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Critical exponents are functions of d, the dimension, and n, the number of components of the order
parameter involved in the second-order phase transition. They can be expanded in power series of
1/n when n is large. We present details of calculating by perturbation theory the critical exponents
above T, for arbitrary d and to O(1/n) for short-range interacting systems and also for long-range

interacting systems.

I. INTRODUCTION

Consider a thermodynamic system which has a
critical point at temperature T,. Let the system
be d dimensional and let the order parameter have
n equivalent components, e.g. , n=1, 2, 3 for the
Ising model, liquid-helium 4 (scalar Bose system),
and the Heisenberg model, respectively. As ob-
served by Wilson, if n is very large, it is pos-
sible to calculate critical exponents as expansions
in 1/n by perturbation methods. In this paper, we
discuss in detail the calculation of the critical ex-
ponents above T, to O(1/n) for systems with short-
range interactions, for those with long-range in-
teractions, and also briefly for the charged sys-
tems (Coulomb interaction). The results of this
paper have been reported previously by Ma and

by Fisher, Ma, and Nickel. Independent calcula-
tions by entirely different methods have been per-
formed by Abe and Hikami and by Suzuki. The
screening approximation of Ferrell and Scalapino
produced exponents to O(1/n) for d = 3. Investiga-
tions on equations of state and exponents below T,

have been done by Brezin and Wallace and by
Suzuki.

The basic idea of our method of calculation is
the same as that of the e expansion ' (& =4 —d).
Let us illustrate it briefly. Denote the Fourier
transform (of wave number k) of the order-param-
eter correlation function by G(k). Suppose that for
small k

G(k) -k-""[I+R(k)],
where R(k)-0 as k-0. Equation (1.1) defines the
exponent g. If q can be expanded as a series in
I/n,

~2/=Can +Q2n +'''
then the expansion of G(k)k in powers of 1/n will
include a series in powers of ink. The ink series
must exponentiate as implied by (1.1):

2 3

G(k)k = (const) (1st) tllk+ —tn k —tn k+
2 3'I

+terms vanishing as 0-0 . 1.3
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In view of the universality hypothesis, critical ex-
ponents depend only on d and n but not on the de-
tails of the interaction (assuming short-range in-
teraction for the moment). Therefore, as far as
computing the critical exponent goes, one is free
to choose any interaction he pleases as long as
the computation can be done expediently. If we
choose a, point interaction of strength of O(I/n),
then it becomes straightforward by the usual per-
turbation theory to compute G(k)EP as a series in
I/m. Furthermore, by choosing the appropriate
interaction strength, it turns out that the series
in Ink which exponentiates to give k" in (1.3) can
be singled out order by order in I/n, and thereby
one determines q as a series-in 1/n. For the cal-
culation to O(1/n) described here, as we shall see,
no special choice of the interaction is needed ex-
cept that it must be of O(1/e). The calculation of
q to O(1/n) is accomplished by summing diagrams
for G(k)k to O(1/n) and computing the coefficient
for ink. Other exponents are computed in the
same way.

What is presented in this paper is only the
algebra leading from the above idea to the various
exponents to O(1/n). - No attempt is made here to
construct a rigorous formalism to serve as a
mathematical foundation. Many points which must
be explained for general calculations turn out to
be irrelevant for O(1/n) calculation and will not be
mentioned here owing to the length of this paper
and to our lack of experience in higher-order cal-
culations. One motivation of presenting the "te-
dious but straightforward algebra, " here, is to
show explicitly how things turn out so neatly and
thereby give hints on the physics of criticalphenom-
ena and the structure of simple field theory.
This paper should serve as an introduction to some
of the technical aspects of 'the new approaches to
critical phenomena. It should also provide some
convenient information for higher-order calcula-
tions in the future.

The results here are valid for arbitrary d.
Therefore, they may be expanded in powers of
e =4 —d and comparison with the known &-expan-
sion results ' ' can be made. Such a comparison
is easily made and has shown complete agreement
to the orders calculated so far. In the absence of
highe'r-order results, such agreement is very
encouraging. When taken together, both the & ex-
pansion and the 1/n expansion are on firmer
ground than either of them alone would be.

The outline of this paper is the following. In
Sec. II, we define the models and outline the pro-
cedure of calculation. We summarize the results
from direct perturbation-theory calculation of
four exponents for short-range interacting sys-
tems, two exponents for long-range (k'-type am-
plitude-amplitude) interacting system, and also

Let us choose a model that is convenient for our
purpose. For counting diagrams, we find it easier
to use a model of a comPlex classical field of m
components. Such a model i.s equivalent to an n-
component sea/ field, i.e. , a field of

independent and equivalent components. We shall
always use the wave-vector representation and
denote the fieM amplitudes as ag, j =1, 2, . . ., m.
The wave vector k is limited in magnitude to less
than a cutoff value which we arbitrarily have taken
as 1. I et us define the "density fluctuation" as

Pf —ZZ cy"cg~f,
y j=1

The Boltzmann factor for statistical averaging has
the form e x and (a) for a short-range interaction

X= Z[(ro+u )a,-„a,-„+up)pg],3

kj

(b) for a long-range interaction

X=Z [(~0+0')a,*-„ap„+up-„p-„], v & 2 (2. 4)
jf.j

and (c) for a Coulomb interaction (charged system)

X= Z [(r, +u')a~p„a,"„+e'p„pf/0'] . -(2.5)
R&0g j

TABLE I. Frequently occurring symbols.

Symbol

l
rn =2n

Defined by
(Eq. No. )

(2. 1)
(2. 6)
(2. 7)
(2. 9)
(2. 13)
(2. 15)

Symbol

S~
X
~(1)
J
Jfy

Defined by
(Eq. No. )

(2. 22)
(3.7)
(3.8)
(3.10)
(7.2)

results on systems with Coulomb interaction. Sec-
tions DI-VI are devoted to the study of short-
range interacting systems. The long-range case
is considered in Sec. VII, and the charged system
is considered in Sec. VDI. Concluding remarks
are given in Sec. IX. Appendix A is devoted to
the calculation of one diagrammatic element in the
case of long-range interaction. Appendix B out-
lines the calculation of the density-correlation
function at T, to O(e ), where e =4 —d. Appendix
C is devoted to the calculation of the specific-heat
exponent z to illustrate the anomalous terms re-
cently reported by Abe and Hikami.

To aid reading, Table I locates the definitions
of frequently occurring symbols in this paper.

II. BASIC FORMALISM AND SUMMARY OF RESULTS

A. Definitions and Models
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G(k) =(aga&-„) (independent of j) (2. 6)

(2. 7)

The critical exponents are defined by the form of
these correlation functions for small k at T, or
for small ro —ro, at zero k. We have

Within a small temperature range near T„roef-
fectively measures the temperature. We shall
use ro, to denote the value of ro at T,.

The statistical averages of interest are the cor-
relation functions

agator is that, for our calculation, r is small and
becomes zero at T„whereas ro does not have
such a desirable quality.

Drawing diagrams and writing down the terms
for correlation functions are easy but the evalua-
tion of the terms is nontrivial and is the main con-
tent of the following sections.

C. Summary of Results

Case (a): Skort rang-e interaction. We com-
puted four exponents by perturbation theory:

G(k) -k "",
)t(k) - (const) —k~

(2. s)

(2. 8)

q =4(4/d —1)S„n'+O(n ')

y = (-.' d -1)-'(1—6S,n-') + O(n-'), (2. 18)

at T,. These define the exponents q and ~. Above
T„wehave

X=4 —d —16(d —2)(d —1)d S„n +O(n ),
p = 4 —d —4(8/d —7+ 2d)S,n '+ O(n ')

(2. 20)

(2. 21)

G(0) (ro —ro )
"

)f(0) - const —(ro —ro, )

(2. 10)

which define y and . The exponent —n also de-
scribes the singular part of the specific heat C~.
We shall also be interested in the function

At T„wedefine p, by

(2. 13)

B. Perturbation Theory

We shall calculate the exponents by extracting
logarithmic terms in the perturbation expansions
of the correlation functions. We are dealing with
a classical field and there is no complication of
quantum mechanics. The rules for generating
diagrams and writing down terms therefrom are
very simply derived from the expansion

e R cdxo+RE) c Ilo ( )n
I

ff~Q 5 ~

where

sino (—,
' d —1)

w(o d —1)B(2d —1, p d —1) (2. 22)

where B is the P function. These exponents
are defined by (2. 8), (2. 10), (2. 9), and (2. 13),
respective1. y.

The above values for g, y, and p, are found to
satisfy the scaling law

p, =(2 —ri)(1 —y ') .
We have not computed the exponent + directly
from perturbation theory, but it can be obtained
from X if we assume the scaling law

—o. = Xy/(2 —ri)

Substituting (2. 20) for X, we find

(2. 23)

a= —(4 —d)(d-2) '[1+8(1—d)(4 —d) S„n ]+O(n ).
(2. 24)

This expression is verified to be consistent with
the scaling law

r = G '(0), -

G (k) =ro+k +Z(k)

(2. 15)

(2. 16)

The perturbation series generated by (2. 14) would
have (ro+k )

' as the free-field propagator k'
should be replaced by k' when (2. 4) is used . We
now write [from Eqs. (2. 15) and (2. 16)]

G (k) =r+k +Z(k) —Z(0)

and use (r+k )
' as the free-field propagator.

Meanwhile, Z(0) is subtracted out from Z(k) when
self-energy insertions are made to propagators.
The obvious advantage of this choice of free prop-

where 3CO is the part of X which is quadratic in the
field amplitudes. We do want to rearrange the
perturbation series a bit. Let us define the quantity
r and the self-energy Z by

where v =y/(2 —q). In Appendix B, we also give the
calculation for X to O(e ) (e=—4 —d). The result is

n-4, 2(n+2) 13
n+S ' (n+8)' 2

3P 't

i+ O(e')

(2. 26)
which is exact in e. Calculations of g, y, and z
to O(e ) and O(e') and exact in n have been per-
formed by Wilson and by Nickel. All results are
so far consistent. However, Abe and Hikami'
have pointed out recently that for some particular
values of d there are additional terms in cv, and
thereby (2. 23) and (2. 25) are violated at these
dimensions (see Appendix C for details).

Case (k): Long-range interaction k', a&2,
0 & d & 2o. Two exponents have been computed by
perturbation theory:
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@=2-o+O(n '), (2. 27)

I( —1, 0) =2 z~/

r(-,'d-o)r(-,' (d-(r))r(--,'d+-,'a)
r(d ——.

' o)r(-,' o)r(v)

11(0, 1) =2 ~ B( (d —o), -'(d-o)}

(2. 29)

xr ( —-', d+c)r(—,'o)", (2. 30)

B is the P function, and K= 2 ~"v "~2r(—,'d) '.
Note that (2. 2V) and (2. 28) do not reduce to (2. 18)
and (2. 19) when o is set equal to 2. In other
words these exponents are not continuous in o at
e = 2. Other exponents have not been computed here.
Expressions to O(e ) and exact in n can be found in
Ref. 3. Note thatin this case, e=—2o —d (not
4 —d). For d&2o, q=2 —o, y=1 for all n (see
Ref. 3).

Case (c}: Coulomb interaction. The exponents
y and q are found to be the same as those for the
case of the short-range interaction. Owing to the
infinite range of the Coulomb force, the density
fluctuation behaves in a peculiar way, namely,

x(k)-k' .
As has been usually done in discussing uniform
charged systems, we define an "irreducible den-
sity-correlation function" x' by

X=X'(1+e'X'/k'} ' (2. 31)

y= ——1 1+2K ' —1

x v —-( tl(0, 1) n'}+0(m'), (R, 28)

where

The Green's function G(k) at T, behaves like
k "". In terms of the self-energy Z(k), we write

G-'(k) =k'+Z(k) -Z(O) . (3.1)

In this section, T= T„i.e. , y=0, is understood.
The leading term in Z(k) —Z(0) is the third dia-
gram in Fig. 1. (The first and the second are mo-
mentum independent. ) The wavy line represents
the geometric sum shown in Fig. 2:

One of the many ways to evaluate this integral is
to combine the denominators using the formula

A 'B'= f, dn [(1—n)A+nB]' (s. 4)

and then to perform the p integral by changing
variable to p'=P+ ~k".

11(k)= f, d fd'p'(2 ) "[p + (I — )k']' .
(s. 5)

Here we can take the cutoff of the p' integral to
infinity and write

(2m)~ f d'p'=K f p" 'dp',

K -=2""&"~'/r(-.' d) ~ (3. I)

(3.8)

we can evaluate 11(k) easily and obtain

II(k) =k' 'B(-.d- 1, —,d -1)Z=k' 'II(1), (s.8)

—u+ ( u)-'mII+ (-u)'(mll)'+ ~ ~ ~ = —u(I+ muii) '
(3.2)

The summation of these diagrams is necessary and
sufficient to O(1/m) because u= 0(1/m) and each
closed loop implies a factor m. The function 0
is the "elementary bubble" making up the strings
in Fig. 2, i.e. ,

11(k) = (2~) "fd-'p p '(p+-k)-' . (3.3)

%e find, at T,

X'(k) - const —k if X & 0

if X&0

and

(2. 32)

(2. 33)

where B is the P function

B(x,y) = f, dn n" '(1 —n)" '

J —= —,Kn(—,
' d —1) csex(—,d —1}

(s. 8)

(s. io)

X'(0)-(const) —(r, -r„}"if —n&0 (2. 34)

) I ()) I if —n & 0, (2. 35)

where A. and n are given by (2. 20), (2. 24), and
(2. 28).

The results (2. 18)-(2.20) and those for the
charged system have been previously reported in
Ref. 2. The results (2. 27}-(2.30) have been re-
ported in Ref. 3. The result (2. 21) has not
been reported before.

III. EVALUATION OF q

To illustrate the general procedure and tech-
nique, we begin with the evaluation of q, which is
the simplest.

Thus, to O(1/m), we have

Z(k) —Z(0) =+ (2n) J cP'P u[1+murr(P)] '

-m k (ink+ const) (s. i2)

where the k~ lnk term comes from the small-p
region of the integration. Clearly, for m- ,
(3.11}goes to zero and G ' = k so that q = 0.

For large but finite m, g is small so that

G -k "-k (1 —r) ink+ ~ ~ ~ ) (s. is)

x [(p+ k) 3 —p '] (3.11)

following Fig. 1(c). According to (3.8), II(p)
blows up as p - 0. For small k, Eq. (3. 11) behaves
like
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According to (3. 12) and (3.13), q is therefore de-
termined to O(l/m) by the coefficient of k ink
term in (3.11).

To determine the 0 ink term, it is sufficient to
consider the small-p region of integration in
(3.11). Since II(P) is very large, 1+umII(P) may
be replaced by umII(p). Equation (3. 11) may now
be written, for our purpose,

Z(k) - Z(o) =m-'(2~) ' f d'p 11(p) '[(p+k) '- p '] FIG. 2. Definition of a wavy line.

q = 2(4/d —i)m-'S„+O(m-'), (s. iv)

where S„is given by (2. 22). This result is mean-
ingful only for 2&d &4. For d=4 or larger, II(P)
does not blow up and (3. 14) no longer holds. For
d& 2, one easily verifies that (3.14) does not con-
verge. In fact, there would be no ink term for
d &4, and therefore q =0. Nothing definite can be
said here for d~ 2.

IV. EVALUATION OF y

We now examine the Green's function at zero
momentum (i. e. , the static susceptibility) slightly
above T,. For k =0, we have

G '=r=r,-+Z(r) =r, r„+Z(r)-Z(O)-, (4. i)
where k =0 is understood in the self-energy. The
quantity ro, is defined by ro, + Z(0) = 0, i.e. , the
value of xo at the critical point. Near T„wehave
r (ro —ro,)",-which defines the index y, and thus

r+ z(O) —z(r) =ro —ro, -r"" (4. 2)

The lowest-order term in 1/m for Z(r) —Z(0)
comes from the first diagram in Fig. 1. This

PIG. 1. Self-energy diagrams.

= [mll(1)]-' f d"p p'-'[(p+k)-'- p'],
(s. 14)

where P is restricted to a finite region around the
origin. We now write

(p+k) o=(P +k +2Pkcose) i (s. is)
The angular integral over 8 is affected by writing

1f

(ss)' f Ssp= " p"dp sis''&dS

(s. 18)
where K~, is given by (3. I) with d replaced by
d —1. Now the integral (3. 14) is elementary and
the coefficient of the k~ lnk term is easily worked
out using an elementary integral table. ~~ We find

1/y = —,'d —1+O(1/m) (4. 4)

Note that since -', d —1 & 1, the term r in (4. 2) is
negligible.

Diagrams l(b) and 1(c) give O(l/m) contribution
to Z(r) —Z(0). Since r is not zero, the elementary
bubble II becomes much more complicated than
(3.8). Before evaluating these two diagrams, we
shall digress on the structure of II. For ~ 9,
we have

II(r, k') = (2m)~ I d"p (r+p') '[r+ (p"+ k)'] '

= II(r/k', 1)k' ' (4. s)

Again, let us use (3.4) to combine the denomi-
nators and then perform the p integral as we did
before. We find

II(r, 1)=J f, dn[r+n(1 —n)]'i'', (4. 6)

where J' is given by (3.10). Using the formula

f '
dx (1 —zx') "= 2F (v, —,', —,', z) (4. 7)

and other identities for hypergeometric functions, '
we find

II(r, 1)=Jr~"""E(,'d-2, 1, —,', —1/4-r) . (4. 8)
For small x, this expression can be expanded:

II(r, 1) = II(0, 1){1—2(3 —d)r + 2[(4 —d) —1]r + O(r )j
+ [2J/(1 ——,'d)]r"~ '[1 —(4/d)r+ 0(r )] . (4. 9)

Note that II(r, 1) is not a single power series but
a sum of two series. Equation (4. 9) is all we need
to know about II for our calculation of y.

Knowing enough about II, we proceed to evaluate
the second and third diagrams of Fig. 1. To
O(1/m), we have

r'~'-=H~'-'-' =r"" '(i —g Inr+ ~
-~

~ )

for (4. 2). Thus, the task is to determine the co-
(4. 10)

diagram is of the zeroth order; i. e. , it does not
vanish when m- . It gives

Z, (r) —Z, (O) = mu(2~)" f d'p [(r+p')-' -p-']+ O(m-')

= —mur" ~' 'J/(-,' d —1), (4. 3)

where J' is given by (3.10). The integral is trivial
and well defined for 2& d& 4. Comparing (4. 2)
and (4. 3), we have
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where y—=p, and for small x andy, 1+muII may
be replaced by muII. Using the fact that II(r, y)
=y" ' II(r/y, 1) and (4. 9), one easily shows that
(4. 12) behaves like

(const)r lnr+ (const)r ~2 (4. 13)

but has no r"~2 lnr term
We proceed to Fig. 1(b). The diagram may be

viewed as a correction to Fig. 1(a), i. e. , a self-
energy Z, is inserted into the loop of Fig. 1(a):

Z, (r) = mu(2z) ' f cP'q (r+ q') '[Z,(r, q) —Z,(r, 0)],
(4. 14)

Z,(r, q) =(22)~ f d'pu[1+muil(p)] '[r+(p+q)2] ' .
(4. iS)

Since (r +q ) = —(8/sr)(r+q ) ', we can rewrite
(4. 14) as

Z, (r) = mu(2m) " d'p u[1+muii(P)] '
4

—f'+P 2p d q t'+q»11(P) 2 -i ~ ~ 2 2 -2'

(4. 16)
The q integral in the bracket is elementary:

(22)~ f d'q (r+q') '= 2Kfdyy i' '('r+y) '

gg/2 2 (4. 17)

Again, only the small-p region of integration in
(4. 16) is of interest. We write (4. 16) as

Z,(r) = ', uKf, dyy"' 'll '(r, y)[---,'rl'(r, y)

gr'~ (r2+—2y) '], -

8 II
(4. 18)

where y
=—p2. Since II is known and (4. 18) is a

one-dimensional integral, extracting the small-r
behavior of Z2(r) is easy. We shall give one way
of doing the algebra here for completeness. It
follows from (4. 5) that

efficient g of the r 2 lnr term in the self-energy
given by these diagrams. We shall show first that
the diagram 1(c) does not contribute to such a
term, and then evaluate the contribution from
diagram 1(b).

Diagram 1(c) gives

Z, (r) = (2v) ' f d p u[1+ mull(P)] (r+P )
'

(4. 11)
Note that there is no angular integral involved.
In view of (4. 9) and (4. 11), the integral from the
large-p region cannot give rise to any logarithmic
term. Only the small-P region is of interest, and
we may write

Z,(r) —Z, (O)=m 'K-', f, dyy"''

x[II(r, y) '(r+y) '-II(O, y) 'y '], (4. 12)

II(r, y) =r"' 'II(1,y/r) (4. 19)

We can write the integral in (4. 18) in terms of a
new variable z =y/r:

Z2(r) = 2 uKr" i L

L= f,-"dzz'"-'ll-'(I, z)

(4. 2o)

~~ia
( )

=
( )

+ (3 d)r

+ (higher-order terms in r) . (4. 23)

Integrating (4. 23) to get L and substituting it in
(4. 20), we obtain

(mu) 'Z2(r) =7/(2 d —1)gr '[lnr+ const]+ const

P, = —3m S„[2d —1]1 (4. 24)

Combining (4. 24) with (4. 3), we have

r+Z(0) —Z(r)=m Ju( , d —1—) 'r ~ '(1 —(Inr)

+ (higher orders in r) + O(m 2) -r' " . (4. 25)

It then follows that

y = (2 d —1) (1 —3m 'S2) + O(m 2)

V. EVALUATION OF X

(4. ae)

We proceed to examine the density-correlation
function }f(k) [defined by (2. I)] at T,. The exponent
X is. defined by (2. 9), i.e. , }f(k)-(const) —k'.
We shall then obtain the exponent n [defined by
(2. 11)]via a scaling law.

A. Lowest-Order Term

To lowest order in m, the diagrams for X are
shown in Fig. 3. They give just a geometric sum,

}f(k)= mll —u(mll)'+ u'(mil)'- ~ ~ ~

=mll(1+mull) '

=m[(mu} ' —(mu) 'lI '+(mu) 'II ' —'''],
(5. 1)

where we have expanded in powers of II -k ~
[see Eg. (3.8}]. The first two terms in the last
line of (5. 1) give

}f(k)- (const) —(const) 'k4~ (5. 2}

The third term is negligible for small k. By the
definition of X, we have, from (5.2) and (2. 9),

&&[ —2 II'(1, z) —J(1+z) ~] . (4. 21)

We want to extract the lnx term in I.. To this
end, we differentiate L to obtain from (4. 21)

'. r"—'"-'II'(r, 1) —Z/(I+ r)
S(r-') 11(r, 1)

(4. 22)
Now substitute (4. 9) in (4. 22) for II and collect
terms. We get
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x(p+q+k) 2u[1+muil(q)] ~, (5. 9)

FIG. 3. Lowest-order density-correlation function p.

X =4 —4+ 0(1/m) (5. s)

To compute the O(1/m) term of X, we need to
include the next-order diagrams for y. These dia-
grams are obtained from those in Fig. 3 by adding
one more wavy line in all possible ways. Or,
equivalently, they are obtained by adding the cor-
rection term II, to an elementary bubble II making
up the diagrams in Fig. 3. II, is the sum of dia-
grams given in Fig. 4. We write

II, =II,+II,+II, (5. 4)

= (m~)-'ll-'ll, + ~ ~ ~ (5. 5)

where we have again expanded in powers of
II -k ~ and kept only the first term. Since
II - (k ~) and we are interested in an m 'k ~ ink
correction to the k4~ in (5. 2), we must find the
k~ 4lnk term in II, in view of (5. 5).

The evaluation of II, and II~ is easy but that of II,
is much more difficult.

B. Evaluation of II, and II

Figure 4(a) represents the O(m ') self-energy
correction to one of the propagators in the diagram
for II. We have

rl, (k) = —2(2n') f d p (p+k)-'P-'[Z(P) —Z(0)]m
(5.6)

As we have shown in Sec. III,

Z(p) —Z(0) = -qp'(Inp+ const)

+ (higher order in P), (5. 7)

where q is given by (3. 1V). Substituting (5. 7) in
(5. 6) and changing the variable p to pk, we obtain

II,(k) = —2k [f d p (p+1) p ( —pink)+ const]m

=
2q II(1)k' '(ink + const) m

= 2(4jd —l)Kk~ 4(ink + const) (5. 8)

where we have substituted (3.17) for q and (3.8)
for II(1) in the last step. The quantity 1 is the unit
vector in the direction of k. Note that the P in-
tegral in (5. &) needs no cutoff; i.e. , the large-P
contribution is very small.

Figure 4(b) gives

II,(k) = —(2m) ~ f d"Pd~qP ~(p+k) (p+q)

for the three terms shown in Fig. 4(a)-4(c). The
contribution to y is

}fg = Iig(1+ mull)

C. Evaluation of II,

Figure 4(c) gives

II,(k) = 2(2v) ~ f d q II '(q) II '(g+ k) 7 (k, q)

(5. is)
where T(k, q) is the triangular part:

T(k, q) =(2w) "J d'p(p+k) 'p '(p+q) 2 . (5. 14)

In (5. 13), we have, as before, written m ~II ~ for
each wavy line, since only small q is of interest.
We now change the variable q to qk in (5. 13) to
obtain

II,(k) = k" 42(2m)~ f d q II '(q) II ~(q+ 1)7 (1,g)

(5. 15)
where q now has the upper limit 1/k instead of 1.
The task now is to determine T(1, g) for large q.
This task cannot be accomplished easily by brute-
force integrations, because the p integral of (5. 14)
involves two angular integrals owing to the two
fixed vectors T and q. To extract the two leading

(a) (b)

FIG. 4. Diagrams for II&.

The large-q region of the integral does not con-
tribute to the k" 1nk term. Again, we drop 1
compared to mull(q) since only small q is of in-
terest, and then we change the variables P and q
to Pk and qk. After such a change of variables,
the cutoff in the magnitude of p and q becomes 1/k
instead of 1. We have

II,(k) = k' —'(2~-) '" f-d'p d'qP '(p+-1)

x(p+ j) '(p+ q+I) 'll '(1)q' ', p, q&1/k.
(5. 10)

After this change of variables, the ink term in the
integral of (5. 10) comes from the upper limit of
the q integral. The P integral does not need a
cutoff; i. e. , it converges when 1/k- ~. Its con-
tribution comes from the regions near p =0 and
near P+ q = 0. Thus, as far as the ln(l/k) term
goes, we may write (5. 10) as

II~(k)= —k 2(2m) f d"PP (p+1) q d"qII (1)
(5. 11)

The P integral gives II(1) and the factor 2 in front
counts for the two regions mentioned above.
Writing Kq~ 'dq for d q (2m), we have

~ 1/k

II, (k) = —k" 2K —= 2Kk'~(Ink+ const)
(5. 12)



CRITICAL EXPONENTS ABOVE T, TO Oll/n)

terms, we can actually avoid one of the angular
integrals easily if we use the Mellin-transform
method, which is a version of the Laplace trans-
form. The Mellin transform and its inverse are
defined by the two formulas

g(s) = J dxy(x)x' ',
(5. 16}

f(x) = (2') I ds x 'g(s)

See the Bateman Manuscript Project for details. '~

We write (5. 14) as

T(1, q) = (2v)~ I dPP' ' J dA (P + 1+2P cos8) '

x (P + q + 2Pq cosP) ', (5. 17)

where f dA integrates over the directions of p.
The angles 8 and p are defined by

cos8=1 p/p, cosp=(q/q) (p/P) (5. 18)

We now take the Mellin transform of (5. 17) with
respect to q, which appears only in the last factor.
Using the formula

f" (x'+2axcos8+a') 'x 'dx

= —m cscots sin(s —1)8 csc8a' s, (5. 19)

0&Res & 2, (5. 20}

4-d& Res &2 (5. 23)

The advantage of the Mellin-transform approach
is that the P integral is performed easily with the
help of (5. 19). To obtain T(l, q) for large q, we

perform the inverse transform on (5. 2):

T(l, q)=(2vi) ' I dsq 'T(l, s), (5. 24)

where 4 —d& c& 2 as required by (5. 23). For large
q, we close the vertical contour to the right and
pick up poles of T(1,s) on the right. According to
(5. 21}, poles are located where s = integer and
where s+d —4=integer. Thus, the poles to the
right of the vertical contour are at

first in integrating over q and then in the p integral
in (5. 17), we find

T(1, s) =—I dq q' 'T(1, q)

= m'cscots csex(s+d —4)(2m) ~
J dA

x sin(s —1)g cscg sin(s+d —5)8 csc8, (5. 21)

0 & Res & 2, 0 & Re(s + d —4) & 2 (5. 22)

The two inequalities in (5. 22) imply that

T(l, q) - (2m) ' I d'P (p+ 1) 'P 'q ' = II(l)q '
(5. 26)

The residue at the second pole 6-d is

—q ~'icsc7r(6 —d)(4)~ f dAsin(5-d)P cscP
(5. 27)

The angle 8 has dropped out, and f dA can easily
be performed:

(2g)~ J dA sin(5 —d)P cscP

=(2v) 'K~ ~ I dP sin~ /sin(5-d)@
0

=K, ,2'~(d —Qsin2 v(5 —d) . (5. 28)

To sum up, we have

T(1, q) = q '11(1)

—q "m csex(6 —d)K„g2 (d —3) sin ~ g(5 —d)

+ (higher-order terms in q ') . (5. 29)

We now square (5. 29) to get T (1, q) and substitute
it in (5. 15). The two factors of II ' give -q' I,
and T gives -q +q '~+ ~ ~ ~ . The q term of T
results in a k"" contribution to the integral, but
the q

'" term gives a ink contribution. Copying
down the coefficients and simplifying, we obtain

II,(k) = (const)k ~ + 4K(d —3)k~ (ink+ const)

+ (higher orders in k) . (5. 30}

Adding (5.8), (5. 12), and (5. 30), we get II, ac-
cording to (5.4). We get y, from (5. 5):

)f, = (mu) 'II(1) 'k'~

&& [4(2/d+ d —3)A ink + const] + const,

where the last const comes from the k+ term of
(5. 30). Now we add (5. 1) and (5. 31) to obtain the
leading terms in the 1/m expansion of y(k):

(5.31)

)f(k) = const —m(mu) II '(l)k ~[1+X,(ink+ const)]
- const —k' ""~

where

—m-'4(2/d+ d —3)Z
11(1)

Writing out K and II(1) explicitly, we have

(5. 32)

(5. 33)

T(1, q). For s = 2, the angle p drops out of (5. 21)
and the remaining angular integral is easy. In
fact, the residue at 2 can be easily obtained direct-
ly from (5. 14). For large q, (p+ q) ~= q

s and

2, 3, 4,

6-d, 7 —d,
(5. 25)

X =4 —d+X, =4 —d —8(2/d+d —3)8~m '+O(m s).
(5. 34)

There is no pole at 5 —d owing to the sin(s+d —5}8
factor in (5. 21); nor is there one at s = 1. The
two poles at 2 and 6 —d turn out to be the only ones
of interest. The residue at 2 gives a q

~ term for

D. Exponent n

From the same diagrams we just examined for
X, we can also calculate y(0) above T, and obtain
the exponent ~. We shall do such a calculation
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in Appendix C. Here we shall deduce e from X

assuming the validity of the scaling law

—n = xy/(2 —q), (5. 35)

which can be obtained in the following way. '
Near T„weassume the existence of a function

f(x) and a constant y such that

Therefore, (6.4) gives

I', = —u[muII(1)] k ~R'( —ink+ const)

Diagram 5(d) gives

I'„=[murl(l)] 'k'~2(2w)~ f d"q [mII(q)]-'

x [mli(j+k)] '(q+ —,
' k)2mT(k, q)

(s. 5)

(s. 6)

)f(k) =f(kg) P,'+ const,

where f, is the correlation length and

(&0- &0.) ",
v =y/(2-q)

(5. 36)

(5. 37)

(5.3s)

For k=0, we have )f(0)-const- (v, ro,)-'. It fol-
lows from (5.36) and (5. 3V) that

(5. 39)

assuming f(0) is a finite constant. At T„ggoes
to infinity. We must have f(gk) (gk) " and y = —X

in order that )f(k) - const —k". By (5. 39), we have
—n = vX, which leads to (5. 35). Substituting (5. 34)
in(5. 35), we obtain

—n = 1+
4 d S„+O(m ) . (5.40)

4 —d 4(1 —d)

It is easy to check that this expression satisfies
the relation 2 —n = vd, with v given by (5. 38), and

y and q computed in Secs. III and IV. In Appendix
C, we shall discuss possible violations of the
scaling laws involving n observed by Abe and
Hikami.

VI. EVALUATION OF p

The functions I'~, and the exponent p, are defined
by (2. 12) and (2. 13). Figure 5 shows diagrams of
the lowest two orders in m ~ for I'3,.

The lowest-order term is given by Fig. 5(a):

p =(2 —q)(1 —y '), (6. 10)

with q and y given by (3. 17) and (4. 26), can easily
be verified. This scaling law can be obtained as
follows: Use the identity

where T is the triangular part, which we have
evaluated previously. Now we change the variable
q to qk. The upper limit of the q integral now be-
comes 1/k. Substituting the formula (5. 29) in
(6.6), we obtain

F~ = u[muII(l)] k 2[%(d —3) ink+ const]

+const of O(m ~) . (6. 7)

The last constant comes from the q" term in
T(l, q). Adding up (6. 1), (6. 3), (6. 5), and (6. V),
we have

r„(k)=I,+r, +r, +r,
= [murr(I)]-'k'"[I+ [mil(I)] 'Z

x [—4(2/d+ d —3) + 1+2(d —3)] (ink+ const)}

+const of O(m ) . (6.8)

It follows that

p, = 4 -d —2(8/d+ 2d - V)m 'S~+ O(m"') . (6.9)

The scaling law

I",= [1+muII(k)]

= k4~[muii(l)] '+ (higher orders in k)

Since I'2,(k)-k", we have

p, = 4 —d+ O(m ')

(s. I)

(s. 2)

The rest of Fig; 5 gives the next-order terms.
The diagrams in Fig. 5(b) are just trivial modifi-
cations of those in Fig. 4. They give

I', = —u[1+muII(k)] 'II, (k) = —uy, (k) (s. 3)

where II, and y are given by (5.4), (5. 5), and
(5. 31). It remains to compute the diagrams 5(c)
and 5(d). Diagram 5(c) gives

I",=- [mull(I)]-'k'"(2v)" f d"P (p+-'k)

x (p -- k) p [muII(l)] . (6.4)

From counting the power of p in the integral, it is
clear that it diverges logarithmically as k- 0.

(bl

FIG. 5. Diagrams for I'2 .
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(6. 11)I'„(0)= - (rp-ro, )"—6G' '(o) y 1

8f 0

and then apply the same arguments in Sec. V D.
We get

in«gral (V. 5). We change variable from p to y,

(v. 6)

and then write (V. 5) as

r I-= u ~ = uV/( 2 n-)

which leads to (6. 1p).

(6. 12) Z„(r)= —u dyy" 'Il '(r, y)
K

"0

VII. EVALUATION OF y AND q FOR LONG-RANGE
INTERACTING SYSTEMS

So far we have examined only systems with
short- range interactions. In this section we shall
evaluate y and q for systems with k' (2 d & o «2) in-
teraction between field amplitudes. The Hamil-
tonian is given by (2. 4).

The calculation procedure is similar to that for
the short- range case. The only difference is that
the free propagator is now (r+p') instead of
(r+p') '.

A. Evaluation of y

To evaluate y, we simply repeat the work of
Sec. IV with the new propagator. Our task is to
evaluate the se1f-energy diagrams shown in Fig.
1. The first one is easy. We have

Z.(r) —Z.(O) =mu f d p (2~)"[(r+p')-'- p"]
= muK f, dp p' ' [(r+p') ' —p ']
= —mu(d/o —1) 'J,r'~' ', (V. 1)

where

(K/o) m(d/o 1)—
sinn(d/o —1)

(v 2)

which reduces to J' [see Eq. (3. 10)] when v= 2.
Since d & 2o, we have d/o —1 & 1 so that

r'~"-r+z(o} —z(r)-r"' '

to the lowest order in m" . It follows that

(v. 3)

I/y=d/o —1+O(m ') (v. 4)

Figure 1(b) is more complicated. It gives

Z~(r) =mu(2m)" d pu[1+muII(p)] ~

x —— —x+P 2z d q x+q1 sn(p)

(v. 5}
which has the same structure as (4. 16). The q
integ ral is easily evaluated to give

(2m)~ f d'q (r+q') ' =J,r"~' ' (v. 6)

The function II(P) is given by

II(p}=-II(r,p')=(2w) f d"q(r+q') '(r+ ~p+q~') '
(v. v)

which reduces to (4. 5) when o = 2. Again the terms
of interest come from the small-p region of the

x [- 2 n'(r, y) J.—~' '(r-+y)-'], (V. 9}

where II'(r, y) —=' an(r, y)/Sr. Since

n(r, y) =r ' 'n(l, y/r) (v. 1o)

we can write the integral of (V. 9} in terms of the
new variable z =y/r:

Z, (r) = (A/o)r'~'-'ul, (v. 11)

where

I, = f -dzz'~ - n-'(I, z)[- -n'(l, z)-J.(1+z)-']
(v. 12)

To extract the small-x behavior of I, we differ-
entiate L and obtain

eL, --', r~~"'n'(r, I) -J /(1+r)
a(r ') -n(r, 1)

(v. 13)
The function II(r, 1) is examined in Appendix A.
We obtain from (A19)

——II'(r 1)r " =J ————1
~

Zr1 q ~]g~a d
0 ~ ~ ) 0

+
2

I( —I, 0)r~~-' . . . (V. 14)
1

and

8L J d d
1

&(r ') r o v

1 1(-1,0)r~~"'
—(1 r) +—-

2

g(0 1) 1
2J',ll (0, 1)r"I '

(d/o —1)

J.n-'(o, 1) [I(- 1, o)/n(o, 1) —1]
(d/o' —1)

+ ~ ~ ~

+ ~ ~ ~

Z, (r) J. (lnr+ const) + const

(v. Iu)

where

g= —n-'(O 1) ' -1 m-'
e ' n(O 1)

(v. 1v)

The arguments of (4. 11)-(4.13) can be repeated
to show that diagram 5(c) contains no r ~ Inr

+ (const)r "-'+ (const)r"' '
~ (V 15)

The quantities II(0, 1), I( —1, 0) are given explicitly
by (A13) and (A15). It follows from (V. 11) and
(V. 15) that
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term.
By the definition of y, we have

~'~"-~+ z(o) —z(~)

y" ~' ~ [1 —g (Inr+ const)]
d IT —1

+ (higher order in r), (V. 18)

as implied by (7. 1) and (V. 16). We therefore have

xr (-,
' (s+1)}r(-.' (o —s+1))]-'. (V. 26)

z(k) -z(o)-k'+o(k') . (v. 2v)

To find leading terms in k, we close the contour
to the left. Note that the pole at s =0 must be ex-
cluded to count for the subtraction —p

' term in
(7.24). The leading pole is at s = —IT. The next
ones are at s = —2, —3, . . . , ete. We therefor e con-
clude that

or

I/y = d/~ -1 —g+ O(m-') (v. 18)

(v. 2o)

There is no logarithmic term since there is no
double pole according to (V. 26). Note that if IT = 2,
there would be a double pole at s = —2 and there
would be a logarithmic term as we saw in Sec.
III. We then conclude that

with f. given by (7.17).

B. Evaluation of q

At T„wehave

G-'(k) = k'+ z(k) —z(o), (v. 21)

where

x(lp+kI '-p'), (7 22)

II (p) = (2v) ~ J d'q q
'

l
II+ p l

'
=P' "11(0,1) (V. 23)

[see EII. (A13) for II(0, 1)]. It is just II(P) at
x=0, p= 1. Only the small-p part of the integral
(V. 22) is of interest because the large-p part only
gives a k contribution. We write (7. 22) as

where x =0 is understood. The lowest-order term
contributing to (7. 21) is Fig. 1(c), which is

Z(k) -Z(O) =(2IT)" J d"pm[1+muff(p)] '

G-'(k) -k'

to two leading orders in m '. In other words,

TI = 2 —IT+ 0(m ') (v. 28)

Like y, q is discontinuous going from o & 2 to o = 2.

VIII. CRITICAL EXPONENTS FOR A CHARGED SYSTEM

A charged system is one which has a Coulomb
interaction. A model is provided by the Hamil-
tonian (2. 5). The k = 0 term is removed to account
for the uniform rigid-charge background, which
makes the total charge zero.

The Coulomb interaction is peculiar in that it
becomes infinite as k-0. This makes the density-
correlation function If(k) behave very differently
from that in the case of neutral systems. The
repeated isolated (wave vector not integrated) in-
teraction lines like those in Fig. 3 are the cause.
We can define y' by excluding such lines from y.
%'e then have

Z(k) —Z(O) = m-' '-' ll-'(0, 1)

~1 ff

x dpp2' ~ d8 sin 8

y =)I'(1+e )('/k )
'

It follows that for small k,

X
k'

(8. 1)

(8.2)

0&c&a. (v. 25)

where M(s, 8) is given by the expression (A5).
Then, we substitute (7. 25) in (V. 24). The 8 inte-
gral can be done by using EII. (8. 14. 16) of Ref.
ll. The P integral is now trivial. We then find

ds k-s
z(k) —z(0) = (const)

l

. — B(s, IT —s)
2+2 S+(7" c"k~

x [r{2 (d —IT+s))r (-,' (d —s)}

x[(k~+p~+2pkcos8) '~ -p '] . (V. 24)

To extract the small-k behavior, we write

ds k
(k +p +2pk cos8) 'i2=p ' . — M(s, 8)

2rg p

provided y'40 for k-0.
Because the k = 0 term in the interaction is re-

moved, diagrams for thermodynamical quantities
cannot have isolated interaction lines. In partic-
ular, the specific-heat exponent must now be ob-
tained from g'(0), not from If(0).

Apart from the special features introduced by
the isolated Coulomb interaction lines, the charged
system is not expected to be different from a
neutral system as far as critical behavior goes,
because the Coulomb interaction is shielded by
charge fluctuations. The shielded interaction is
short ranged. The exponents q and y are the same
as those in short-range interacting systems,
since G(k) involves no isolated interaction lines.
The function If "(k) can be expressed in terms of
y„(k), which is what one would get for If(k) if the
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shielded Coulomb interaction were used as the in-
teraction. Note that y„is not the same as y' nor

Reference 2 has shown in detail how g' is re-
lated to y„. We shall not repeat the arguments
here. The results (2. 32)-(2. 35) follow from the
fact that y„has the same critical behavior as y in
a short-range interacting system.

IX. DISCUSSION

In the above, we have computed the exponents X

and p, for short-range interacting systems in addi-
tion to y and q. In fact this additional work is
much more difficult than the y and g calculation.
The reasons for doing it are the following: First,
it provides checks on two scaling laws, which were
obtained by very different arguments. Second, if
one wants to calculate O(n ) terms, the technique
developed here, especially in this additional work,
will be very helpful.

The calculation to O(n 2) is of great interest'~;
however, the mathematical complication is quite
serious. For example, the calculation of q, which
is believed to be the simplest, would involve the
additional diagrams shown in Fig. 6. Also, the
diagrams evaluated here must be evaluated to one
more order in n ', the cutoff must be done more
elaborately, etc.

In the above calculations, we did not have to
choose a special value for the coupling constant u

except that it must be of O(1/n). This is in con-
trast to the & expansion, where one must choose
a definite u. The reason is that the critical re=
gion in k space (i. e. , the region in which the crit-
ical exponents describe correlation functions well)
for small e is of O(e 'I') unless coupling constants
are properly restricted. In our case here the
critical region is of O(1) and no such restriction is
needed. This point can be seen from a renormal-
iz ation- group analysis.

As was mentioned in the Introduction, our re-
sults here are for arbitrary d and can be expanded
in e = 4 —d for a comparison with the results of &

expansion. This comparison is easy and is left
as an exercise. Complete agreement with results
in Refs. 3, 8, and 9 has been observed.

There is much being done and to be done to O(n )
besides the work presented here, e. g. , investiga-
tions below T, and the study of the renormaliza-
tion group.
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APPENDIX A

where

x(cscots)(cscots')I(s, s'), (AS}

I(s, s ') = (2w) '
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al

g t& CO

sindPP''+~'" d8 ' "'8
w 0 0

x(1+2P cos8+P')~" "i' . (A4)

The integral over P can be done using formula (22)
(p. 310) of the Bateman Project

J (1+2xcos8+x ) "x' dx
0

= 2" ' '(sin8)' ' "r(v+ ,')B(s, 2v —s)I&—',~,',"(,(cos8),

0&Res& 2v . (A6)

Note that in Ref. 12 the power of sin8 is in error. '~

Now the integration over 8 can be done using the
formula 8. 14. 16 of Abramowitz and Stegun
(p. 338). The result is that I(s, s ) is a product
of quite a few I functions. After simplifications
using various identities for I' functions, we get

I(s, s') =2 "w~ 2B(,'d+ —',o(s —-1),—,'d+2 o(s' —1)}

r( 7 d 2 0'(s +s —2))
"r(--,'o(s' —1)}r(--;o(s—1)) '

Res, s'& 1 d/o, -
Re(s+s') & 2 —d/cr

2o &d&0

(A6)

(Av)

(AS)

We proceed to substitute (A6) in (AS) and perform
the s, s' integrals. Since x is taken to be a very
small number, we close the vertical integration
contours to the left and pick up poles. Then, the

We shall go through the details of the determina-
tion of the function

ll(&, 1) = f d'P (2~) '(~+0') '(~+
~
p+1~ ') ', (Al)

where 1 is a unit vector. We shall only evaluate
it for small x.

We write the propagator as an inverse Mellin
transform [see Ref. 12, Eq. (3), p. 308],

C+ Coo

(~+P') '= . ~ 'P" "wcscgs, (A2)
27'+

C choo

where 0 & c & 1. Substituting (A2) in (Al) for both
propagators, we get

~$00 ~ C +$&o

( 1), ds
i

ds
27tg 2rs
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s~ s = 0~ —1~ —2~

1 —d/o, 1 —(d+2)/o, 1 —(d+4)/o, . . .
The factor r ' ' in (AS) will then give terms
proportional to

(A10)

task becomes finding the residues at these poles.
The relevant poles come from the P function
and csc's. They are at

It should be noted that for o & 2, the fifth term
is negligible compared to the fourth term

r ' and therefore the fifth term will play no role
in y. However if o =2, these two terms are of the
same magnitude r" ~, and both must be counted.
The result then reduces to (4. 9). Thus, the ex-
ponent y is discontinuous in change from 0'& 2 to
o'= 2,

P/s-1 r rd/o r(8+2) /s-1 r8
p p

~ ~ ~ (Al 1)
APPENDIX B

( c+5

II(r, 1) = ( —. r '1(s, 0)(( csc(/s
Pg

from s'=1.
Now we perform the s integral

(a) around s = 0 and get

(A12)

for II(r, 1).
Let us integrate s' around the pole s'= 0 and get

from (AS)

We shall sketch the calculation for the exponent
}( [defined by (2. 9)] for short-range interacting
systems to O(e ), where a=4 —d. The basic idea
behind the method of the e expansion has been dis-
cussed and applied, ~' and will be taken for granted
here.

The interaction u is of O(c). We therefore need
to consider diagrams to O(e ). These diagrams
are given in Fig. V. The free propagator has the
form

2~((~/28(-,' (d —o), —.
'

(d —o)) k'(1+ k')-' = C,(k), (Bl)
xr ( —-', d+o)r(-,' )o'=II(0, 1); (A1S)

(b) around s = 1 —d/o and get
/ dt ~ ~( cd /-

((csc(( 1 ——~r~ ' = — ', ; (A14)
(T) tS/ g —1

(c) around s = —1 and get

rr( -1, 0) -= r2~~-
r(2d —o)r(-', (d —(r))r( —2d+-,'(r) .

(F(d - —,
' o)r'(-,' (r)r(o)

(d) around s =1 —(d+2)/o

r-(+(a+a} /~2~ ~/3
-', dr(-;d) sin(( [(d+2)/(r —1]

r """}-=/'Z-. . (A18)

We next integrate s' around the pole s '= 1 —d/v
and obtain

~C+f(o

. r '"""/'((' (csc((s)[csc(((1—d/o)]
2 /f~

(B2)

Performing the integral and then expanding in e,
we get

Il(k) = (8~') '[(1+~ -~Z')(-Im+-.' ~ ln'k)

where

—
~ e ln k+O(e )+O(k )], (BS)

8' = —In(2((' ) + —;(0. 57V 215 7) (B4)

Figures 7(a) and V(b) are simply powers of II(k):

}f„=—um(m+ 1)II'(k)

where we include the factor (1+k )
' to serve as

an upper cutoff for k. Unlike the O(1/n) calcula-
tion we discussed above, the cutoff has to be in-
cluded explicitly and precisely in most of the
steps.

Figure 7(a) gives

q, =m(2~)~ j d"PO, (k+p)G, (P) -=mil(k) .

„~,~/2
x'(2 d)

(A17)

Integrating over s around the pole s = ™-1 gives

—r /'2~(( / —I — ((csc(( 1 ——e-ewe z.~"~'
2 2- (x (d/(x —1)

(A18)
Besides (A1S)-(A16) and (A18), there are terms
with s and s' interchanged. Summing up, we have

2r ~"'Z
II(r, 1) = II(0, 1) —2r" ' ' —ri( —1 0)+

+2r'"' ' '"'J, +O(r ) . (A19) FIG. 6. Additional diagrams for calculating q to 0(n ).
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(a)

(b)

(&) FIG. V. Diagrams for y(k) up
to O(~ )

(4)

For leading terms in small 0, we close the con-
tours in s, s planes to the left. The logarithmic

~ terms of interest come from the fourth-order
pole (ln k) and third-order pole (Inek) at the origin.
The work remaining to obtain (2. 26) is straight
labor and no further trick is needed.

APPENDIX C

Recently, Abe and Hikami observed that there
are anomalous terms for the exponent n to O(l/n)
when

(e)
d = 2+ 2/I, I = 2, 3, 4, . . . (Cl)

If, =u m(m+1) II (k)

The quantity u to O(e~) is given by

u(8v')-'= '4 1+e(Z '4, -1+v'I +O(~'),m+4 (2 m+4
(BV)

which has to be obtained by calculating some other
quantities. Note that our u is not identical to the
uo(s) in Ref. V, owing to the difference in the
form of the cutoff. Nor is it the same as that in
Ref. 8, owing to the difference in the definition of
the magnitude of the interaction.

Figure V(d) is easily calculated. The answer
is

X = —m(8v ) il ln k+ (const)e ink+ (const)e
(B8)

The calculation for the diagram V(e) is not trivial
and we shall outline the steps. We view it as a
product of two triangular parts:

If, = 3m(m + 1)u (2v) 4 J d4q T(k, q)~ . (B9)

For our purpose, T(k, q) is just (5. 14) with d= 4,
and the cutoff for q is set to 1. We write T as an
inverse Mellin transform using (5.21):

T(k, q)=q T —,—k q
q' q

'" ds
=q '

' . — vacscevs I dAA(s, A)
2wf q

in addition to those given by (2. 24). This would
imply that the scaling law 2 —a = vd breaks down
at these dimensions. It also implies that the
scaling law —n =Ay/(2 —q) [see Eqs. (2. 23) and
(5.35)-(5.39)] also breaks down at these dimen-
sions since we found no anomalous term in X. In
this appendix, we shall calculate n to O(1/n) ex-
plicitly, and demonstrate how these anomalous
terms appear. However, it seems that further
study is necessary to firmly establish these im-
portant conclusions.

To lowest order in n ', y is given by the dia-
grams in Fig. 3. We simply copy down (5. 1). The
only change is that now k =0 and x+ 0:

)f(0) = mil(r, 0) [1+mull(r, 0)]-' .
From (4. 5), we get

11(r, o) =Zr""-' .
Thus, (C2) gives

)f(0) = u ' —m 'u ',Z -'r'-"'

(C2)

= (4 —d)/(d —2) + O(m ') (C5)

Before proceeding to computing a to O(m '), let
us see what (C5) gives if d satisfies (Cl). We
have, substituting (Cl) in (C5),

+ (higher order in r) . (C4)

Since r-(ro —ro,)" and y=(—,'d —1) '+O(m ), we have

—o, =y(2 ——,'d)+O(m ')

(Blo) -(y=l —1, 3 =2, 3, 4, . . . (C6)
where

A(s, A) -=sin(s —1)P cscP sin(s —1)8 csc8 . (Bll)

x ~ dQdA'A(s, Q)A(s', Q')3m(m+1)u'(2v)

(B12)

The angles 8, P are defined by (5. 18).
Substituting the square of (B10) into (B9) and in-

tegrating over q, we have

ds ds'
. s (csc vs)(csc vs')(s+s') 'k

27ri 27ri
a c~fo

)f =II (1+mull) =(mu) II II + (CV)

Since l —1 is a positive integer, our conclusion is
that )f(0) is not singular at these dimensions when
m- . Since we expect that there are other non-
singular terms contributing to the specific heat,
(C6) contains useful information only for d = 3
(I =2).

The O(m ~) term of z can be obtained by com-
puting the next-order correction to X(0) given by
(C4). This correction is given by the same for-
mula as (5. 5):
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where 01 is the sum of diagrams in Fig. 4. Tak-
ing advantage of the fact that

(r+q ) = ——(r+q }
'

Bg

we arrive at

)),(~, o) = —Im(2~)»

+ m(2v)~
~

d'p (r+p') ' —Z,(r, O), (C8)

where Z, is the self-energy given by Fig. 1(c).
The first term of (C8) is just the derivative of the
diagram in Fig. 1(b) with the —u (dashed line) re-
moved. The differentiation —8/Br simply adds
another density vertex in all possible ways and

thus generates diagrams in Fig. 4. However,
while the subtraction —Z,(r, 0} is needed in Fig.
4(a), it is not present in obtaining Figs. 4(b) and
4(c). The last term in (C8) is to take this fact
into account.

The integral in the first term of (C8) has already
been evaluated when we calculated Fig. 1(b) for y.
Apart from a factor —u, it is given by Z~(r, 0).
Differentiating (4. 24), we obtain (leaving out —u)

—m JFr" /2 ~(lnr + const) = 3JS~(-,
' d —1)(1nr + const)

(c9)
The second term in (C8) contains the anomalous
term of Abe and Hikami. Let us evaluate Z,(r, 0):

Z,(r, O) =m '(2~) Jd'p(r+p') 'II(r, p') '

= nZ"'2KXL (clo)

L, —= J dzz / '(I+g) II(1 s) (Cll}

To find the small-x behavior of L, we differentiate
it:

1+ S„+O(m-') ~, (C16)
4 —d 4(l —d) z i

where (4. 26) is used for y. Equation (C18) is just
(5.40) and thereby confirms the scaling law [Eq.
(5. 35)] provided the last sum in (C15) may be
ignored. What happens if we do not ignore it'? If
none of the terms in the sum is proportional to yr
i.e. , (-, d —1)jt1 for all j, we get a contribution
to }f(0) proportional to

rR ([/2 Q 8 r(([/2 l)/ 1[1~ O(r)]
A

/2 (2d —1)j—1 (C19)

Since r()(: (r[)-ro,), y= (2d —1) '+O(m '), (C19) is

2 [(-'. d -1)j - I]-'A,'(r, —r„)'-'[1+O(r)],
Sea

(C20)

which is just a power series in ro- xo, apart from
the last factor, and the result (C18) is not af-
fected.

If (—', d —1)l=1 for some integer l-2, i.e. , for
8 5 ~1

r sr 2r 5re ~ ~ r (c21)

We then integrate (C15) to obtain I. and substitute
it in (Clo) to obtain Z, (r, 0). Let us ignore the
last sum in (C15) for the moment and get

Z,(r, 0) = (const) + (const)r" /

—(K/2m)II(0, 1) '(5 - 2d)r (Inr+ const) . (C16)

Substituting (CQ) and (C16) in (C8), we get II, .
From (C7), we then get lf, . Combining the result
with (C4), we obtain

}f(0)- (const) —r~~ ~[1+m 'S~(8 -pd)(lnr+ const)]

+ (higher orders of r)+O(m ~) . (CI'I)

The exponent e is thus

—o)=y 2 ——+m S 8 ——d +O(m )
cE 7 -2
2 ~ 2

r ', , =r '(1+r) '11(r, I)-' . (c12) the term j= l in the sum would contribute to }f(0)
the term

Substituting (4. 9) for II(r, 1) in (C12), we obtain

r ', , =r-'(1+r ')il(0, 1)-'(I —2(3 —d)r+O(r)

-g,r'/'-'[I+ O(r) g-', (C13)
where

A =-2J(-', d —1) 'II(0, 1) ' (c14}

and O(r) contains only integral powers of r. Ex-
panding (C13), we get

r-', , = 11(0, 1)-'r-' 1+ (5-2d)r+ O(r')„18I

+x t'"»[(+o(r))+Z x/r""»"[(+o(r))} .

(C15)

}f„=-—JS~A~(lnr+ const)r ~/

cc (ro —ro, )
' (ln(ro —ro, ) + const),

plus integral powers of (ro —ro,). If this loga-
rithmic term is taken as the manifestation of an
O(l/m) correction to the exponent l —1, then an
anomalous term in e appears. In addition to
(C18), we have

(-~)„,„.=(S,/m)W, '

sin()T/l) (2l) '

m(v/l)a(1/I, 1/l) "'

d=2(1+1/l) .
This is the content of Eq. (6) of Abe and Hikami.
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Since no anomalous term was found in X and (C18)
is consistent with the scaling laws —a =Ay/(2 —tl)
and 2 —ct = vtf, (C23) implies the breakdown of
these scaling laws at these dimensions. On the
other hand, we have seen earlier that the m-
limit of the above calculation simply implies that
there is no singularity in specific heat at these
particular dimensions. It is not impossible that
(C22) simply indicates a logarithmic singularity
rather than a correction to the exponent. Such a
logarithmic singularity may be a result of a sin-
gularity in coefficients [ as (C20) indicates] as
functions of d in the infinite-n limit. This point

has to be verified or disproved by further study.
Finally, the reader may ask whether a similar

anomaly occurs in 1„(0)(see Sec. VI), since Fig.
5, which gives I'e, (0), does contain the diagrams
in Fig. 4 as a part in Fig. 5(b). The answer is that
such an anomaly does occur in the terms in Fig.
5(b) and also in Fig. 5(c). However, when we add
all diagrams in Fig. 5, the anomaly disappears.
The scaling law (6. 12) can be explicitly verified.

In the case of long-range interactions of the
form k', the above discussion goes through in the
same fashion. Abe and Hikami also worked on
this case.
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The persistent flow of a superfluid in a ring is discussed in terms analogous to those previously used

for superconductors. The existence of a phase memory around the ring is shown to be responsible for

energy minima with a periodic dependence on the total momentum which is directly related to the

quantization of circulation. The general features are illustrated by means of the ideal Bose gas and the

model of quasiparticles as examples.

An ideal condensed Bose gas in a rotating con-
tainer exhibits a series of equilibrium states,
characteristic of a superfluid, with the succes-
sive entry of vortices responsible for their forma-
tion. ~ In the case of an arbitrarily interacting Bose
system, one is led to the related but more general
conclusion that the angular velocity of the system
varies periodically with that of the container. 3 The

arguments for this conclusion are analogous to
those applied in a general interpretation of the Jo-
sephson effect and similar arguments will be used
here to discuss persistent flow and the quantiza-
tion of circulation in a container at rest as a
counterpart to the discussion of persistent currents
and flux quantization ' in a superconducting ring.
Simplifying assumptions mill be made wherever


