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The structure factor S(Q) for liquid argon at 85'K. has been determined in a neutron scattering

experiment to an accuracy of ~0.01. The problem of obtaining S(Q) from the results of
neutron scattering measurements, made as a function of scattering angle using a detector with an

energy-dependent efficiency, is considered in detail. Smooth curves for S(Q) and its Fourier transform,
the radial distribution function g(r), were obtained from the experimental data by an iterative

procedure suggested by Verlet and carried out by Schiff, and are tabulated for convenience. The
experimental results are in excellent agreement with the predictions of computer simulations based on

either the Lennard-Jones two-body interaction, or on the Barker, Fisher, and Watts potential with

corrections for three-body and quantum effects included.

I. INTRODUCTION

This paper reports highly accurate results for
the structure factor S(Q) of liquid argon near its
triple point, as obtained from measurements of
the angular dependence of the scattering of slow
monochromatic neutrons by a sample of 36Ar. To
obtain these results, it was necessary to combine
good counting statistics with careful attention to
the various corrections which must be applied to
the experimental data.

Much information about the equilibrium proper-
ties of a liquid can be obtained from S(Q). In addi-
tion, one may compare the experimentally deter-
mined S(Q) with S(Q) deduced from computer simu-
lations based on classical mechanics and an as-
sumed interparticle interaction. Ideally, one may
also obtain the interparticle pair potential y(x)
from S(Q) using classical theories of monatomic
fluids.

When the present experiment was undertaken it
was becoming clear that no exi.sting neutron or x-
ray scattering data were of sufficient accuracy to
allow a reliable interaction potential to be deduced
from the data, even assuming that the theories
were exact and applicable at the experimental fluid

densities. LevescIue and Verlet~'3 had argued that
even the then current, extensive x-ray scattering
data of Mikolaj and Pings for argon near the criti-
cal point were inadequate; they showed that struc-
ture factor data of less than I/p uncertainty are re-
quired to obtain y(x) with a precision of 10/q. It
is now generally appreciated that (particularly at
liquid densities) the general form of S(Q) is deter-
mined by geometric effects due to the short-range
repulsive core of rp(r). It is only the secondary
features of S(Q) that are influenced by the form of
y(r) external to this hard core.

The present experiment was an attempt to ob-
tain S(Q) with an uncertainty of the order of 0.01.
Neutron scattering was used in preference to x-
ray scattering, since neutron scattering is by the
atomic nucleus and is isotropic for slow neutrons,
thereby eliminating (uncertain) corrections for the
atomic form factor. Additionally, sample cells can
be built of materials which make corrections for
background scattering simpler for the case of neu-
tron scattering. Liquid argon near the triple point
was chosen because its thermodynamics are well
understood, p(x) is reasonably well known, the
atomic density is high, and there is an isotope
(~~Ar) with a very large scattering cross section
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(V8 b) that is 100% coherent.
To obtain S(Q) from the raw data requires cor-

rections for a multitude of effects, all of which are
examined in some detail in Appendixes A, B, and
C. The methods used are extensions of those pro-
posed by North, Enderby, and Egelstaff. ' In brief,
the procedure consists of three steps: (1) calibra-
tion of the apparatus using an incoherent scatterer
of known cross section, (2) determination of S(Q)
on an absolute basis using the best available esti-
mates of the cross sections and corrections in™
volved, and (3) refinement of the corrections by
requiring that S(Q) and its Fourier transform g(r)
(the radial distribution function) take on the cor-
rect limiting values as their arguments approach
zero.

For some purposes, smooth curves for S(q) and

g(r) are desired. Such curves were obtained by an
iterative procedure suggested by Verlet and car-
ried out by Schiff. The results so obtained for
S(Q) and g(x) are listed in Tables I and II, respec-
tively.

The fully corrected S(Q) is in excellent agree-
ment with the predictions of molecular-dynamics
calculationsv using the Lennard- Jones 6: 12 poten-
tial for argon, and systematically deviates from
computations in which a hard-sphere interaction
is assumed for p(y). The liquid structure pre-
dicted by molecular dynamics using the Lennard-
Jones potential is essentially the same as that ob-
tained from Monte Carlo calculations based on the
very accurate potential derived by Barker, Fisher,
and Watts, and which include three-body interac-
tions and quantum effects. At the present level of
accuracy, the results of the two computer simula-
tions are in equally good agreement with the data.

II. THKORETICAI. BACKGROUND

The intensity of the radiation scattered coherent-
ly by a monatomic isotropic fluid of N atoms will
differ from that scattered incoherently by N atoms
because of interference among the waves scattered
from different atoms. For an idealized experi-
ment —one in which a beam of incident neutrons is
scattered through an angle 28 by atoms considered
to be fixed in their instantaneous positions during
the scattering (so that the scattering is elastic)—
the interference effects are obtained by summing
the scattered amplitudes over all N atoms, which

, takes into account phase shifts due to differences in

path lengths, and then squaring and averaging over
all thermal equilibrium configurations of the sys-
tem. This gives the angular-dependent structure
factor

S(q) $ eA ~ rg
N ~ g ]

where the r, are the position. s of the atoms.

(2)

If the pair-distribution function g(r) is defined
such that

n(~) d~=4vn, g(r)Pdr
is the average number of atoms in a spherical
shell of thickness dy and radius y centered about
an atom known to be at y = 0, where no is the aver-
age number density of atoms, then in the limit
N-~, Eq. (2) becomes

S(Q) = 1+no f g(x) e' @ ' ' d r (4)

=1+nz f [g(r) —1]e'@ 'dr+nz6(Q) . (5)

The integration is over the volume of the fluid.
The 5 function represents the coherent forward
scattering [the only contribution to S(Q) of a struc-
tureless liquid]; it is negligible in practice at
scattering angles greater than -10 seconds of
arc, and customarily dropped from the definition
of S(Q), Eq. (5). Then S(Q) —1 and g(r) —1 become
a Fourier-transform pair, and after performing
the angular integrations (the fluid is regarded as
isotropic), are related by

S(Q) —1 =
(4wno /Q) f [g(r) —1]r sin(qr) dr,

(6)
g(y) —1= (2v nor) f [S(Q) —1]qsin(qr) dQ .

(V)
The limiting values of S(Q) and g(r) as their

arguments approach zero give integral relation-
ships which S(Q) must satisfy, and which are used
in refining the calculated corrections to the data
(see below). From Eq. (5) one obtains

S(0) = 1+4vno f„[g(~)—1]dr,
which from the compressibility equation'0 reduces
to

(8)

S(0) = ks Tnpyr,

where k~ is Boltzmann's constant, T is the abso-
lute temperature, and y~ is the isothermal com-
pressibility of the fluid. Because of the strong
interatomic repulsion at short range, g(0) =0, and

Eq. (V) gives

2v'n, =- f q'[S(q)-1]dq. (1o)

One of the main problems in the theory of class-
ical fluids has been to derive S(Q) and g(r) from
y(x) It then beco.mes straightforward to calculate
the thermodynamic properties of the fluid. The

=ko- k is the change in de Broglie wave vector of
the neutrons of incident momentum hko, and is
related to the scattering angle by Q = 2ko sin8. This
is the formal definition of S(Q). Expanding the
summation in Eq. (1) gives



YARNE LL, KAT Z, WENZE L, AND KOENIG

experimental problem, on the other hand, has
been to measure S(Q) in order to derive informa-
tion about q(x). To a first approximation the
naive experiment, in which the normalized angular
dependence of the scattered intensity from a beam
of monochromatic incident neutrons is measured,
gives S(Q) directly. To obtain S(Q) accurately,
however, corrections of two classes are neces-
sary: those due to the fact that the experiment
does not, in principle, measure S(Q), except ap-
proximately, and those due to the usual experi-
mental limitations. The former are discussed in
detail in Appendix A. The latter are considered
in Appendix B. Suffice it to say here (cf. Van
Hove" ) that the differential cross section for scat-
tering into an element of solid angle dQ about the
scattered neutron direction, with spread d~ about
an energy change Id (in units of k), is

where b„„is the bound-atom coherent scattering
length, and S(Q, +) is the generalized Van Hove
response function related to S(Q) by

S(Q) = J S(Q, Id)d(d (12)

with Q held constant in the integration.
Experimentally, a detector with an energy-de-

pendent efficiency E(k) is used to count neutrons
scattered at a preset scattering angle 8, so that an
effective integrated cross section is measured:

k

He LINE-'. '

LIQUID NORMAL
ARGON I

W%XXXXVX%VXVXXXVXXVXXXVVXXYIi

P~
I

I',

Ar LINE-, '

/ I

r , r0.8 mm Al

& l.6 mm Al

half-maximum over the angular range used in the
experiment.

The cryostat used to contain the liquid Ar sam-
ple is shown in Fig. 1. To avoid diffraction peaks
in the background, the cell containing the Ar sam-
ple was made of a Ti-Zr null matrix alloy. ' The
thickness of the argon sample was 0. 105 cm,
while the combined thickness of the two walls of
the sample holder was 0.078 cm. The sample cell
was surrounded by helium gas at a pressure equal
to the internal pressure in the cell to avoid distor-
tion of the flat walls of the. cell and to promote ther-
mal equilibrium. The temperature of the sample
was maintained at 85.0+0.2 'K by thermal contact
with a reservoir of liquid argon of normal isotopic
composition. The sample was condensed from a
gas which contained 0. 6% Nz, 0.06% Ar, 0.03%
40Ar, and the remainder 36Ar. The amount of liquid
condensed into the cell was such as to produce a
liquid-vapor interface near the top of the cell, en-
suring that the liquid was in equilibrium with vapor

~coh E ~ 8 &co dc'

with 8 constant, and ~ =So. The problem is
to relate this measured quantity to the liquid struc-
ture factor S(Q). For neutrons, which have a non-
negligible mass rn compared to the mass M of ar-
gon atoms, the departure of k/ko from unity, the
variation of E(k), and the differences between
constant 8 and constant Q integration give rise to
corrections of the order m/141 at large scattering
angles. These corrections are of critical impor-
tance in determining S(Q) to an accuracy of 0.01.

III. APPARATUS AND PROCEDURES.

The measurements were carried out on a neu-
tron-diffraction spectrometer located at the Los
Alamos Omega West Reactor. The reactor was
operated at a power of 8 MW. Reflection from
the (220) planes of a copper single crystal was
used to select a monochromatic beam of neutrons
from the reactor spectrum. The incident neutron
beam was monitored by a 3'U fission counter, and
the scattered neutrons were detected by a BF3
proportional counter with a ceramic end window.
The spectrometer collimation was chosen to pro-
vide a resolution in 28 of 0. 5'-0. V full width at

—,'—VACUUM

zuaauuauuu~auuuauaazri ,'He

Vrrrrrrrrrrrrrrrrrrrrrrrizrrrrrrrrrrrrrrrrrrrr/~
I I I I
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FIG. 1. Cryostat and cell used to contain the liquid-36Ar
sample.
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at the temperature of the cell.
The incident neutron beam was masked so that

its projection on the cell fell within the uniform
central portion of the cell at all scattering angles.
The spectrometer was programed to maintain the
normal to the cell at —,

' the scattering angle, as
shown in Fig. 1. The sample cell could be re-
placed by a vanadium disk of the same external di-
mensions for purposes of calibration. The width
of the spectrometer resolution function was deter-
mined from the known collimator geometry and the
mosaic properties of the monochromator crystal,
and was checked against the measured widths of
the Bragg peaks of a standard powder sample.
The agreement was excellent.

In a typical experimental run counts were taken
at 0.1' intervals for 28 between 3.2 and 90.0 .
At each angle scattered neutrons were counted un-
til 75 000 monitor counts had been accumulated.
All final results are based on the average of a
number of such runs.

The neutron transmission at 0' scattering angle
was measured for the vanadium standard, the
empty Ti-Zr cell, and the 36Ar sample. The trans-
missions, which are used in the data analysis,
were found to be 0.864 + 0.004 for the standard,
0.927+0.006 for the cell, and 0.854+0. 004 for
the sample. In the latter case, care was taken to
measure the transmission over a region known to
be completely filled with liquid.

The sample thickness, as indicated by its trans-
mission, was somewhat greater than that typically
used by other workers. This choice leads to im-
proved statistical accuracy, at the cost of increas-
ing the fraction of the incident neutrons which are
multiply scattered. It is shown in the Appendixes
that, for the geometry of the present experiment,
the multiply scattered component is almost inde-
pendent of the scattering angle and can be sub-
tracted accurately, even for the relatively thick
sample which we used.

IV. EXPERIMENTAL RESULTS

The raw data, counts vs 8 (half the scattering
angle), are shown in Fig. 2. The upper points
are the average of 9 runs with the cell plus argon,
and the lower points are the average of 11 runs
with the empty cell. The intrinsic resolution of
the apparatus at three scattering angles is also in-
dicated in Fig. 2.

The incident neutron wavelength was determined
to be 0.9V819 +0.00008 A from an analysis of the
Bragg peaks of the powder pattern of a standard
(NbO) sample, for which accurate spacings have
recently been determined by x rays. ~3 At 85 'K the
liquid in, equilibrium with its vapor has an atomic
density of 0. 02125 As (this is the value for Ar
and, assuming no quantum corrections, is the

same for 3~Ar).
The corrections required to transform the effec-

tive single scattering cross section per argon atom
into S(Q) are discussed in Appendix A. They are
referred to collectively as Placzek corrections,
and result from the fact that the atoms of the liquid
move during the scattering, due both to their ther-
mal motion and to recoil.

To obtain the effective cross section for single
scattering, a series of corrections must be made
to the raw data: resolution, background, trans-
mission, effective sample volume, spectrometer
efficiency, multiple scattering, and second-order
contamination of the incident beam. These cor-
rections are discussed in Appendix B and, when
combined with the Placzek corrections, yield S(Q)
on an absolute basis to the accuracy with which
the corrections of Appendix B can be made.

The experimental absolute values of S(Q) may
be further refined by imposing the restrictions
Eqs. (9) and (10), which the correct S(Q) must
satisfy. These refinements are discussed in Ap-
pendix C. Figure 3 shows the experimental results
for S(Q) after all corrections and refinements have
been applied.

The standard deviation of the individual data
points due to counting statistics is nearly indepen-
dent of Q. Its average value over the range of Q
used in the present experiment is calculated to be
0.017. In Appendix A the maximum error in the
Placzek corrections as we have used them is esti-
mated to be of the order of 0.002. We believe that
the Q dependence of the other corrections has been
determined to a similar level of accuracy. We
estimate that the over-all systematic error in the
refined experimental values of S(Q) is less than
0.01 for all values of Q.

For many purposes it is desirable to extend the
experimental S(Q) to a wider range of Q than that
for which measurements were made, and to repre-
sent the experimental data by a smooth curve.
This may be accomplished by an iterative proce-
dure suggested by Verlet. ~ It is based on the re-
quirements that a physically meaningful g(z) cannot
contain oscillations of wavelength small compared
to an atomic diameter and that, because of the
strong repulsion which prevents atomic overlap,
g(r) must vanish for all z appreciably smaller than
an atomic diameter. The procedure also yields
a smooth curve for g(~), and provides a check on
the internal consistancy of the experimental S(Q).

Verlet's procedure, as applied to the present
experimental data by Schiff, ~ consists of the follow-
ing steps:

(1) The exper'imental S(Q) is extended in a rea-
sonable way to values of Q beyond the range of
measurement, in both directions. In the present
instance the results of a molecular-dynamics cal™
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TABLE I. Smoothed and extended S(Q) for liquid argon at 85 'K obtained from the experimental data by the iterative
procedure described in the text. The units for Q are A

. 0294

. 0587

. 0881

. 1175

. 1468

. 1762

. 2056

. 2349

. 2643

. 2937

. 3231

. 3524

. 3818

. 4112

. 4405

. 4699

. 4993

. 5286

. 5580

. 5874

. 6167

. 6461

. 6755

. 7048

. 7342

. 7636

. 7930

. 8223

. 8517

. 8811

. 9104

. 9398

. 9692

. 9985
1.0279
1. 0573
1. 0866
1. 1160
1. 1454
l. 1747
1. 2041
1. 2335
1. 2628
l. 2922
l. 3216
1. 3510
1. 3803
1.4097
l. 4391
1.4684
1.4978
1. 5272
1. 5565
1. 5859
l. 6153
1.6446
1. 6740
1. 7034
l. 7327
l. 7621
1. 791$
1. 8209
1. 8502
1. 8796
l. 9090
1. 9383
1. 9677

S(Q)

. 0522

. 0519

. 0516

. 0513

. 0510

. 0508

. 0507

. 0504

. 0502

. 0501

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0500

. 0510

. 0540

. 0550

. 0560

. 0580

. 0590

. 0600

. 0610

. 0620

. 0630

. 0640

. 0660

. 0680

. 0730

. 0780

. 0830

. 0890

. 0950

. 1050

. 1140

. 1240

. 1350

. 1440

. 1570

. 1700

. 1900

. 2045

. 2179

. 2345

. 2$62

. 2854

. 3245

. 3749

. 4363

. 5085

. 5925

. 6927

. 8175

. 9775
1. 1818
l. 4321
1. 7189
2. 0196
2. 3011
2. 5270
2. 6663

1.9971
2. 0264
2. 0558
2. 0852
2. 1145
2. 1439
2. 1733
2. 2026
2. 2320
2. 2614
2. 2907
2. 3201
2. 3495
2. 3789
2. 4082
2. 4376
2. 4670
2. 4963
2. 5257
2. 5551
2. $844
2. 6138
2. 6432
2. 6725
2. 7019
2. 7313
2. 7606
2. 7900
2. 8194
2. 8488
2. 8781
2. 9075
2. 9369
2. 9662
2. 9956
3. 0250
3. 0543
3. 0837
3. 1131
3. 1424
3. 1718
3. 2012
3. 2305
3. 2599
3. 2893
3. 3186
3. 3480
3. 3774
3. 4068
3. 4361
3. 4655
3. 4949
3. 5242
3. 5536
3. 5830
3. 6123
3. 6417
3. 6711
3. 7004
3. 7298
3. 7592
3. 7885
3. 8179
3. 8473
3. 8767
3. 9060
3. 9354

S{Q)

2. 7013
2. 6329
2. 4791
2. 2698
2. 0386
1.8142
1.6149
1.4475
1. 3095
l. 1941
1.0944
1.0061
. 9283
. 8619
. 8076
. 7645
. 7302
. 7015
. 6759
. 6525
. 6317
. 6149
. 6029
. 5957
. 5923
. 5914
. 5921
. 5'944
. 5989
. 6066
. 6179
. 6326
. 6499
. 6688
. 6889
. 7102
. 7335
. 7594
. 7882
. 8196
. 8529
. 8871
. 9218
. 9569
. 9927

1.,0292
1.0660
1. 1020
1. 1360
1. 1667
l. 1932
1. 2153
l. 2334
l. 2478
1. 2589
1. 266$
1.2705
l. 2708
1. 2676
1.2615
1. 253$
1.2440
l. 2332
1.2209
1. 2066
l. 1897
l. 1703

3. 9648
3. 9941
4. 0235
4. 0529
4. 0822
4. 1116
4. 1410
4. 1703
4. 1997
4. 2291
4. 2584
4. 2878
4. 3172
4. 3465
4. 3759
4. 4053
4. 4347
4. 4640
4. 4934
4. 5228
4. 5521
4. 5815
4. 6109
4. 6402
4. 6696
4. 6990
4. 7283
4. 7577
4. 7871
4. 8164
4. 8458
4. 8752
4. 9046
4. 9339
4. 9633
4. 9927
$. 0220
5. 0514
5. 0808
5. 1101
5. 1395
5. 1689
5. 1982
5. 2276
5. 2570
5. 2863
5. 3157
5. 3451
5. 3744
5. 4038
5. 4332
5. 4626
5. 4919
5. 5213
$. 5507
5. 5800
5. 6094
5. 6388
5. 6681
$. 6975
5. 7269
5. 7562
5. 7856
$. 8150
5. 8443
5. 8737
$. 9031

S(Q)

1. 1486
1. 1253
1. 1012
1. 0768
1.0523
1.0280
1.0040

. 9807

. 9586

. 9383

. 9201

. 9042

. 8903

. 8780

. 8670

. 8571

. 8485

. 8415

. 8363

. 8331

. 8316

. 8319

. 8338
~ 8373
. 8429
. 8505
. 8603
. 8721
. 8852
. 8992
. 9136
. 9282
. 9429
. 9575
. 9721
~ 9863

1 ~ 0000
1. 0127
l. 0246
l. 0356
1.0462
1. 0565
1. 0665
1 ~ 0762
1. 0852
1.0929
1. 0992
1. 1038
1. 1069
1. 1085
l. 1086
1. 1073
1. 1046
1. 1005
1. 0953
1. 0894
1.0832
1. 0770
l. 0711
l. 0654
1. 0595
1 ~ 05 31
l. 0461
1. 0382
1. 0297
1. 0207
1, 0112

5. 9325
5. 9618
5. 9912
6. 0206
6. 0499
6. 0793
6. 1087
6. 1380
6. 1674
6. 1968
6. 2261
6. 2555
6. 2849
6. 3142
6. 3436
6. 3730
6. 4023
6. 4317
6. 4611
6. 4905
6. 5198
6. 5492
6. 5786
6. 6079
6. 6373
6. 6667
6. 6960
6. 7254
6. 7548
6. 7841
6. 8135
6. 8429
6. 8722
6. 9016
6. 9310
6. 9604
6. 9897
7. 0191
7. 0485
7. 0778
7. 1072
7. 1366
7. 1659
7. 1953
7. 2247
7. 2549
7. 2834
7. 3128
7. 3421
7. 3715
7. 4009
7. 4302
7. 4596
7. 4890
7. 5184
7. 5477
7. 5771
7. 6065
7. 6358
7. 6652
7. 6946
7. 7239
7. 7533
7. 7827
7. 8120
7. 8414
7. 8708

S(Q)

1.0013
. 9912
. 9811
. 9711
. 9618
. 9535
. 9465
. 9409
. 9366
. 9334
. 9310
. 9293
. 9283
. 9280
. 9284
. 9296
. 9312
. 9334
. 9359
. 9389
. 9423
. 9464
. 9511
. 9565
. 9623
. 9684
. 9747
. 9810
. 9874
. 9939

1.0005
l. 0071
1.0135
1.0196
1.0250
1. 0299
1.0342
1.0380
1.0413
l. 0440
1.0461
1. 0474
1. 0481
1. 0483
1.0479
l. 0473
1. 0464
1. 0452
l. 0437
l. 0417
l. 0392
1. 0363
1. 0331
1.0296
1. 0260
1. 0223
). 0183
1. 0142
1. 0099
1. 0055
1. 0014
. 9974
. 9938
. 9904
. 9872
. 9840
, 9811

7. 9001
7. 9295
7. 9589
7. 9883
8. 0176
8. 0470
8. 0764
8. 1057
8. 1351
8. 1645
8. 1938
8. 2232
8. 2526
8. 2819
8. 3113
8. 3407
8. 3700
8. 3994
8. 4288
8. 4581
8. 487$
8. 5169
8. 5463
8. 575K
8. 6050
8. 6344
8. 6637
8. 6931
8. 7225
S. 7518
8. 7812
8. 8106
8. 8399
8. 8693
8. 8987
8. 9280
8. 9574
8. 9868
9. 0162
9. 0455
9. 0749
9. 1043
9. 1336
9. 1630
9. 1924
9. 2217
9. 2511
9. 2805
9. 3098
9. 3392
9. 3686
9. 3979
9. 4273
9. 4567
9. 4860
9. 5154
9. 5448
9. 5742
9. 6035
9. 6329
9. 6623
9. 6916
9. 7210
9. 7504
9. 7797
9. 8091
9. 8385

S{Q)

. 9782

. 9757

. 9734

. 9714

. 9697

. 9681

. 9668

. 9656

. 9648

. 9644

. 9646

. 9654

. 9667

. 968$

. 9706

. 9731

. 9759

. 9791

. 9824

. 9859

. 9894

. 9928

. 9960

. 9990
1. 0018
1. 0047
1. 0075
1. 0102
1. 0128
1. 0153
l. 0175
1. 0194
1. 0211
1. 0226
1. 0238
1 0247
1. 0252
1. 0252
1. 0247
-1. 0239
1. 0228
1. 0216
1. 0202
1, 0187
1. 0171
l. 0154
1. 0136
1. 0117
1. 0098
1. 0080
1 0063
1. 0046
l. 0029
1. 0012

. 9994

. 9976

. 9959

. 9943

. 9929
~ 9914
. 9901
. 9887
. 9874
. 9862
. 9852
. 9845
. 9841

9. 8678
9. 8972
9. 9266
9. 9559
9. 9853

10.0147
10. 0441
10. 0734
10. 1028
10. 1322
10. 1615
10. 1909
10. 2203
10. 2496
10. 2790
10. 3084
10. 3377
10. 3671
10. 3965
10. 42$8
10. 4552
10. 4846
10. 5140
10. 5433
10. 5727
10. 6021
10. 6314
10. 6608
10. 6902
10. 7195
10. 7489
10. 7783
10. 8076
10. 8370
10. 8664
10. 8957
10. 9251
10. 9545
10. 9838
11.0132
11.0426
11.0720
11. 1013
11. 1307
11.1601
11. 1894
11.2188
11.2482
11.2775
11.3069
11. 3363
11 3656
11. 3950
11.4244
11.4537
11.4831
11.5125
11.5419
11.5712
11.6006
11.6300
11.6593
11.6887
11.7181
11.7474

S(Q)

. 9839
. 9840
. 9842
. 9845
. 9851
. 9858
. 9868
. 9878
. 9S90
. 9902
. 9913
. 9925
. 9936
. 9949
. 9963
. 9977
. 9992

1. 0007
1. 0020
1.0033
1. 0045
1. 0056
1. 0067
1.0076
1.0084
1. 0090
1. 0093
1. 0096
1. 0097
1. 0097
1. 0097
1. 0096
1. 0094
1. 0090
1. 0085
1. 0079
1. 0072
1. 0065
1. 0058
1. 0052
l. 0045
1. 0038
1. 0031
1.0025
1. 0019
1. 0015
1. 0010
l. 0007
1. 0002
. 9998
. 9992
. 9986
. 9979
. 9972
. 9965
. 9959
. 9952
. 9945
. 9939
. 9935
. 9933
. 9932
. 9934
. 9937
. 9941
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TABLE G. g,adial distribution function g(~) for liquid argon at 85 'K obtained by Fourier transforming the smoothed and
extended S(Q) listed in Table I. The units for y are A.

g(r) g(r) g(r) g(r) g(r) g(r)

. 0681

. 1362

. 2043

. 2724

. 340$

. 4086

. 4767

. 5448

. 6129

. 6810

. 7491

. 8172

. 8853

. 9534
1.0215
1.0896
1. 1577
1. 2258
1. 2939
1. 3620
l. 4301
1.4982
l. 5663
1.6344
1.7025
1. 7706
1. 8387
l. 9068
1. 9749
2. 0430
2. 1111
2. 1792
2. 2473
2. 3154
2. 383$
2. 4516
2. $197
2. $878
2. 6559
2. 7240
2. 7921
2. 8602
2. 9283
2. 9964
3. 0645
3. 1326
3. 200?
3. 2688
3. 3369
3. 4050
3. 4731
3. $412
3. 6093
3. 6774
3. ?45 5

3. 8136
3. 881?
3. 949S
4, 01?9
4. 0860
4. 1541
4. 2222
4. 2903
4,. 35S4
4. 426$
4. 4946
4. 5627

-. 0789
-. 0545
- . 0263
-. 0062
-. 0008
-. 0088
-. 0222
-. 0313
-, 0305
-. 0206
-. 0082
-. 0010
-, 0031
- . 0123
-. 0222
-. 0259
- . 0203
-. 008$

. 0026

. 0065

. 0011
-. 0095
-. 0180
-. 0180
-. 0086

005 3
. 0155
. 0157
. 0058

-. 0076
- . 0153
- . 0111

, 003S
, 0210
. 0295
. 0232
. 0052

-. 0128
-, 0176

0030
. 0241
, 0455
. 0427
. 0112

-. 0279
-. 0276

. 0721

. 3212

. 7356
l. 2831
1. 885?
2, 4408
2. 8510
3. 0542
3, 0403
2. 849?
2. 5549
2. 2343
1. 9474
l. ?218
1. $54$
l. 4240
l. 30$9
1. 1856
1, 0624

. 9458

. 8471

4. 6308
4. 6989
4. 7670
4. 8351
4. '9032
4. 9713
5. 0394
5. 1075
5. 1756
5. 2437
5. 3118
5. 3799
5. 4480
5. 5161
5. 5842
5. 6523
5. 7204
5. 7885
5. 8566
5. 9247
5. 9928
6. 0609
6. 1290
6. 1971
6. 2652
6. 3333
6. 4014
6. 469$
6. 5376
6. 6057
6. 6738
6. 7419
6. 8100
6. 8781
6. 9462
7. 0143
7. 0824
7. 150$
7. 2186
7. 2867
7. 3548
7. 4229
7. 4910
7. 5591
7. 6272
7. 6953
7. 7634
7. 831$
7. 8996
7. 96?7
8. 0358
8. 1039
S. 1720
S. 2401
8. 3082
S. 3763
8. 4444
S. $12$
S. $806
S. 64S?
S. ? 168
8. ?849
8. 8530
S. 9211
S. 9892
9. 05?3
9. 1254

. 7730

. 7219

. 6862

. 6571

. 6293

. 6023

. 5796

. 5651

. $604

. 5640

. 5725

. 5829

. 5945

. 6091

. 6294

. 6569

. 6911
7291

. 7675

. 8043

. 8395

. 8751

. 9137

. 9569
1.0038
1.0520
l. 0983
1. 1398
1. 1753
1. 2048
l. 2287
1. 2475
1. 2608
1.2685
1. 2706
1. 2679
1. 2618
l. 2536
1. 2435
1. 2304
1.2128
l. 1891
1. 1594
1. 1254
1. 0899
1.0$61
1.0255

, 9982
. 9726
. 9470
. 9206
. 8942
. 8698
. 8499
. 8360
. 8280
. 824?
. 8244
. 8259
. 8293
. 8355
. 8452
. 8590
. S?5?
. 893?
. 9113
. 9276

9. 1935
9. 2616
9. 3297
9. 3978
9. 4659
9. 5340
9. 6021
9. 6702
9. 7383
9. 8064
9. 8745
9. 9426

10. 0107
10. 0788
10. 1469
10. 2150
10. 2831
10. 3512
10.4193
10. 4874
10. 555$
10.6236
10.6917
10. 7598
10. 8279
10. 8960
10. 9641
11.0322
11, 1003
11. 1684
11.2365
11.3046
11.3727
11.4408
11.5089
11.$770
11.6451
11.7132
11.7813
11.8494
11.917$
11.9856
12. 0$37
12. 1218
12. 1899
12. 2580
12. 3261
12. 3942
12. 4623
12. 5304
12. $985
12. 6666
12. 734?
12. 802S
12. 8709
12. 9390
13. 00?1
13.0?52
13. 1433
13.2114
13. 2795
13. 34?6
13.415?
13.4838
13. 5519
13.6200
13.6881

. 9431

. 9587

. 9757

. 9943
1.0138
1. 0326
1.0492
1.0628
1. 0738
1.0830
l. 0913
l. 0988
1. 1048
1. 1082
1. 1079
l. 1041
l. 0977
1 ~ 0904
1.0835
1.0774
1.0716
1.0648
1.0559
1.0448
l. 0322
1. 0196
1. 0083
. 9986
. 9901
. 9818
. 9727
. 9628
. 9527
. 9438
. 9375
. 9342
. 9335
. 9347
. 9364
. 9381
. 9398
. 9419
. 9448
. 9488
. 9535
. 9586
. 9639
. 9695
. 9759
. 9838
. 9931

l. 0033
1, 013$
1. 0225
1. 0295
1. 0345
1. 0380
1. 0408
1. 0432
l. 0453
1. 0466
1. 0464
1. 0445
l. 0410
l. 0368
1. 032$
1. 0289

13. 7562
13.8243
13.8924
13. 9605
14. 0286
14. 0967
14. 1648
14. 2329
14. 3010
14. 3691
14. 4372
14. 5053
14. 5734
14. 6415
14. 7096
14. 7777
14. 8458
14. 9139
14. 9820
15. 0501
15. 1182
15. 1863
15. 2544
15. 3225
15. 3906
15. 4587
15. 5268
15. 5949
15.6630
15. 7311
15. 7992
15. 8673
15. 9354
16. 0035
16.0716
16. 1397
16. 2078
16. 2759
16. 3440
16. 4121
16. 4802
16. 5483
16.6164
16. 6845
16. 7526
16. 8207
16. 8888
16. 9569
17. 0250
17.0931
17. 1612
17. 2293
17. 2974
17. 3655
1?.4336
17. 5017
1?.$698
17. 6379
17. 7060
1?.7741
17. 8422
1?.9103
1?.9784
18. 0465
18. 1146
18. 1827
18. 2508

1. 0259
1.0232
1.0201
1. 0163
1. 0120
1. 0074
1. 0030
. 9992
. 9958
. 9924
. 9886
. 9843
. 9798
. 9758
. 9730
. 9715
. 9713
. 9719
. 9727
. 9734
. 9740
. 9748
. 9763
. 9786
. 9816
. 9847
. 9878
. 9905
. 9929
. 9954
. 9983

l. 0015
l. 0050
1.0084
1. 0112
l. 0135
1. 0152
l. 0167
1. 0180
1.0191
1.0199
1. 0201
1 0196
l. 0184
l. 0168
1. 0153
1. 0139
1. 0128
1. 0115
l. 0099
1. 0078
1. 0054
1. 0028
1. 0005

. 9986
.. 9970
. 9956
. 9941
. 9924
. 9907
. 9891
. 9880
. 98?5
. 9875
. 98?7
. 9878
. 98?9

18. 3189
18. 3870
18.4551
18. 5232
18. 5913
18. 6594
18 7275
18. 7956
18. 8637
18. 9318
18. 9999
19. 0680
19. 1361
19. 2042
19 2?23
19. 3404
19.4085
19.4766
19.5447
19.6128
19.6809
19. 7490
19.8171
19. 8852
19. 9533
20. 0214
20. 0895
20. 1576
20. 2257
20. 2938
20. 3619
20. 4300
20. 4981
20. 5662
20. 6343
20. 7024
20. 7705
20. 8386
20. 9067
20. 9748
21. 0429
21. 1110
21. 1791
21. 2472
21. 3153
21. 3834
21. 4515
21. 5196
21. $877
21. 6558
21. 7239
21. ?920
21. 8601
21. 9282
21 9963
22. 0644
22. 1325
22. 2006
22. 268?
22, 3368
22 4049
22. 4?30
22. 5411
22. 6092
22. 6??3
22. 7454
22. 8135

. 9880

. 9883

. 9890

. 9902

. 9918

. 9934

. 9948

. 9960

. 9970

. 9981

. 9995
1. 0011
1. 0027
1. 0043
1.0054
1. 0062
1 0066
1. 0071
1 0076
1. 0082
1. 0088
1. 0091
1. 0090
1. 0085
1. 0077
1. 0070
1. 0064
1. 00$9
1. 0054
l. 0048
1. 0038
1. 0026
l. 0013
1. 0001
. 9992
. 9986
. 9980
. 9974
. 9966
. 9957
. 9949
. 9944
. 9942
. 9943
. 9945
. 9946
. 9946
. 994$
. 9946
. 9949
. 9955
. 9963
. 99?1
. 9977
. 9982
. 9986
. 9990
, 9996

l. 0004
1. 0012
1. 0020
l. 0025
1 0028
1. 0029
1. 0030
1. 0032
l. 003$

22. 8816
22. 949?
23. 0178
23. 0859
23 1540
23. 2221
23 2902
23. 3583
23. 4264
23. 4945
23. 5626
23. 6307
23. 6988
23. 7669
23. 8350
23. 9031
23. 9712
24. 0393
24. 1074
24. 1755
24. 2436
24. 3117
24. 379S
24 4479
24. 5160
24. 5841
24. 6522
24. 7203
24. 7884
24. 8565
24. 9246
24. 9927
25. 0608
25. 1289
25. 1970
25 2651
25. 3332
2$. 4013
25. 4694
25. 537$
2$. 6056
25. 6737
25. 7418
25. 8099
25. 8780
25. 9461
26. 0142
26. 0823
26. 1504
26. 218$
26. 2866
26. 3547
26. 4228
26. 4909
26. $590
26. 62?1
26. 6952
26. 7633
26. 8314
26. 8995
26. 9676
27. 0357
27. 1038
27. 1719
27. 2400

1. 0038
1. 0040
1. 0039
1. 0036
1. 0032
1. 0028
1. 0025
1. 0024
1. 0022
1. 0020
1. 0016
1. 0010
l. 0003
. 9998
. 9995
. 9994
. 9993
. 9991
. 9988
. 9984
. 9980
. 9977
. 9977
. 9978
. 9980
. 9981
. 9981
. 9980
. 9979
. 9980
. 9983
. 9987
. 9991
. 9994
. 9996
. 9996
. 9997
. 9998

1. 0002
1. 0006
1. 0010
1. 0011
l. 0011
1. 0010
1. 0009
1. 0010
1. 0012
1. 0014
1. 0015
1. 0015
1. 0013
1. 0009
1. 0006
l. 0005
1. 0005
l. 000$
1. 0005
1. 0003
. 9998
. 9994
. 9990
. 9988
. 9989
. 9991
. 9994
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FIG. 4. Radial distribu-
tion function g(g) for 36Ar at
85'K, This curve is the
Fourier transform of the
smoothed and extended S(Q)
shown as a solid line in Fig.
3.

0

0 5
I

l0

r(A)

I

l5
I

20
I

25

and is listed in Table II. The deviations of the data
from the smoothed S(Q) a,re indicated on an en-
larged scale in Fig. 5(a); the rms deviation is
computed to be 0.019, which is close to the statis-
tical spread in the data. The iterations may be
continued; but it is seen here that for the present
data, only one iteration is necessary to yield a
smoothed S(Q) which represents the experimental
values of S(Q) exceedingly well over the range of
Q for which they were measured, and which trans-
forms into a g(y) with satisfactory behavior at
small r and for which the spurious residual os-
cillations have a relatively small amplitude.

V. DISCUSSION

In Fig. 6 the fully corrected data points for
S(Q) and the results obtained from molecular-dy-
namics calculations by Verlet are compared. No

adjustments to the data have been made to improve
the fit: all corrections and refinements were com-
pleted before Verlet's results were received.

The agreement of the data and computations is
excellent. Except for a slight difference in the
heights of the first peak, where the molecular dy-
namics results are least accurate and where an
error in the calculations of 0. 05orpossibly 0. 1 is
not unreasonable, there is little if any systematic
difference between the data and the calculations,
as indicated on an enlarged scale in Fig. 5(b). The
rms deviation of the data points from the calcula-
tions is 0.022, only slightly larger than the rms
deviation from the smoothed S(Q), Fig. 5(a).

Verlet's calculation was for 864 classical point
particles in a box, with periodic boundary condi-
tions, interacting pair wise via a Lennard- Jones
potential with parameters chosen to give a best fit

to the thermodynamic data. of Levelt (o =8.405 A,
&/k~= 119.8 'K). To the extent that three-body
interactions and quantum corrections are impor-

0.2
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FIG. 5. (a) Deviation of the experimental data from the
smoothed and extended S(Q) discussed in the text. (b)
Deviation of the experimental data from S(Q) for a Len-
nard-Jones fluid obtained by Verlet using molecular dy-
namics. (c) Deviation of the experimental data from S(Q)
for a hard-sphere fluid obtained from the Wertheim-Thiele
solution of the Percus- Yevick equation. Calculated values
of S(Q) corresponding to experimental data points were
obtained from tabulated values by spline interpolation.
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results, and "that the agreement, particularly at
low Q, is most impressive

To indicate the degree of sensitivity of S(Q) to
the details of the potential, the differences be-
tween the corrected data points for S(Q) and the re-
sults of a calculation using a hard-sphere interac-
tion potential are shown in Fig. 5(c). The hard-
sphere S(Q) was obtained from the Thiele-Wer-
theim solution of the Percus-Yevick equations, 9

and is for spheres at the same density as in Ver
let's calculation. The hard-sphere radius was
taken as 1.025a; which is known to approximate
best the calculations for a Lennard- Jones poten-
tial. v Though the differences are indeed small and
would not be readily apparent on the scale of Fig.
6, they are nonetheless real and systematic. The
heights of the peaks are greater for the hard-
sphere S(Q), and for larger Q the positions of the
peaks shift somewhat. The rms deviation of the
data from the hard spher-e S(Q) is 0.033, signifi-
cantly larger than for the Lenriard- Jones case.

In summary, the experimental data and the re-
sults of the two computer simulations, which are
based on rather different potentials, are all in
agreement at a level of -0.01 for S(Q). Calcula-
tions based on a hard-sphere potential show small,
but significant, deviations from the data. It may
be concluded that the structural properties of liquid
argon are quite insensitive to the finer details of
the potential (or possibly that the Lennard- Jones
potential is a rather good effective pair potential).
The good agreement with calculations gives assur-
ance that neither the experimental data nor the
simulations contain serious errors.
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liquid, at constant 8, into a detector with an ener-
gy-dependent efficiency e(k). The method is simi-
lar to that of Placzek, 's who treated the case of a
1jg detector. It differs from that of Placzek in
that an arbitrary c(k) is assumed, and the Van Hove
response function" S(Q, &u) is used to describe the
properties of the scattering system. In a similar
manner we obtain the departure from isotropy of
neutrons scattered incoherently by the vandium
calibration standard and by the Ti-Zr cell used in
the present experiment.

For the case of coherent scattering by a liquid,
the experimental counting rate (after the usual cor-
rections for background, absorption, multiple
scattering, etc. ) is proportional to an effective dif-
ferential cross section which is related to S(Q, &o)

by the equation

(do' h
(

kp
d~ jff

IQx

g(k) —S(Q, co) dw (A1)
0

ls—

QJ
hllAX

10—

with 6I constant, where h~ ~ is the incident neutron
energy Ea. To obtain S(Q) from the data, the inte-
gral at constant 8 must be transformed to one at
constant Q, Eq. (12). The two integration paths
in the Q-~ plane are shown in Fig. 8, and are rep-
resented by the equations:
path I (constant Q),

Q, = 2k0 sin8; (A2)
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APPENDIX A: PLACZEK CORRECTIONS

5—
I
O
EP

0 0
0

-10—

-l5—

4
Q (A-')

I

I

'
k,

PATH I
Q = CONSTANT

PATH II
8 = CONSTANT

In this Appendix we obtain the relation between
S(Q) and the coherent scattering of neutrons by the

FIG. 8. Integration paths in Q-co space. S(Q) is de-
fined by an integral along path I, whereas the experiment
measures an integral along path II.
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path II (constant 8),

Q« = kp [ —K/M~»x — (1 —K/Km»x) cos28]
(AS)

The value chosen for Q, corresponds to elastic
scattering at the angle 28. For u& = 0, Q« = Q, .

The transformation of the integral is carried out
in two steps .First, S(Q„,~), apoint onpath II,
is obtained from a Taylor-series expansion of
S(Q, ~) about a point S(Q„&o) on path I, with sp held
constant. In this expansion S(Q, &o) is considered
to be a function of QP. Thus

g are retained, the following expression is obtained
after much algebra:

= &o&(
o

~ et'

coh+ + cob

ko&i ko&p~ ( p)

2
q~, mes, . Q &o'i) ( a)

S(Q&&, ~) = S{Q~,~)+ (Qi~ —Q~)S (Q~, ~)

+ 2(Q)x —Qg) S (Qx~ &)+ (A4) (Ag)

where the prime indicates differentiation with re-
spect to Q .

The second step is to expand Q„—Q„e(k), and
k/ko in powers of x=&a/~ using values of k ap-
propriate for curve II. The required expansions,
derivable immediately from Eqs. (1), (2), and
{A3), are

(Q'„- Q',) = —-', Q', x+ -'. (2k', —Q', )x'+ ~ ~ ~, (A6)

k/ko= 1 —-', x —-'. x + ~ ~, (A6)

6(k) = Ep —zk'oEg x+ s (kptp —kp61)x + ' 'j. l 2

where

6p= t'(kp) ~

k= kp

and

(A7)

(QP)~0»= f (d S(Q& M) d(d (A8)

with Q constant. If terms through the second order
in both the Taylor series and the power series in

d E'

dA k"-ko

By the use of Eqs. (A4)-(AV), the integrand of
(Al) may be expressed as a power series in x in
which S{Q, &u), e(k), and their derivatives are eval-
uated at Q= Q, and k = kp.

Theoretically and experimentally, S(Q, e) for
any Q is largest near ~ = 0 and falls to zero as Icy I'

increases. If the experimental parameters are
chosen such that (d is large compared to values
of l&u I for which S(Q, &u) is significantly different
from zero, then only the first few terms of the
power series needbe retained, and the upper limit
of the integral in (Al) may be replaced by + ~.

Apart from constants, the integrand now contains
only S(Q, ~) and its derivatives, evaluated at con-
stant Q and multiplied by various powers of &o.

When the integration is carried out term by term
and differentiations with respect to QP are brought
outside the integrals, the result is a series in the
frequency moments of S{Q, &o), defined by

In the above expression, Q is understood to have
the value Q, =2kpsin8.

The analysis used to obtain (Ag) may also be ap-
plied to the case of incoherent scattering, provided
S(Q, &u) is replaced by the "self" part of the re-
sponse function S,(Q, e) and the coherent scattering
length is replaced by the incoherent scattering
length b„,. The coherent moments are to be re-
placed by the incoherent moments

(uP )„,= f &u"S,(Q, e)de (A10)

with Q constant.
Expressions for the first few moments of S(Q,

m) and S,(Q, +) can be obtained from Placzek's pa-
per. A somewhat simpler derivation based on the
Van Hove formalism has been given by Rahman,
Singwi, and Sjolander (RSS).' These authors also
give the results of calculating the moments class-
ically, together with expressions for the first-or-
der quantum corrections in terms of the potential
energy of the scattering system. De Gennes gives
a derivation of the moments for the case in which
both recoil and quantum effects are negligible. For
most substances and, in particular, for one with
an atomic weight as low as argon, the effects of re-
coil cannot be neglected. On the other hand, the
quantum effects are generally negligible. Indeed,
for the moments of orders zero and one, the quan-
tum and classical expressions are identical.

The quantum correction to (~ )„„and the lead-
ing term in the quantum correction to (+')„», rep-
resent the amount by which the average kinetic en-
ergy per atom exceeds the classical value of &k~ T
(k~ is Boltzmann's constant; T is the absolute tem-
perature). RSS give a rough estimate of this ex-
cess, based on the Debye model for the correspond-
ing solid. For liquid argon at 85 'K, the excess is-

5%%up. We assume the quantum corrections to be
negligible in the present application, and drop them
in the following analysis. The classical expres-
sions for the moments, including recoil, are

(~'),.» = S(Q),
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a&(u'),.„=a&(o'&„,=z„, ,
k'&~'),.„=k'&~')„,=(Z...)'+2k, rz„. , (All)

where E„,= k Q /2M, and M is the mass of an
atom in the scattering system.

Classically, E„, is the recoil energy resulting
from the transfer of momentum hg to a free atom
at rest. The term proportional to k~ T in the sec-
ond moment results from the Doppler effect. In
the present approximation the first and second
moments are the same as those of an ideal gas of
noninteracting particles, having the same atomic
weight and temperature as the scattering system.
The influence of the potential is to be found in the
spatial correlations which give rise to S(Q), and
in the quantum corrections and higher moments.

Substitution of (All) into (A9) yields

(~ &' ) ' ""I =S(Q)-C '" i+C0 coh dg ~
1 E ~

2 E

TABLE III. Dependence of the constants of Eq. (A12) on
detector efficiency.

Detector
efficiency

1/y
Eq. (A13)
black

ko s/2~o ko 2/2&p Cf

-0.243
0

1
0. 170

0

2

0. 757
1

C2

0.113
3

C3

1

0.280
0

where

C, = (1+koe, /2go),

C2= ~ +1 ko&x/2&0+ 4ko&a/2&0 ~

(2 kohl/2 eo+ 2kOs2/2eo)

The constants C, depend on the detector effi-
ciency e(k). The definitions are such as to make
the C, positive for most detectors. For the de-
tector used in the present experiment,

(k) = 1 —e-Laos/a

Table III gives the constants of Eq. (A12) for the
above detector, together with values appropriate
for I/v and black detectors, illustrating the im-
portance of proper treatment of the detector effi-
ciency in evaluating the Placzek corrections.

in Eq. (A12) the correction term proportional
to C& comes from the first moment and represents
the first-order effect of recoil. The remaining
correction terms come from the second moment.
Those proportional to (ks T/Eo) are due to the
classical Doppler effect, and the remainder are the
second-order effects of recoil. The relative mag-

nitudes of the correction terms depend on the ra-
tios (E„,/Eo) and (ke T/E0).

For the conditions of the present experiment
(E„,/Eo) varies between -0 and 0.056, and (keT'/
Eo) =0.086. The correction terms due to the sec-
ond-order effects of recoil were dropped, yielding
the following expressions, which were used to
analyze the experimental data:

(eib )„(„"
i

= S(Q)+A —B — (A14)
i off 0

2

( b2 )-1 inc I +g Ej Q
dA io

where

A. = (~/2M) (k, r/E, ),
E=(m/M) [C, + C,(k, r/E, )] .

For liquid 3~Ar under the conditions of the pres-
ent experiment, 2=0.0012 and B=0.0219. The
total correction varies from +0.0012 at Q=0 to
—0. 0426 at Q=9. 08 A

It has been contended by Ascarelli and Cagliati
that the Placzek treatment of the corrections may
lead to significant errors. Their procedure was to
assume a plausible analytic form for S(Q, ~) and
then perform an expansion to express the effective
cross section as the sum of S(Q) and several cor-
rection terms. To represent S(Q, &u) they used the
product of S(Q) and a Gaussian in &u chosen to yield
the De Gennes expression for the second moment.
The correction terms depend on the slope and
curvature of S(Q), and the authors conclude that
certain of the correction terms are important,
especially where the curvature of S(Q) is high.

The expressions given by Ascarelli and Cagliati
are inappropriate for the present experiment for
two reasons: First, they completely neglect re-
coil, which is the largest effect for the case of
liquid argon; second, they assume a black detec-
tor. Nevertheless, a similar approach may be
used to estimate the accuracy of the Placzek pro-
cedure as we have used it.

Following Ascarelli and Cagliati, we approxi-
mated S(Q, &u) by the product of S(Q) and a Gaussian
in (d chosen to yield the classical values, including
recoil, for both the first and second moments
[Eq. (All)]. The molecular-dynamics calculations
of Verlet' were used for S(Q). A contour plot of
this S(Q, w) i.s shown in Fig. 9, together with sev-
eral curves of constant 8, for the conditions of the
present experiment. The integral for the effective
cross section, Eq. (Al), was carried out numeri-
cally using this 'S(Q, ~). Equation (AIS) was used
for the detector efficiency. The Placzek correc-
tion, Eq. (A14), was then applied. The resulting
"experimental" values of S(Q) were compared with
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I

tO

o

FIG. 9. Logarithmic contour plot
of a Gaussian approximation to
S(Q, co) for liquid 3 Ar at 85 K chosen
to have the correct classical first
and second moments of co. Also
shown are curves of constant 8 for
the conditions of the present experi-
ment.

—8
0 6

Q(A )

IO l2

the molecular-dynamics S(Q) originally assumed.
The difference is shown as a function of Q in Fig.
10. For Q&6 A i the deviations are &0.001, while
for Q&9 A the maximum deviation is 0.0022.
Since the level of accuracy in the present experi-
ment is -0.01, the Placzek procedure is clearly
adequate.

APPENDIX B: OTHER CORRECTIONS

In addition to the Placzek corrections described
in Appendix A, several other corrections must be
applied to the raw data to obtain S(Q) on an absolute
basis. These corrections are discussed below.

The effects of instrumental resolution were

negligible except in the region of the first peak in
the argon data. For this region a resolution cor-
rection was made by the method of Jones and
Misell. 3 To apply this method, analytic represen-
tations of both the resolution function and the ob-
served data are required. The spectrometer reso-
lution was well represented by a Gaussian in 8, and
the data in the region of the first peak could be
fitted by a Gaussian plus a second-degree polyno-
mial. Using these representations, a resolution
correction was calculated and applied to the indi-
vidual data points. The maximum correction was
1.7/p.

After the resolution correction had been applied,

O.OIO

O

a 0.005—
I

0—
O

o -000

-0.0 I 0—
0

I

5

Q(A ')

I I

6

FIG. 10. Deviation of the cor-
rected "experimental" S(Q) from
the assumed exact S{Q) as calcu-
lated numerically for the Gaussian
approximation to S(Q, co) shown in
Fig. 9. This deviation is a realis-
tic estimate of the uncertainties in
S(Q) resulting from use of the Plac-
zek procedure.
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the background was subtracted and corrections
were made for transmission and variation of the
amount of scattering material in the beam. Since
the incident neutron beam fell within the uniform
central portion of the flat Ti-Zr cell at all scatter-
ing angles, and the normal to the cell bisected the
scattering angle, both the path length of neutrons
in the cell and sample and the volume of cell and
sample material in the beam are proportional to
sec8 (see Fig. 1). One may readily derive

J'g(8) = „,e [Ic,~-fIc T~"~- (I -f)lc], (Bl)

M.„(8)= M„,(8) —M, (8), (B2)

where the subscripts C and S again represent the
cell and sample. The method of Cocking and
Heard'4 was used to calculate M,«(8) at 1' inter-
vals in 8, and the value to be used at each scatter-
ing angle was obtained by interpolation.

In Cocking and Heard's method the twice-scat-
tered component is calculated explicitly, using
the angular distribution of single scattering which
is presumed known. The higher components are
estimated. In making the calculations expressions
(A14) and (A15) were used for the angular distribu-
tions. Verlet's molecular-dynamics calculations
were used to estimate S(Q). Identical results were
obtained when an approximate experimental value
was used for S(Q). The cell plus sample and the
empty cell were treated as uniform distributions
of scattering material with appropriately averaged
cross sections. The resulting multiple scattering
contribution was isotropic within 1.89' in the
range 1' & 8 & 45' with an average value of 0.381.
This may be understood by noting that the impor-

where JB(8) is the corrected scattering intensity
from the sample and I is the observed intensity.
Here, the subscripts C and S are for cell and sam-
ple, respectively, f is the fraction of the cell oc-
cupied by sample, and T is the transmission for
8=0. Note that for the fraction of the cell occupied
by the sample, the amount of background scattering
to be subtracted must be reduced by the transmis-
sion of the sample. For purposes of calibration,
the corrected scattering intensity from the vanadi-
um standard J~ and from the Ti-Zr cell J~ were
also calculated using formulas similar to (Bl).

In addition to the desired intensity of single
scattering, J~ contains contributions from multi-
ple scattering in the cell and sample material. By
subtracting the background, those multiple scat-
tering events which take place exclusively in the
cell material have been removed. There remain
those events which take place in the sample to-
gether with those events which involve both materi-
als. Thus the effective multiple scattering contri. -
bution is given by

tant events are those in which the first scattering
lies in the plane of the sample. For these events,
the scattering angles are large and the cross sec-
tion is relatively constant.

Geometric factors and detector efficiencies were
combined to give an over-all spectrometer sensi-
tivity F(8) which was allowed to depend on the scat-
tering angle 8 to account for possible imperfections
in alignment. The corrected scattering intensity
from the vanadium standard Z„(8) was used to de-
termine F(8) from the relation

J (8)=pc tF(8) [1+A —B(Q/k) +M„(8)], (B3)

where p is the number of target atoms per unit vol-
ume, o~ is the bound-atom incoherent scattering
cross section of vanadium (5.10+0.02 b), and f
is the target thickness. The terms A. and B are
Placzek corrections defined in Appendix A and

M~(8) is the multiple scattering contribution dis-
cussed above.

The (110) and (211) Bragg peaks were clearly
visible above the incoherent background in Z„.
Points in the neighborhood of these peaks were dis-
carded and the remaining points were used to ob-
tain F(8). The experimentally determined F(8)
was well represented by a constant plus a term
linear in 0. The linear term was negative, and
amounted to 1.8%%uo of the constant term at the larg-
est scattering angle.

As a check of the calibration procedures, a re-
duced angular distribution X(Q) was calculated for
the Ti-Zr cell from the relation

X(Q) = [pa'ctF(8)] Jc(8) -A+ B(Q/ko) —Mc(8) .
(B4)

If the Ti-Zr cell material is truly a random alloy
and if the corrections and cross sections used are
correct, X(Q) should be unity, independent of Q.
The experimental X(Q) could be described as a
constant plus a variable term reminiscent of S(Q)
for a liquid. The latter term was -10% of the
former. %e attribute it to the presence of short-
range order in the Ti-Zr alloy. This effect has
been seen in several samples of the alloy. The
asymptotic value of X(Q) at large Q was 0.97
rather than 1.00 as expected. The discrepancy is
probably due to uncertainties in the cross sections
and in the multiple scattering contribution, and is
indicative of the accuracy we can expect in the de-
termination of S(Q) for liquid argon on an absolute
basis. The relative error in the experimental
S(Q) for different values of Q is expected to be
much less than the absolute error.

In addition to neutrons of wave number ko, the
incident neutron beam contained a second-order
component of wave number 2ko. At each scattering
angle, therefore, one observes a superposition
of contributions from S(Q) and S(2Q). If p is the
effective fraction of the neutron beam of wave num-
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ber lo, then

[po, fZ(e)]-'Z, (e) = ps.„(q)+ (1 —p) S„,(2q) + ~„,(e),
(B5)

where S,« = S plus the appropriate Placzek terms.
Equivalent values of S(2Q) were obtained from ap-
proximate experimental data and from molecular-
dynamics calculations. The errors introduced in
the multiple scattering calculation by assuming all
the incident neutrons to be first order are con-
sidered to be negligible.

The effective fraction p of first-order neutrons
in the incident beam was determined to be 0.987
from an analysis of the weak second-order peaks
visible in the standard powder diffraction pattern
used to determine the incident neutron wavelength

The effect of the second-order neutrons may be
seen as a small anomaly at 8 =-4. 5' in the raw
cell-plus-sample data shown in Fig. 2.

Equation (B5) may be solved for S(Q), yielding

—(1-P)Seff(2Q) ™sff(~)] (B6)

Expression (B6) was taken as the best estimate
of the absolute value of S(q) for liquid argon.

APPENDIX C: REFINEMENT OF S(Q)

As indicated in Appendix B the experimental data

yield S(Q) with an absolute error of the order of
0.03. The principal sources of error are believed
to be in the assumed cross sections and multiple
scattering corrections, which are essentially in-
dependent of Q. Thus the experimental results
can be improved by adjusting the cross section and
the multiple scattering contribution so that the ex-
perimental S(Q) satisfies the integral relationships
stated in Sec. II, Eqs. (9) and (10). These nor-
malization relationships ensure that both S(Q) and
its Fourier transform g(r) have the correct limit-
ing values as their arguments approach zero. The
net correction amounted to an adjustment to the
computed multiple scattering correction by 0.021,
and a scaling of S(Q) by about 2/~.

In carrying out the adjustment, it is necessary
to extrapolate the experimental data to Q = 0. The
statistical spread in the low-Q data is too great to
permit a detailed determination of the functional
form of S(Q) in this region, which might be used
as a guide in making the extrapolation. Since the

,
experimental S(Q) is relatively constant in the
range 0. 35 A- & Q & 0.75 A, we have chosen to
take the average of the experimental data in this
region to be the extrapolated value of S(Q) at Q = 0.
The compressibility limit for S(Q), Eq. 9, was
taken to be 0.0522, based on an isothermal com-
pressibilityt4 of 2. 12x 10 4 atm t.
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