissv in their machine calculation
of hard-sphere systems. Direct differentiation of
Eq. (7) yields

Equations (10) and (11) give rise to the relation-
ship

6P+4y= [n(1 —8rj) —1]/7/ ~ (12)

Note that with p and y given by Eqs. (3b) and (3c),
and n given by (3a.), Eq. (12) is identically satis-
fied. (This, of course, corresponds to the AL
model. ) However, with a given by (9), Eq. (12)
is no longer satisfied. Accordingly, Eq. (12)
should be regarded as a constraint on whatever
values P and Z take. Regarding Eq. (12) as a con-
straint, Eqs. (9) and (12) still do not form a closed
set to determine n, P, and & uniquely. We need,
yet, another relationship on P and y. If there were
other sum-rut. e-type conditions to be satisfied, we
would automatically get a closed set of equations
to determine n, P, and y.

Thus, in our generalization of the AL hard-
sphere model for the static structure factor, we
propose to (i) continue to use Eqs. (1) and (2) to
calculate the structure factor, (ii) use the value of
n given by Eq. (9), (iii) use Eq. (12) as a (sum-
rule-type) condition on P and y, and (iv) match the
position of one point in the experimental data on
S(k) to uniquely determine P and y. A further vari-
ation in values of P and y consistent with Eq. (12)
could enhance the agreement somewhat.

IV. CONCLUSIONS

a = [( I+2g ) +g (q —4)]/ (1 —q)

appreciably different from the WT solution Eq.
(3a). Furthermore, Eqs. (1) and (6) give

C(0) = 1 —cL,

(9)

(10)

whereas, from Eq. (2) in the limit k-0, C(0) is
given by

This differs from Eq. (5) by the extra term q'(q —4)
appearing in the denominator of Eq. (8) onthe right-
hand side.

We now propose that a new expression for cy

consistent with the hard-sphere equation of state,
Eqs. (7) and (8), be used instead of Eq. (3a). Thus,
use of Eqs. (5), (6), and (8) leads to a new value
of a given. by

We compute S(k) for liquid sodium at tempera-
ture 200 'C and compare with the AL static struc-
ture factor as well as the experimental data. The
values of different parameters are listed in Table
I. FortheALmodel, we use Eqs. (3), (4), and (6).
For our model (modified AL model), Eqs. (4), (6),
and (9), as well as (12), are used. S(0) is the ex-
perimental value at k = 0. In the modified AL model,
that value of P and y is considered as giving best
fit to the experimental data on S(k) for which root-
mean-square deviation from the experimental data
on S(k) is the least. Thus, the values of P and y
obtained by a fit to the experimental data at k = 1.73
A ' were varied a little [subject to Eq. (12)] to get
the best fit. The static structure factor S(k) is
plotted in Fig. 1. For comparison, the AL struc-

TABLE I. Values of different parameters in the AL model and this calculation (modified AL model) for the static
structure factor for liquid sodium at 200 C.

0 (A)

0.424 3.247

AL model&"

31.025 —33.95 6.577 0.434 3.27 31.056 -34.65

Present Calculation (modified AL model)"
v(A) n P

7.196

Value of 0 listed here is an improvement over that given in Table I, in Ref. l.
"Ne also use slightly different density (p = 0.904 gem"') for liquid Na at T =200'C than that (p =0.903 g cm 3) used. in

Ref. 1. , To calculate the density, we use the interpolation formula p(Na) =0.948-2.13 X10 T -3.30 &&10 T given in
J. P. Stone et al. , Naval Research Laboratory Report No. 624&1965 (unpublished). This density is also listed in Table
V of M. G. Kim, K. A. Kemp, and S. V. Letcher, J. Acoust. Soc. Am. 49, 706 (1971).
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cordingly, the success or failure of such an attempt
should be judged by a comparison with the hard-
sphere static structure factor as obtained by ma-
chine calculations. Since such data is not avail-
able to us, we can simply express the belief that
at least in this case, our attempt to modify the AI
model so as to extend it to higher densities should

be well worth the effort. This is obvious because
a variable parameter is built in our model.

However, for any comparison with real liquids
or liquid metals, this attempt seems to be as much
a failure as the AL hard-sphere model itself. This
is, of course, not very surprising in view of the
hard-sphere nature of such models.
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A general formalism is presented for a system whose Hamiltonian is periodic in time. The formalism

is intended to deal with the interactions between bond electrons and an external electromagnetic field,

which can be treated semiclassically, such as electric and magnetic polarizations, optical rotation, and

transitions among discrete levels. A particular bound-state solution of the Schrodinger equation which

belongs to an irreducible representation of the time-translation symmetry group is defined as a steady

state, and the characteristic number of the irreducible representation as a quasienergy. It is shown that
the defined steady states and quasienergies behave in a newly constructed Hilbert space like stationary

states and energies of a conservative system in many respects. It is also shown that for a resonant case
the unperturbed quasienergy becomes degenerate and the transitions among discrete levels can be

accounted for by the familiar degenerate perturbation procedure. Using a suitable Hilbert space, the

steady states are established as firmly as the stationary states stand in the theory of a conservative

system.

I. INTRODUCTION

It is well known in solid-state physics that for a
spatially periodic Hamiltonian, there exist quasi-
momenta and corresponding Bloch wave functions.
Analogously, for a periodical. ly time-dependent
Hamiltonian, one expects the existence of quasi-
energies and Bloch-type states. For these states
Young et al. ' coined the term quasipexiodic states;
we prefer to use the term steady states. Such
steady states have been discussed and used in the
theories of susceptibilities, '~ and in the theories
of multipl. e-quantum transitions among discrete

levels, 3 '
In spite of the widespread utilization of steady

states for the study of the semiclassical interation
between bound electrons and an external electro-
magnetic field, many aspects of steady states have
been discussed only partially and superficially in
the literature and apparently require further in-
vestigation. The essential points missed by pre-
vious workers are the introduction of a Hi'ibert
space suitable for steady states and the uniform
treatment of steady states in this space. The in-
troduction of such a Hilbert space not only makes
the formalism transparent, but also introduces new


