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Since no anomalous term was found in x and (C18)
is consistent with the scaling laws — @ =1y/(2-17)
and 2 - @ =vd, (C23) implies the breakdown of
these scaling laws at these dimensions. On the
other hand, we have seen earlier that the m -«
limit of the above calculation simply implies that
there is no singularity in specific heat at these
particular dimensions. It is not impossible that
(C22) simply indicates a logarithmic singularity
rather than a correction to the exponent. Such a
logarithmic singularity may be a result of a sin-
gularity in coefficients [ as (C20) indicates] as
functions of d in the infinite-» limit.'® This point

has to be verified or disproved by {urther study.

Finally, the reader may ask whether a similar
anomaly occurs in I',(0) (see Sec. VI), since Fig.
5, which gives I',,(0), does contain the diagrams
in Fig. 4 as a part in Fig. 5(b). Theanswer is that
such an anomaly does occur in the terms in Fig.
5(b) and also in Fig. 5(c). However, when we add
all diagrams in Fig. 5, the anomaly disappears.
The scaling law (6. 12) can be explicitly verified.

In the case of long-range interactions of the
form %2°, the above discussion goes through in the
same fashion. Abe and Hikami also worked on
this case.
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The persistent flow of a superfluid in a ring is discussed in terms analogous to those previously used
for superconductors. The existence of a phase memory around the ring is shown to be responsible for
energy minima with a periodic dependence on the total momentum which is directly related to the
quantization of circulation. The general features are illustrated by means of the ideal Bose gas and the

model of quasiparticles as examples.

An ideal condensed Bose gas in a rotating con-
tainer exhibits a series of equilibrium states,
characteristic of a superfluid, ! with the succes-
sive entry of vortices responsible for their forma-
tion.% In the case of an arbitrarily interacting Bose
system, one is led to the related but more general
conclusion that the angular velocity of the system
varies periodically with that of the container.® The

arguments for this conclusion are analogous to
those applied in a general interpretation of the Jo-
sephson effect* and similar arguments will be used
here to discuss persistent flow and the quantiza-
tion of circulation in a container at rest as a
counterpart to the discussion of persistent currents
and flux quantization®®in a superconducting ring.
Simplifying assumptions will be made wherever
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possible without loss of the most essential fea-
tures.

In particular, the consideration will be restricted
to the uniform flow around a circular ring with the
linear dimensions of the cross section small com-
pared to the radius R. Introducing a coordinate x,
measured around the ring (so that x/R represents
the angle variable) and omitting the explicit depen-
dence on the two additional coordinates required to
locate an atom within the cross section, the system
of N atoms is described by a symmetric wave func-
tion ¥(x,) of the N variables x, with the conjugate
momenta p; (s=1, ..., N). The interaction with the
containing wall shall be neglected for the time be-
ing so that the total momentum

P =Zs)ps (1)

(or the total angular momentum PR) is a constant
of motion.” A solution of the Schrddinger equation

3V =EV (2)

can be written in the form
¥(x,)=exp [iP (Zs)xs> / (Nh')] X(xg=%4) , (3)

where y depends only on the differences x,~x,
(s,s'=1, ...,N) and satisfies the condition

Pyx=0. (4)

Due to the fact that the operators

o
» $74 dxg
appear only in the kinetic energy (1/2m) 3,pZ, and
in view of Egs. (1) and (4), the substitution for ¥
of Eq. (3) into Eq. (2) yields the equation

sgex=ex (5)
for x, with the total energy given by
E=P%/2M+e, (6)

where M =Nm is the total mass of the system.

So far no more than the customary procedure has
been followed to separate the motion of the center
of gravity ($,x,)/N, whereby the part e of the en-
ergy, owing to the relative motion of the atoms, is
normally independent of the total momentum P. In
order to recognize the difference arising in super-
fluid systems it is necessary, in addition, to take
into account the general condition that ¥ must be
single valued and thus must return to the same val-
ue when any atom is brought around the ring to its
original position. With the notations used in Eq.
(3) it is, therefore, required that y undergo mul-
tiplication by the factor

f=e -2TiUPRIN) 7
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whenever any one of the variables x ; is augmented
by the amount 27R. This requirement codeter-
mines the permissible solutions and eigenvalues
of Eq. (5) and thus may lead to a pronounced de-
pendence of e upon P. It also determines the
eigenvalues of P since x depends only upon the dif-
ferences of the variables x; and thus does not
change if all N of them are augmented by 27R. On
the other hand, this implies the N-fold multiplica-
tion of x with the factor f of Eq. (7) and thus re-
quires that f¥=1. According to Eq. (7), it follows
that one has to choose

P=y(%/R), (8)

where v is an integer. Without hindering a prac-
tically continuous variation of P, Eq. (8) merely
confirms the eigenvalues of the total angular mo-
mentum PR to be integer multiples of 7.

It is essential, however, to note that f and, hence,
the conditions to be imposed upon ¥ remain unal-
tered if P is augmented by the amount NZ/R. This
means that every eigenvalue e found for a given val-
ue of P is likewise an eigenvalue for P +N7/R or,
in abbreviated form, that e(P) is a periodic func-
tion of P with period N%Z/R. Moreover, since an
inversion of the sense of rotation cannot affect the
energy E, the same holds for e so that it must be
an even function of P,

More explicitly, a stationary state of the system
can be characterized by the total momentum P and
an additional set of N-1 quantum numbers, to be
indicated by the symbol n. The corresponding
eigenvalue of the energy, given by Eq. (6), is then
of the general form

E,(P)=P%/2M +e, (P) , (9)
where

e, (P+N7i/R) =e, (P) (10)
and

e,(-P)=¢e,(P) . (11)

The result for e(P) is analogous to that obtained
for the energy of a conducting ring as an even peri-
odic function of the magnetic flux, passing through
its opening. Just as in the case of superconductiv-
ity, there is no need in the derivation to postulate
the particular properties of superfluidity; those of
the normal state are included as the special case in
which e turns out to be independent of P. In fact,
no serious error is normally committed if an atom
is considered to be localized well within the avail-
able macroscopic dimension 27R.® The condition
for ¥ to be single valued is then immaterial and
does not affect the energy.® A dependence of the
energy on the total momentum through the part e
of Eq. (6), on the other hand, indicates a phase
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memory which, irrespective of its origin, extends
around the whole ring. A connection between this
circumstance and the occurrence of persistent flow
remains to be established.

To further simplify the discussion, it will be as-
sumed that one deals with the conditions at the ab-
solute zero of temperature. Besides demanding
P =0, the ground state of the system shall be char-
acterized by the set of additional quantum numbers,
symbolized by letting #»=0. The same symbol shall
be chosen to characterize the lowest one among the
functions E, (P) or e, (P) for a fixed value of their
argument so that

Ey(P)=P%/2M +¢y(P) (12)

represents the lowest value of the energy for a giv-
en total momentum P and the function ey(P) has a
minimum at P=0. In view of Eq. (10), this mini-
mum is periodically repeated at intervals N7/R of
P. Assuming that ¢,(P) has a finite slope as P ap-
proaches zero from either side, this function is
schematically represented in Fig. 1. Besides be-
ing chosen to conform with the general properties
of ¢,(P) mentioned above, the plot exhibits in full
lines some of the particular features characteris-
tic of the case of phonon excitation in a system of
interacting particles while the dashed lines are
representative of an ideal Bose gas; both will be
explained later. Figure 2 represents the corre-
sponding function Ey(P), given in Eq. (12); it like-
wise exhibits minima when P is an integer multiple
of N7/R with an absolute magnitude below a “crit-
ical” value P., to be discussed below.

In order to interpret the significance of these
minima it is necessary to take into consideration
the interaction of the system with the container
along with the ensuing equilibrium. Starting from
an arbitrary initial state, equilibrium is reached
by transitions involving an exchange of momentum
and energy. With the container held at zero tem-
perature, the system will necessarily be brought

€o

2xNh/R

FIG. 1. Schematic representation of ey as a function
of the total momentum P, assuming finite slope at the
periodically repeating minima. The heavy lines are of
the character to be expected in the case where the mo-
mentum is ascribed to phonons with their prolongations in
fine lines. indicating the possibility of reaching the same

value of P at higher energy by continued phonon excitation.

The dashed lines indicate the case of an ideal Bose gas.

2189
Eo
g
p
S~ p¥em
N >
L == el L _oP
=1 (0] | 2xNH/R

FIG. 2. Schematic representation of E; according to
Eq. (12) with the part ¢y as shown in Fig. 1. For the
heavy lines (phonon case) the slope towards lower values
of | P| at successive minima decreases with increasing
momentum, thus preventing the occurrence of further
minima above a critical value P, of | P|. No persistent
(metastable) flow is therefore possible above the critical
value u,=P,/M of the drift velocity. Referring to an ideal
Bose gas, the dashed lines indicate the single trivial min-
imum at P=0 and, hence, the absence of persistent flow
in that case.

to the lowest state and hence to a vanishing mo-
mentum if, as in the normal case, there are no
other minima of E,. If, however, there are other
minima the system can reach one of them through
a rapid succession of transitions, each involving
an energy loss accompanied by a small transfer of
momentum to the container. From then on, only
those transitions could occur in which the energy
further decreases with a momentum transfer com-
parable to or larger than the macroscopically
large value N%/R. Such transitions can be safely
considered to be so highly infrequent as to cause
a metastability which, in effect, will let the sys-
tem remain in a state with momentum

P,=uNrn/R (13)

where u is an integer. In view of the general def-
inition u=P/M of the drift velocity and since M
=Nm, the system therefore exhibits persistent flow
with the drift velocity

u, = ui/mR . (14)

Furthermore the “circulation” defined by the line
integral of # around the ring is given by

21Ru, = (h/m) . (15)

Under the circumstances considered here, this
confirms its quantization with the “quantum of cir-
culation” 2/m, more familiar from superfluid vor-
tex motion. The preceding conclusions remain val-
id only as long as | P, | does not exceed the criti-
cal value P, mentioned above. In view of Eq. (12),
one deals, in fact, no longer with a minimum of E,
at such large values of P, that P%/2M rises more
steeply than e;,” since it allows a decrease of the
energy towards the low-momentum side. Ex-
pressed in terms of the derivatives and with
eq(P,)=eq(0), persistent flow at the drift velocity
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u, therefore requires
| Py |/M=|u,|<|eg0],

so that the “critical momentum” is given by P,
=M 1ej(0) | or that u,=| eg (0) | represents a crit-
ical velocity.

The preceding considerations demonstrate the
possibility to derive some of the salient features
of superfluidity from basic principles. While they
yield conclusions about the general character of the
underlying function e, (P), more specific assump-
tions are required to gain additional insights into
its behavior. The following remarks shall serve
to illustrate this point by means of a few examples.

As a first example, the case of an ideal Bose gas
will be considered. In the interval 0 <P < N7#%/R the
lowest energy for a given value P= v (%/R) is ob-
tained by assigning the momentum p =7/R to v
atoms and zero momentum to the remaining (N-v)
atoms. Thus E,(P)=v%%/2mR?=Pi/2mR, and
with M =Nm from Eq. (12),

Pr PR
eo(P)—m(l— N—ﬁ—>. (16)

Extended to other intervals, the corresponding
function is indicated by the dashed parabolic arcs
in Fig. 1. When added to P 2/2M one finds in the
interval P, <P<P,,

_P?
T M

with AP=P ~ P, and P, given by Eq. (13). The
straight segments which connect the points on the
parabola P2/2M for P=P, and P=P,,, represent
this function by the dashed lines in Fig. 2. Since
it has no other minimum than that at P=0, one is
led to-the conclusion that the ideal Bose gas does
not exhibit persistent flow in a container at rest.
Another way of reaching this conclusion is to note
from Eq. (16) that | eg(0) | =7%/2mR. With u,
= ui/mR from Eq. (14), the requirement |, |
< leg(0) | for the drift velocity imposes the condi-
tion | & | <% upon the integer u, thus demanding
that u =0 and excluding any finite stable value of u«.
The preceding result may seem to be incompatible
with the property of the equilibrium states in a ro-
tating container, mentioned in the beginning, to al-
low stable motion of an ideal Bose gas relative to
the container.® It is essential, however, that this
property derives from a uniform rotation, rather
than a translation, of the container so that the in-
variance of the relative velocity against uniform
motion of the system of reference cannot be in-
voked in concluding upon the case of a container at
rest considered here. '

Whereas the model of the ideal gas is thus in-
adequate to explain persistent flow in a container

E,(P) N %(prl), (17)
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at rest, it is sufficient for our purposes to effec-
tively account for the required interaction of the
atoms through their mere replacement by “quasi-
particles” of momentum p and energy 7(). For p
<« 7/6 where 6 is the mean distance between atoms,
they can be identified as phonons so that n(p)=c 1 p |
and where ¢ represents the sound velocity. Phonon
excitation from the ground state then leads to a to-
tal momentum with the least energy requiredif it is
the resultant of phonon momenta pointing all in the
same direction. In the vicinity of the ground state
one therefore has Eq=c | P | as indicated by the
heavy lines in Fig. 2; continued excitation in the
same manner leads to the extension of this func-
tion, shown in thin lines, but lower energies are
here attainable by excitation from the adjacent
minimum. The corresponding function e¢y(P) from
Eq. (12), schematically represented in Fig. 1, has
the initial slope | eq(0) | =c¢ so that the critical ve-
locity «#., mentioned above, is given here by the
sound velocity. Depending on the behavior of 7(p)
for larger values of p, this does not necessarily
mean, however, that stationary drift velocities can
go as high as the sound velocity. Although E, still
has minima for P=P,, it is possible even for |, |
<c that lower energies can be reached by transi-
tions which only require a microscopic momentum
transfer to the wall and are hence by no means ex-
pected to be infrequent. In particular, this occurs
with the customary nonmonotonic form of n(p), ex-
hibiting a “roton” minimum for p~7%/6, and leads
in the usual manner to the somewhat lower value

of the critical velocity, required to render the
above-mentioned transitions likewise excluded for
energetic reasons.

There are no general reasons for appreciable
minima of ey(P) to occur in the interval 0< P
<N7/R, which would invalidate the previous con-
clusions. A notable exception occurs, however,
if one considers He; instead of He,, thus going over
from a boson to a fermion system. In analogy to
the fermion system of electrons, responsible for
superconductivity, persistent flow requires here
a pairing of atoms, effectively taken into account
by replacing the total number N of atoms by the
number 3N of pairs, thus reducing the period of
¢,(P) to half its former value. For the same rea-
son the mass m of a single atom has to be replaced
by 2m so that, analogous to the flux quantum for
superconductors, the quantum of circulation is
likewise reduced to half its former value.

Although generally more intricate, the situation
for solutions of He; in He, stays simple as long as
they are sufficiently dilute for He; to be in the nor-
mal state and thus to remain at rest in the equilib-
rium reached through momentum transfer to the
wall. In fact, there is in this case no essential
difference between the effect of the wall and of the
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atoms of Heg upon those of Hey, so that the persis-

tent flow of the latter is not affected by the pres=
ence of the former.

Further modifications appear if one abandons the
assumption of zero temperature but they remain
comparatively minor if the temperature T of the
wall is assumed to be so low that it causes the sys-
tem to be found with an appreciable probability on-
ly at energies close to a specific minimum of E,.
The essential difference from the case of zero
temperature consists of the replacement of ey(P) by

f(P)= = £ T InXexp(-e,/kT) (18)

where f(P) is likewise an even function of P with
period N7Z/R, and in the corresponding replacement,
of Ey(P) in Eq. (12) by

F(P) = P%/2M + f(P) . (19)

At the assumed low temperature f(P) will not differ
appreciably from ey(P) except that the discontinu-
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ous slope for T=0 is replaced by a quadratic mini-
mum. Correspondingly, the minima of F(P) ap-
pear at values of | P | slightly below those of Eq.
(13), to be denoted by

P,=P, -~ (aP), , (20)

with (AP), likewise proportional to u. It is pos-
sible, therefore, to ascribe persistent flow to a
“superfluid part” of the liquid with density p,,
moving with a finite velocity #, = P,/M, while the
“normal part” with density p,=p - p, remains at
rest and to write Eq. (20) in the form

P-u.':Pu(ps/P), (21)

which can be regarded as a definition of the super-
fluid fraction (p,/p), with the property to approach
unity as the temperature approaches the absolute
11
zero.
The author is grateful to O. Penrose and C. N.
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metastable motion of the gas. Since it is not prevented by
conservation of energy, a succession of transitions, owing to
interaction with the wall at rest, should be expected to rapidly
bring the individual atoms into their state of zero momentum
even if they all started from the same finite momentum.

The difference is made obvious by slightly extending the
previous considerations to the combined system, obtained by
inclusion of the container as a rigidly moving body. With the
same notations as before and with the minimum condition of
E, from Eq. (12) replaced by that of the combined energy for
a given combined momentum, one finds the more general
relation u + e:, (P) = v, where v is the velocity of the
container. It leads to the previous conclusions for v = 0 and
also confirms the drift velocity u to be equal to v for

equilibrium in the normal case where e, is independent of P
but has other consequences if both v and ve; are finite. In
particular, for the ideal Bose gas with e, from Eq. (16), one
finds that a change of v causes u — v to alter periodically
and discontinuously between the values — (% /2m R) and

+ (B /2m R) as noted in Refs. 1-3. Both, however, vanish in
the limit R > « and thus prohibit a finite drift velocity
relative to the container, in conformity with the result for a
container at rest and the circumstance that rotation and
translation are in this limit indistinguishable. On the other
hand, for systems which allow persistent flow in a container at
rest, a rotation will produce different effects analogous to those
of an external flux, discussed in Ref. 4, when its absence does
not preclude the existence of persistent currents in a
superconductor.

""The severely limited temperature range assumed here implies
that (AP), < N7 /R and p;/p = 1, but it can be extended to
higher temperature by means of additional considerations.
Adhering to the model of quasiparticles, transitions of states
reached by excitation from one minimum of E, to states
reached from another minimum must then be recognized, even
with a microscopic momentum transfer to the wall, as being
highly infrequent. With the summation in Eq. (18) thus to be
extended over only one such group of states, one deals, in
effect, with a manifold of function f,(P) which, although
individually not periodic, repeat each other identically upon a
shift of P by integer amounts of N # /R. For T = 0 they
assume the form schematically indicated by the continuations in
thin lines of Fig. 1. Going to higher temperatures, a quadratic
minimum not only replaces the discontinuous slope, but is
allowed to become much flatter than previously implied. The
minima of the corresponding function F, (P) =P22M+ fu @)
can then appear at values P, well below P, but still proportional
to u, thus extending the range of the ratio ps/p in Eq. (21) even
down to its vanishing point at the onset of the normal state.



