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Kinetic Theory of a Dense Gas: Properties of Collision Kernels of the Bogoliubov Type
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We study the collision kernels of two linearized equations for a moderately dense gas. These are the

low-density Bogoliubov kinetic equation and the equation at the next order in the density

(ternary-collision level), in the form given by Green and Cohen. We reduce the collision kernels of
these equations to expressions which are nonlocal in space but local in time, and show that each of
them breaks up into static and collisional parts, The former parts agree with the mean-field expressions.
We compare the collisional parts with the fully dynamical expressions previously found by Mazenko

and us, and find complete agreement only at zero wave vector and frequency. For nonzero wave

vectors, the desired symmetry in the momentum variables breaks down. We show that this has no

effect on the first-order transport coefficients; it would presumably be significant in the kinetic regime.
We also find that the speed of sound predicted by the Bogoliubov equation agrees with the
thermodynamic result truncated at first order in the density.

I. INTRODUCTION

Some time ago a classical kinetic equation valid
at arbitrary wave vectors and frequencies but lim-
ited to first order in the density was derived by
Mazenko. ' The present authors later extended
this equation to second order to take ternary col-
lisions into account. The collision kernels of
these equations have been shown to be consistent
with the known general properties, and they can be
regarded as wave-vector-f requency generalizations
of the linearized Boltzmann collision kernel and its
extension to ternary collisions.

In this paper we use these theories to investi-
gate two earlier well-known kinetic equations: the
equation at first order in the density proposed by
Bogoliubov, and a second-order equation given by
Green and Cohen. We consider only the linear-
ized form of these equations, since the develop-
ment of Refs. 1-3 is restricted to small devia-
tions from thermal equilibr ium. The Bogoliubov
theory in particular has been very widely used in
conceptualizing the kinetic behavior of a gas, and
there is much interest in seeing the quantitative
limitations of the result. A fundamental assump-
tion in this theory is that the collision term is an
instantaneous functional of the single-particle dis-
tribution function E(rp, t). Bogoliubov hypothesized
that there exists a time scale long compared to the
duration of a binary collision during which a syn-
chronization of the higher-order distribution func-
tions occurs, in the sense that they become com-
pletely determined by E and its initial condition.
The familiar low-density expansion of the collision
operator then leads to terms containing successive
powers of F:

and the quadratic term serves as a spatially non-
local generalization of the Boltzmann collision in-
tegral. The ternary-collision term has been
worked out from the Bogoliubov prescription by
Choh and Uhlenbeck and, from somewhat different
points of view, by Green and Cohen. The form
of the ternary-collision operator as given by Choh
and Uhlenbeck is different from that given by Green
and Cohen, and we deal here with the latter form,
which is the one commonly used in calculations of
the first density correction to transport coeffi-
cients. A demonstration and strong arguments
in favor of their equivalence have been proposed,
but questions have also been raised.

Despite the success of the kinetic equations oi
Refs. 4-6 in the calculation of transport coeffi-
cients, ' the approximations which lead to the
collision terms are still imperfectly understood.
One would like an unambiguous way of evaluating
the corrections to the functional ansatz or similar
factorization hypothesis. ' It is also known that
a straightforward expansion beyond the cubic term
is invalid, since divergences' arise from certain
sequences of correlated binary collisions, or ring
events, and it is necessary to renormalize' ' the
collision operator. Since only the binary- and
ternary-collision operators are considered here,
our results do not have a direct bearing on the di-
vergence problem.

The most concise approach to the problem is to
cast the proposed operators into the form of col-
lision kernels and to study their behavior as func-
tions of k and the Laplace transform variable z.
This reveals the way in which they account for the
spatial extent and the duration of collisions. Of
course we cannot expect the z dependence to be
complete, since the formulations of Refs. 4-V ef-
fectively smooth out time scales comparable to the
mean duration 7„of a binary collision; consequent-
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ly, the kernels are limited to zero frequency. The
k dependence becomes important for wave vectors
which are not negligible with respect to the inverse
force range. It has been shown that effects due
to the k and z dependence of the kernel persist
even in the hydrodynamic regime, since terms
through second order in k and z contribute to the
tra, nsport coefficients. (The density-independent
contributions to the transport coefficients are not
affected by the dependence on k, z. )

We reduce the sum of the kernels of Refs. 4-6
to the form ni&(k;pp') +n Iz(k;pp'), with I, account-
ing for binary collisions and Iz for ternary colli-
sions (n is the number density). At k= 0, I, is
known to reduce to the linearized Boltzmann colli-
sion kernel. We show that each kernel breaks up
into static and collisional terms:

Il(k; pp ) =I] "(kP) +I)"(k'pp ) (I = » 2)

the first term giving the effect of the mean field on
one particle owing to the others, and the second
term containing the dynamical effects of collisions.
The form of I',"is familiar from the early colli-
sionless kinetic equations ' as well as from the
more recent weakly coupled' ' and low-density ' '

equations. However, to our knowledge it has not

previously been recognized that such a term is
present in the kinetic theories of Refs. 4-6. Since
this term vanishes at k= 0 it is not seen in any dis-
cussion which assumes spatial homogeneity. We

cast the low-density collisional term I,"' into the
form of a zero-frequency limit of a well-defined
function of k and z. This function summarizes the
dynamical information contained in the kernel.
Because of difficulties with the long-time stream-
ing operators, we are able to do this for I2"' only
at k = 0 but can draw some conclusions about its
behavior at kWO.

We examine these functions in the light of the
fully dynamical kinetic equations mentioned
earlier. Such equations are formulated for the
phase-space density correlation functio~, since
this approach allows one to treat a large class of
irreversible phenomena without having to appeal
to any kind of functional assumption or factoriza-
tion hypothesis. Of course the connection between
fluctuations and linear response is implicit in such
an approach. Evaluated through second order, the
kernel takes the form —inZ, (kz;pp') —in Zz(kz;pp ),
which is the fully dynamical generalization of the
kernel ni, +n Iz. (No account has been taken for the

possibility of bound states, and as in Refs. 4-V
we are. limited to monotonically repulsive, short-
range forces. ) Z, and Zz have been shown to divide
into static and collisional contributions:

and the static portions agree with their counterparts
discussed above. We show, however, that the col-
lisional portions agree with I&" and I2"' only in the
uniform long-time limit, k - 0 and z - iO'. For
kW0, I,"andI&" do not have the correct symme-
try in the momentum variables, which is dictated
by detailed balance. The symmetry-violating term,
which vanishes with k, is contained in the two-
and three-particle propagators and would be ex-
pected to have important consequences in the
kinetic regime.

Accordingly, the kinetic equations with kernels
nI, and nI, +n I2 appear to be completely consistent
only at zero wave number and frequency. The
first-order analysis is given in Sec. II and the sec-
ond-order analysis in Sec. III. In Sec. IV we in-
vestigate the extent to which this conclusion applies
to the most common area in which the equations
have been applied, namely, the hydrodynamic re-
gime. Qn the one hand, the transport coefficients
predicted by these equations are known to agree '3
through first order in the density with the correla-
tion-function results, and on the other hand, the
contributions due to collisional transfer arise from
the k dependence of the collision kernel (in this
case of I,"'). We show, however, that the anom-
alous k dependence does not contribute in thepartic-
ular long-wavelength low-frequency limit which
determines the first-order transport coefficients.
Although much work has been done with the trans-
port coefficients, we are not aware of any investi-
ation of the small-k dispersion relation, and hence
of the speed of sound, which is predicted by these
kinetic equations. It is due to a combination of
free-streaming, mean-field, and dynamical effects.
Gf course, if the collision kernels are taken in the
local limit, only the first effect enters and one ob-
tains the familiar C = 5/3(Pm) '. Using a method
developed in the weakly coupled case, we calcu-
late the value of C which is predicted by the Bo-
goliubov kernel nI& and show that it agrees through
first order in the density with the usual adiabatic
derivative. One would not necessarily expect
agreement, since the frequency dependence of the
true kernel should contribute to C and is absent
in nI&. However, it turns out that this contribution
is supplied by the anomalous k dependence of nIj.

II. FIRST-ORDER COLLISION KERNEL

where

g (12) e ivL(12) e(vL-O(12) (5)

We write the low-density collision integral of
Bogoliubov in the form

J, [E(lt)] = —lim i d2L, (12)Z,(12)E(lt)E(2t),
OQ (4)

Z, (kz;pp')= Z,'"(kp)+Z,"'(kz;pp'), (I= 1, 2),
(3)

and the I.'s are the usual two-body Liouville opera-
tors
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'LL2(12) —p( ' V(+P2 ' V2 ~

sv(12) a 8iI.,(12)= — ~

81 y BPy 8Pg

(6)
kernel breaks up into two parts, corresponding to
the two terms on the right-hand side of Eq. (13):

I&(k;pp') =I('"(kp)+I("(k;pp ). (14)

2

x p 5(r'- r.) 5(p-'-p. ) [I/y(p-. )].
0!=1 (10)

The only contribution to the integral arises from
configurations for which particles 1 and 2 are with-
in a force range of each other, and the operator
e " in Z, separates the particles far from each
other in the distant past. Because the kinetic en-
ergy in the infinite past equals the total initial en-
ergy II(12) (assuming short-ranged repulsive
forces), we have at large v

L,(12)Z, (12) y (P,) y( p2) f(12)
= L&(») p(p&) p(P2) e '"'"'Z,(12)f(»),

where f(12) is an arbitrary function. Then using
the translational invariance of I,(r,p(, r p') = I,(r,
—r';p, p'), we can show that its spatial transform
1s

I,(k;pp') (t((p') Jd're-='"'I((r;pp') (t (p')

dl tf2P e-BB(12) + (12)
T» Oo

where

2 +(('k' L (12)p (I) (11)

with L = La+ L,. We use the notation 1 = (r„p,) and

v(12) =v(lr, —r2!), and set the particle mass to
unity. We linearize the distribution function about
absolute equilibrium

F(lt) =ny(p, )+h(r, p„ t),
where

y(p) = (P/2(()'" e "" (8)

and p= (hsT) . The collision integral then reduces
to the form

Z2[F(lt)] = f d r'd p'ni, (r(pq,' r'p') h(r'p', t)

+0(h'), (9)

where the collision kernel I& is

I,(r, p~; r'p') = —limi d2L, (12)Z„(12)Q(p, ) (t((p2)
00

The part which we call the static term reduces to

I("'(kp) = if(k)k p A(p), (15

where f(k) is the transform of the Mayer function
f(r) =e 2"'"' —l. Equation (15) agrees with the ex-
pected result for the static kernel, since f(r) is
the low-density direct correlation function. More
generally, ' ' one has

I "'(kp) = inc(k) k. p (t((p). (16)

Until now it has not been transparent that the Bo-
goliubov kernel includes a static (mean-field) term
of this kind.

The collisional part of the Bogoliubov kernel can
be written

il (kipp ) 4(P )= —»mi
2

(f((P() (f((P2)
Z»i &

where

xp,*~.(12)i(f,'(kz, P '; l 2) L,(12)p»(12), (17)

M,'(kz, p'; 12)= e 2"" ' [k ~ p'+ L (12)]

xfz+k ~ p'+L(12)] '. (18)

The interesting part of this term is the operator
M', , which is analyzed in more detail later.

Equations (14), (15), and (1V) summarize the
low-density collision kernel which is deduced from
the linearized Bogoliubov theory. We have defined
I, so that the linear transport equation reads

(z —k p) h(kp, z) + h(kp, t = 0)

= in jd' jI,(k; pp) h(kp, z), (19)

in terms of the Laplace transform

h(kp, z)=i J, dte*"h(kp, t). (20)

For comparison with the correlation-function ap-
proach, we recall the object analogous to b, name-
ly, the thermal average

S(r —r', t —t'; PP') = &(f(rPt) —&f(rpt)))

x( f(r'p't') —{f(r'p't')))), (21)

(12)
where f is the local density in phase space

f(rjt)=Z 5(r —r.(t)) 5(p-p. (t)) (22)
It is useful to express the long-time limit -in Eq.

(ll) in frequency language. For a Hermitian
operator 0 such that lim, „e'"f exists, we have

lime' 'f= f -lim 0(z+0) 'f
g»g 6

(e =infinitesimal positive number). Using this in
Eq. (11), with 0= I.(12)+k ~ p, we note that the

and the sum runs over the particles in the system.
S is related in a well-known way to the linear de-
viation from thermal equilibrium produced by an
external fore e applied bef or e t = 0, and in particular,
S(rt;pp ) and h(rp, t) are described by the same
kinetic equation in (r, p, t). In this context, the
variable p' enters only into the initial condition and
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is not involved in the dynamics of collisions. 8
satisfies a generalized I angevin equation of the
form

(2 -k p) S(kz'Pp')+S(k'Pp')

III. SECOND-ORDER COLLISION KERNEL

We write the ternary-collision kernel of Refs.
5 and 6 in the form

J'3 [E(lt)] = —limi td2d3L, 1(12)C,(12;3)
= f d pZ(kz;pp) S(kz;pp'), (23)

T»oo 'J

xE(lt) E(2t) E(3t), (30)

E = nZg+n E2.2 (24)

The static part of E& is the expected iI&"' and the
less trivial collisional part has been shown by
Mazenko to be (cf. also Ref. 23)

"',"' e(p ) e(p8) p„*, (»)

xM, (kz, p'; 12)L, (12)p»(12), (25)
with

M, (kz;p'; l2) = e "' '[k p'+L(12)] [2+L(12)] ',
(26)

which is to be compared with iI,"'(k;pp') P (p ).
We note that iI&"' is the zero-frequency limit of

a function which agrees Z,"only at k=0, so that

iI,"(0;pp') = lim Z 1"(02; pp'). (27)
a'» 9

The discrepancy at k 40 arises from the term k p'
in the propagator in M,', whichinturncanbe traced
to the free-streaming operator in the definition of
Z„Eq. (5). The Bogoliubov theory is not. im-
proved by elimination of that operator from the
definition, since this operator is also responsible
for the other term k.p' in M&. One of the impor-
tant consequences of the discrepancy is that the
desired detailed balance symmetry in the momentum
indices breaks downfor k w 0. In general, one has'

Z")(kz;PI)') y(p') = Z")(k2; P p) y(P), (26)

which holds for Ez" but which can be seen to fail
for Iy, As we note in Sec. IV, the asymmetry
has no effect on the transport coefficients and the
speed of sound through first order in the density,
but it would be expected to become more impor-
tant as k increases.

Finally, we recall that a collision kernel de-
scribes a dynamically stable system if'

f d'pd'p'g*(P) [lmZ"'(k2;PP') 4 (P')]S(P') —0,
(29)

when Ime & 0, with g an arbitrary function. (At
first order in the density and as k-0, z-ic, this
states that the eigenvalues of the linearized Boltz-
mann collision operator are negative or zero. ) It
can be shown that Eq. (29) still holds for iI,"' and
so the asymmetry does not affect the stability of
the system.

where Z is the memory function and 8 the initial
condition. Therefore, inI, should agree with the
low-density expression for E. The part of interest
here in the low-density expansion of Z has the form

where
C,(12;3) = Z,(123) —g,(12)[Z,(13)+Z, (23) —1],
g (123) )vL-(183) ivt8(183) (31&=e e

and L(123) is the three-particle Liouville operator.
When I' is linearized and J3 arranged as a term in-
dependent of h plus linear terms, the term inde-
pendent of h vanishes as in the Jz calculation. Thus,
if we put

Z3 [E(lt)] = f d r'd p'n I2(r, p» r'p')

xh(r'p', t)+0(h ), (32)

the kernel again depends spatially only on r& —r'
and works out to be, after some rearrangements
like those in Sec. II,

I8(kv pp') p(p') = lim i —[L,(12)p88(1)].
dld2d3

'P» 00 V

x P( p ) P( p ) P( p ) (&
Bv(123) g-(123) e-Bv(12&g (12)

x[e "'"'Z (13)+e B"'83'Z (23) —I])p, (123),

(33)
where v(123) = v(12) +v(23) + v(13).

From the example of Sec. II, it is expected that
Ia can be divided into static and collisional parts,
I~= I~"'+I~"'. The static part is obtained by re-
placing all the Z,'s in Eq. (33) with unity, and after
a number of elementary manipulations the result is

I2"'(kp) = ic, (k) k.p p (p), (34)
where

c,(r) = f(r) f d r'f(r - r') f (r'). (35)

where Z2," involves genuine three- body dynamics and

P, = J d'r f(r). (3V)

In the second term on the right-hand side of Eq.
(36), the presence of the third particle merely
modifies the binary-collision rate. The rather
lengthy expression for Z2',"is

The last quantity is the first density correction to
the direct correlation function. Therefore, the
static term has the expected form, namely, the
second-order contribution to Eq. (16).

Now we turn to the remaining portion of I2, which
is the collisional part Ia"'. In order to compare it
with the second-order term E&" obtained by us
previously, we first recall that Zq" can be written
as the sum of two terms

Zc) Zc) 2P Zc) (36)
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Z2,"(kg;pp') &I)(p') = $(p1) $(p2) $(p3) pyy. (123)M2(k2, p'; 123}L1(12)p»(12), (38)

where M2 is the operator

M2(k2, p';123) =e B""23'[k p'+L(123)] [2+L(123)] ' —e B""2'[k~ p'+L(12)][2+L(12)] '

—2e B""3'[k.p'+L(13)+L(2)] [2+L(13)) '(2 —k p, ) e B"" '[2+L(12)] '. (39)

We attempt to break up I2(" into a form similar to E(l. (36), and after some labor obtain an expression of
the form

I(c& I(c) I &c) 2P I &c)
2 3N + 2b 1 1 (40)

where I2,"and I~~" involve, respectively, three- and two-body dynamics. We shall find that at k = 0, iI2,"be-
comes the s-ie limit of E2", and Iz~' vanishes. These terms are given by

I2',"(k;pp') &t)(p') = —limi «&)(p)) $(p2) Q(p3) p». (123)M2(k7, p'; 123)L1(12)p»(12),
TwoQ J

(41)

I„"(k;pp') p(p') = —if(k) &&&)(p')
— lim e "'"'e"'1(e' "e"~&12)—1)L,(12)p»(12),

T~ oo

and Mz is now the operator
~i. ~ nnx -Bv(123)I (vt (123)+ivl7 y' ~ w -Bv(12)g ivt &12)+(V2 y' w ')

(42)

+ 2e-Bv(13)(e( t&1v3)+( t(2v)+( Kyv' 1)e Bv( 12) -('r2
y1 e

( L(1v2& (43)e

The algebra involved in obtaining E(ls. (40)-(43) is
given in Appendix A.

The integrands of I3,' and Izb have a very com-
plicated v dependence, owing mainly to the fact that
the v's do not occur in a single simple exponential,
e. g. ,

+jTR yg jTL(12)+ jTf~y~+jTI (12) (44)

It is not clear how such terms can generally be
written as zero-frequency limits. However, at
k= 0 the difficulties can be overcome, and we find

"d1d2d3I2"'(0;pp') &t)(p') = —limi
2& p(P&) $(P2) $(P3)

Z~)6

x py, (123)M2(02, p'; 123)L,(12)py(12),

(45)
(46)I"'(0 pp')- 0

where M2(02, p'; 123) is defined via E&l. (39) and

pp= pop ~

Thus, at k=0, z=iE, the collision kernel is in
agreement with the second-order memory function:

iI2"'(0;pp') = lim Z2" (02;pp').
Z~ f 6

(4V)

However, for k 10 it is apparent that Ia"' can no
longer agree with the zero-frequency limit of Zz".
The reason is essentially the same as that noted
in Sec. 0: The term ik p' in the first two exponen-
tial operators of Mz(kr, p'; 123) will lead to the un-
desired term k.p' in the denominator of the propa-
gators. Of course this point also holds for the final

I

term —2p, I,"' in the expression (40) for I2"'.
Hence I&"' will not satisfy the symmetry condition
(28). Again, there seems to be no obvious way of
changing the definition of the Z,'s to correct this
situation.

IV. HYDRODYNAMIC IMPLICATIONS

In this section we consider the extent to which the
conclusions of the previous two sections affect the
hydrodynamic behavior. We find that the discrep-
ancies noted earlier do not contribute to the shear
viscosity through first order in the density, and the
same reasoning applies to the thermal conductivity.
(For repulsive forces the bulk viscosity starts at
order n . ) We also calculate the speed of sound
appropriate to the kinetic equation with kernel nI&

and, owing to the cancellation of effects mentioned
at the end of Sec. I, we find agreement with the
correct first-order expression. To our knowledge
this is the first calculation of the speed of sound
implied by the Bogoliubov kinetic equation. We
have not been able to evaluate all the matrix ele-
ments necessary for dealing with the second-order
kernel gI, +n I&.

We first recall the essential points pertaining to
the first-order shear viscosity which follows from
the kinetic equation with memory function eZ&
+n Z2. Only a general discussion is necessary,
since some details appeared in Ref. 3 and in any
event the final answer is well known. ' Writing
g= go+eg&+ ~ ~ ~, we have at lowest order the stan-
dard Chapman-Enskog result. At next order it is
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T(3 y(p ) =11m
k

d PP)ZI (kzqpp )~
k 0
8~$6

(48)

which determines the long-wavelength low-fre-
quency limit of the low-density stress tensor [k is
taken in the 3-direction, and the order of the
limits in Eq. (48) is immaterial]. From Eq. (25)
it can be seen that

necessary to consider not only the kinetic contri-
bution to the stress tensor but also the low-density
potential contribution, so that we have g, = g«&
+2g«» where the subscripts have the usual
meaning. The first term, which arises from com-
plete triple collisions and incomplete binary col-
lisions, is determined by the limits of Zq" and
Za" as 0 -0, z -i&. Since in this limit iI,"'=Z,"'
and iI&' = Z&", the expressions for g«& will also
agree.

Our interest focuses on the collisional-transfer
term q~U» which depends on Z&" through terms
of first order in k, again as z-ie. Specifically,
the contribution of first-order terms in Ej" in-
volves the quantity

sity had been used, 0 would be essentially the
hydrodynamic matrix which has been discussed
earlier at small k and z. The dispersion relation
is determined by det ~z —Q(kz) ~

= 0, and to identify
C we need 0 through first order in k, z.

When we specialize to the kinetic equation with
the Bogoliubov kernel nI&, this equation takes the
form det

~ z —Q (k) ~

= 0, in which Q is independent
of z because of the nature of the collision kernel.
It is shown in Appendix B that to lowest order in
k, 0 has the form

Q'„, (k) = (k//P) Q'„„,+ ~ ~ ~, (52)

(o 0
1 -nf(0) 0 (-,')'~'(1+no&) ~,

0 3 1+n&g —n&y 0

(53)
with o. , and o.,' as defined by Eqs. (B6) and (B8),
respectively. It is important to note that n, and n&

occur in the density expansion of certain thermo-
dynamic quantities. Thus, we have

T,3,(p') p(p') = —lim p(p&) p(p3) p& (12)t dld2
13,1

xM, (0z, p'; 12)X,3(r, —r3), (49)

~

=nk (1+nn + ~ ~ ~ )(
eh 't

B 1

and the specific heat at constant volume is

c„=—,
' ks(1+no. ', + ~ ~ ~ ).

(54)

(55)

( )
r, r; dv(~)

A (50)

[z5„,—Q,.(kz)]G (kz)=5„, (51)

and 0 can be expressed in terms of Z. If the total
energy density rather than the kinetic-energy den-

Thus, the first-order shear viscosity implied by
the kinetic equation with kernel nI&+n Iz agrees
with the above formulation if the corresponding
T,3, agrees with Eq. (49). But this is now im-
mediate, since we obtain an expression identical
to Eq. (49) except that the operator M, is replaced
by M&, and since M, =M& when @=0. Thus the im-
proper k dependence of nI&, which occurs in M, „
does not contribute to g» and the shear viscosities
agree at first order.

The speed of sound C is defined by its appearance
in the propagating hydrodynamic mode of the dis-
persion relation. It has been shown' how the
modes as well as the density-density correlation
function can be calculated directly from the memory
function. We cite only the points necessary for our
discussion and refer the reader to Ref. 19 for the
complete formulation. One deals with the 3&&3

matrix G„„(kz) which gives, apart from a k-depen-
dent factor, the correlations among the density,
the longitudinal momentum density, and the kinetic-
energy density. It satisfies an equation of the form

PC = 1-nf(0)+ —,'(1+no.'& -no!&) (1+nn&)

= 1 —nf(0)+-,'[1+n(2a, —o.",)]+O(n ). (5V)

The other root z= 0 corresponds to heat diffusion.
In the conventio'nal hydrodynamic formulation, C is
supposed to be the adiabatic speed of sound Co
=[(SP/Sn)&] ~, which after some manipulation of
thermodynamic derivatives can be written

The matrix 0 „& differs in two ways from the pre-
diction of the correct low-density theory. The lat-
ter matrix has an element Q33, (kz) = —znn', v'P/k

[which is absent in Eq. (53) since the limit z-ie
is contained in the Bogoliubov kernel], and it also
has

Q33, 1 Q33, 1 (3 ) "(1+«g) ~ (56)

The anomalous contribution to A~~, arises from the
part of the Bogoliubov collision kernel which is not
symmetric in p p'.

Thus the Bogoliubov matrix 0 „,agrees with the
complete low-density result only when n& -—0. From
Eq. (B8) it follows that the only monotonically re-
pulsive force law for which n&=0 is the hard-
sphere potential (the specific heat is then 33ks at all
densities). We note that the low-density memory
function for this system has been shown to be inde-
pendent of frequency. '

To obtain the dispersion relation implied by ~, &,
we set z =C k and find
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At low densities this becomes

PC() = 1 —nf(0)+ 3(1+nn, ) /(1+n(2,'),

(58)

(59)

in E,"'. With the Bogoliubov kernel nI& this contri-
bution is dropped but then regained by virtue of the
anomalous k dependence. Thus a cancellation of
errors occurs in the expression for the speed of
sound,

where we have used E(ls. (54) and (55) and the com-
pressibility relation p(()p/sn) r = 1 —nc(0). Through
first order in the density, this agrees with the re-
sult PC obtained from the Bogoliubov collision
kernel. When the Mazenko memory function is
used, the result is precisely E(l. (59), with the
term nn,' arising from the frequency dependence

APPENDIX A: DERIVATION OF EQS. (40)-(43)

The collisional part Is"'(k;pp') p(p') is defined as
the difference between E(l. (33) and this expression
with the Z,'s replaced by unity. It is convenient to
interchange particles 1 and 2 within the integrand
and then to take half the sum of the two expres-
sions for I2"', with the result

Is (kvpp') Q(p')=limi [Ll(12)p»(12)]tf)t(pl) p(ps) p(pS)(t)v(123) pyy (123),
f% oo

where

Q (123)= e "" 'Z, (123) —2e 8"" 'Z, (12)e "' 'Z (13)

(Al)

Btt(12) IJ (12)e Btt(ls) 2e Btl(12) Bv(ls)Z (13)+e Btt(12) Z (12) (A2)

and Z, =Z, —1. We separate this into three terms
by taking (t)„(123)p», (123)= p, + p, +p„with

p =e '"""'Z (123)p,*.(123)-2e 8"'"'Z,(12)p,*.(1)
—2e "' ' [Z,(12)+1]e "' 'Z, (13)pyy. (13), (A3)

p2esv(12)Z(12)e-Bv(13)p*(3)(A4)
p = —2e 8"'"'Z,(12)e "'"'p* .(2)

—2e "" 'Z, (12)f (13)p~», (1)

+ e "'"'Z,(12)p,*y,(123), (A5)

and the corresponding contributions to the collision
kernel are denoted by I2"'=I~ '+I2"'+I~ ' Al-
though this separation may appear arbitrary, it
leads directly to E(ls. (40)-(43). We can verify
without difficulty that Is,"= —2pl Il" ', and we proceed
to Iz',"and Iz"'.

First, one can write

I~ '(k;pp') (tt(p') = lim i f [L,(12)p»(12)] p(p, ) (t)(ps) (t)(ps) p, ,
J

(Ao)

with
Bv(123)( -ivL(123)+ivtt P' 1) e-Bv(12)ie i 1v2L) (fvL(3)+ft)t y 1))Pv (123)kP ~

-Bv(12) -ftL(12)eivL(1) -Bv(13)( fL(13)tft')t y'+-1)

and the operator e" "' above can be replaced with
exp('-7p, ~ '(t'3+ilk pl). This last fact is seen by
noting that

()7 +f 3~) e-Bv(13)(e-ivL(13)+ivtt y 1)p* ('13) 0
(A8)

which holds because the only spatial dependence in
(AS) not of the form r, —rs occurs in pyy. (13).
When p, is eventually integrated over r3 and other
coordinates to give Is',", the operator exp( —apl ~ )t(3

+ilk ~ pl) becomes e"2'». Also the last factor in
E(l. (A7) can be written

(e-ivL(13)+ftft P' 1)p* (13)

(e i L(13)TivL(2)aft)t'y 1)pttt (123) (A9)

In this Appendix, we indicate the calculation of
A„„appropriate to the Bogoliubov collision kernel.
To first order in k, the matrix Q„„and the following

After putting this information together, we integrate
E(l. (A6) by parts with respect to the operators in
p, and thereby obtain the expressions in the text,
E(ls. (41) and (43).

Similarly, in the expression for Iz'~" we can in-
tegrate over the coordinates of the third particle,
and we obtain the desired Eq. (42).

APPENDIX B: DERIVATION OF EQ. (53)
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|d~„are the same:

~..(k)=-f d'Pd'P'g. (P) 5 Ps(P-P')

+inI|(k; pp')] p(p')g„(p'),

where the functions g„are
(al) (g)

4) gp fp
0

der in k and z by Mazenko, and taking z- ie in his
result we obtain

g, (p) = 1, ga(p) = Ps i g~(p) = (pp —3)/v"6. (a2) x 1-nf(0) 0 (-,')'i (1+nn, )

In order to see the origins of certain terms in the
final result, we split I,"into two parts, the first
agreeing with the low-frequency limit of the Mazen-
ko memory function, and the second giving the re-
mainder (asymmetric in p —p')

i'"'(k;pp') =limni" (kE;pp')+iIi' '(k; pp'), (a3)

with
ai&

z z, pp p — xm p

xp~, (12)L(12)[g+L(12)]

xL (12)p (12)+O(k ). (a4)

Similarly, we can write &„„=&„'„"+~' ', corre-
sponding to matrix elements of k p S(p —p').
+n~i(k, i&;pp') and inI,"'(k;pp'), respectively.

The matrix &'„'„' has been calculated to first or-

where

0 (3)'i'(1+nn, ) 0

(a5)

(as)

(g'" = -nu (2/3P)"' o. '

where

(av)

(aa)

The method of calculation is very similar to an
example worked out in Ref. 2. Thus, in the nota-
tion of Eq. (52), we finally have

(k//p) 0„„,, =(g~„'+(o'~„' . (a9)

o,', = ——,
' f d'r e "'"'u (r) r .Vu(r)

and u(r) = Pv(r). Turning to &o~„', we can show that
all the elements except one vanish because of the
symmetry properties of the integrands. The non-
zero element works out to be
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