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Tunneling from Electronic Bubble States in Liquid Helium through the Liquid-Vapor
Interface
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The escape of electrons from their bubble state in liquid helium through the free liquid surface into
the vapor phase is investigated. The measured escape rates are calculated in terms of a tunneling model
which predicts a unique temperature and electric field dependence in excellent agreement with the
experimental data. A fit of this model to the data yields the binding energy and the radius of the
electronic bubble. The binding energy is found to be 0.70 eV in pure He' and 0.56 eV in pure He'.
The bubble radii are found to scale according to the bubble mode1; however, their absolute values
appear to be too large. The results obtained from two different He'-He mixtures are anomalous and
not yet understood,

I. INTRODUCTION

The transport of charges through dielectric liq-
uids has been extensively used to study the proper-
ties of the liquid state as well as the nature of the
charge carriers. The most important example is
liquid helium. The repulsive electron-helium in-
teraction leads to a bubble state for a thermalized
excess electron. The positive charge carrier,
which is created in liquid helium by means of ion-
izing radiation, is generally considered to be a
helium ion, He&', surrounded by a cluster of polar-,
ized helium atoms. The transport properties of
these structures are governed by their interaction
with the elementary excitations of the liquid.
Measurements of the mobility, the charge trap-
ping in quantized vortex lines, ' and photoexcitation
of electronic bubble states have yielded insight into
the structure of the excess electron in liquid heli-
um. In a completely different type of experiment
a striking difference between positive ions and
electron bubbles was observed. It was found that
positive ions could not be extracted through the
free surface of liquid helium into the vapor phase,
whereas negative ions (electronic bubbles) could
pass through the liquid-vapor interface quite easily,
provided the temperature was not too low. ' Evi-
dently the structure of the charge carriers plays
a key role in the evaporation process.

Early measurements of the temperature depen-
dence of a dc electron current through the free
surface of liquid He into the vapor indicated a po-
tential barrier caused by the repulsive image force
below the surface. " This image potential in com-
bination with an externally applied electric field
normal to the interface leads to a potential well be-
low the surface, which traps the charges for ex-
tended periods of time. ~ We have measured these
trapping times 7' as a function of temperature and
electric field. An analysis of our data in terms of
a classical diffusion model resulted in several

difficulties. Whereas the temperature dependence
seemed to be given correctly, the electric field
dependence of the trapping times was only in fair
agreement with the data. Furthermore, the re-
quired cutoff of the image potential close to the sur-
face turned out to be extremely sharp, thereby
violating an underlying assumption of Smoluchow-
ski's equation which applies only for a slowly vary-
ing potential. These circumstances led us to a dif-
ferent model, which describes the escape of the
electrons through the free liquid surface as a tun-
neling process from their ground state inside the
bubble into the vapor phase. ' The escape probabil-
ity P = v was found from the model to depend ex-
ponentially on two important parameters of the bub-
ble state —namely, the radius and the binding ener-
gy —both of which can be determined from a fit of
the experimental data to this model. Since no
superfluid properties are involved, these experi-
ments can be performed in all dielectric liquids in
which electronic bubble states exist with a positive
ground-state energy. So far we have investigated
only He, He, and some He -He mixtures. Our
results for the radius and the binding energy of
electronic bubble states in these liquids were com-
municated recently in a short report. 0

Section II describes our theoretical model for the
escape probability P and Sec. III contains experi-
mental details. Our data are presented and evalu-
ated in Sec. IV. We discuss our results in Sec. V,
and in Sec. VI we mention some conclusions and
speculations. In the Appendix we elaborate on
some details of the investigations.

II. CALCULATION OF ESCAPE PROBABILITY

As the electron bubble approaches the free liquid
surface, it encounters a potential well which re-
sults from the applied electric field 8 normal to
the surface, and the repulsive interaction of the
electron with its image above the interface:
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m, being the mass of the electron. If the center
of the bubble is at a distance x from the surface,
the barrier width is d = x/cos8 —R (see Fig. 2),
where R is the bubble radius. We will neglect sur-
face and bubble distortions in the present calcula-
tion. The probability the electron tunnels a dis-
tance d through the liquid is taken to be g 2o".11

The tunneling transition rate from the bubble at
the solid angle dQ is

vexp -2n~ x dO

I, cosa 4m

where v in a semiclassical sense is the frequency
with which the electron "hits" the walls of the bub-
ble [v= (2Eo/m, )'~'/2R]. The total transition rate
is

e/2

j. ( x
—,v exp -2nj —R sin8d8

I, cos8

FIG. 1. Image-induced potential well which traps particles
just below the free surface. where

= —v e W(x), (1)

V(x) =A/x+eSx, A = e'(e —1)/4(. (&+1),

where x is the distance from the surface, e the
electronic charge, and e the dielectric constant of
the liquid (see Fig. 1). This form of the potential
holds up to few angstroms below the surface, where
it breaks down owing to the finite density profile
of the interface. Assume that No ions are intro-
duced into the well at a time t= 0 and that each ion
is independent of all the other ions in the well. The
number of ions which escape per unit time dN/dt
is then proportional to the number N(f) in the well:

= —PN(f),
GQ

W(x)=e-""+2o Ei(-2o ),
Ei being the exponential integral. In our regions
of interest we always have 2'»1. We approxi-
mate Ei for large argument

2ox Ei(- 2nx) = —e "[1—1/2am+ 2/(2ox) —~ ~ ~ ] .
Neglecting terms of third order and higher, we ob-
tain

In general, the second term in the parentheses can
also be dropped. We found, however, a slight im-
provement of the calculation by replacing the ex-
pression in the parentheses by e I", i.e, ,

where P is the escape probability per unit time.
Hence

N(t) =-Noe ~'

Thus the current from the surface is

gl(x) (e-2ax/2(xx) e-1/+x

VQPof'

(2)

j = — = PN(f) = PN() e
er
dt

We now proceed to calculate P by describing the
escape of the electron from the liquid as a tunnel-
ing process from the ground state inside the bubble
into the vapor phase. The barrier height through
which the electron must tunnel is Ej - Eo, where
Ez is the lowest energy a quasifree electron can
have in the liquid (edge of the "conduction band" )
and Eo is the ground-state energy inside the bubble
(see Fig. 2). For convenience, we set

Es Eo=S a /2m, ,

FIG. 2. Tunneling from an electron bubble located a
distance x from the free surface. The potential barrier
Ef Eo through which the electron tunnels is also shown.
Eo is the ground-state energy of the electron inside the
bubble.
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If the number of electronic bubbles between x and
x+dx is n(x)dx, the current through the surface
from the region is —,

'
v e2~ W(x)n(x)dx .Rigorously,

Smoluchowski's diffusion equation should now be
solved for n(x) .In the Appendix, this problem will
be discussed in greater detail. The observed es-
cape rate of the electrons in the potential V(x) is of
the order of seconds and the relaxation of the ions
to thermal equilibrium is of the order of 10 sec.
It is reasonable to assume, therefore, an equilib-
rium distribution (Maxwell-Boltzmann) throughout
the potential well. We set

n(x) = Ce

The normalization constant C is determined by the
condition

J n(x)dx=N,

where N is the total number of particles in the well
at some particular time. We obtain

( 2(~e@)"' &

Our units are the same as those of our previous
work, ' K, is a modified Bessel function. " The
total current j, from the surface is then given by

j,= PN= —,
'

v e "1 n(x) W(x) dx

= —,
'

v e N(I2/Iq),
where

(' A e8xI,= exp —
l

+
(Tx~I 0 I

+2nx+
l

2nx dxex )

We have extended the lower integration boundary of
I& andI, from x=R to x=0, which canbe done with-
out introducing a significant error, because of the
steep fall of n(x) for x- 0. The integral I2 is given
by another modified Bessel function':

I2= n A()(z) A

with
with

p80 1/2

I eg
Q

Q

(a g ) (/2
z= 4l —y—

I, T Q T j

Finally, for the escape probability P, we obtain

P= = —ve " = —ve &(& 4 + 2n+
T )

( 2(Ae((l)"2

e )~

~!

T
(4)

An estimate of the arguments of Ko and K~ in Eq.
(4) indicated that they are large enough to allow
the following approximation~~ for the Bessel func-
tions:

A8(Z) = (v/2Z)" 2e 2

Furthermore, we can set

8Xn & T "' I' egz= ll+ l
I+

Neglecting products of small terms, we obtain

e(I& An )) (/2 ( 2T') ~/2

+
nT 2T,I +I, „n,l

In our case, the first term of the series is by far
the largest. The two others can be considered as
small corrections; we will take them into account
where they appear as exponents. Using these ap-
proximations, we obtain

I

P(n, R, h, T) =-', v e2'" G(h, T)

xe e2(AeS ) (/ 2/T -(8An /T &
/ See-& (5)j

with

G(S T) = (eh)2 2 4n' 4T A l I+ ST
Ie(AeS)'"

I

ee (e«)" &2)' "'

G depends weakly on n, but the dominant depen-
dence of P is contained in the exponential functions
in E(l. (5). We notice that we can obtain a uni-
versal temperature dependence of P for aQ 8 by
normalizing

2nR -(8An/T& 1/2
(5)

where

y()() T) G()I) T)e2(AeS ) / T

From E(I. (6) we can determine n and R from a
best fit to the experimentally measured values of
P. The procedure will require few iterations, be-
cause of the weak influence of n on the otherwise
computable function y.
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served.
We checked our new system by reproducing He

data taken in our earlier apparatus above 1.2 'K.
We then studied Hes and He -He4 mixtures. The
lower required temperatures were achieved by
cooling the chamber with a one-shot He cryostat.
The temperatures were measured with a germani-
um resistor located at the bottom of the cell.

IV. RESULTS
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FIG. 3. Schematic diagram of the experimental cell.

III. EXPERIMENTAL DETAILS

The present experimental procedure to measure
the trapping time 7 = P ' is essentially the same as
the one we communicated earlier. Figure 3 shows
a schematic of the gold-plated measuring cham-
ber. Charges were produced in the liquid by a
radioactive source S(3~0po). By applying suitable
electric fields between S and grid G and between
G and the Frisch grid I' the liquid surface, which
was located above G, could be charged. A guard
ring attached to G prevented the surface charge
from leaking to the walls of the cell. The current
leaving the surface and arriving at the collector
C was measured by an operational amplifier
(Keithley 300). The voltage between 8 and G was
then switched off while the electric field 8 across
the surface and the temperature T were held con-
stant. The exponential decay of the current (and
hence of the surface charge) was recorded (see
Fig. 4). Trapping times ranging from O. 4 up to
100 sec could be conveniently measured. The
lower limit was determined by the rise time of the
electrometer amplifier and the upper limit by its
sensitivi. ty (low escape rates produce only small
currents). It should be mentioned that low escape
rates can lead to a considerable pileup of surface
charge which distorts the external electric field S.
In this case, the decay of the currents does not
start exponentially. Only after the surface charge
becomes small enough so as not to influence the
applied electric field is an exponential decay ob-

We first present our earlier results for pure
He and analyze them in terms of the model de-
scribed in Sec. II. Figure 5 shows the measured
trapping times i(h, 7) = P ~(S, T) as a function of
temperature for different electric fields 8 across
the free liquid surface. The abscissa is plotted
linearly in T, which results in an approximate
straight-line behavior for ln7 over a limited tem-
perature interval. The solid lines are calculated
from Eq. (5) by varying n and R for a best fit. The
following procedure was used: According to Eq.
(5) we can plot a universal curve In(P/y) vs T
and obtain n from the slope. Because of the weak
influence of the unknown quantity n on the function
y, few iterations are necessary. Starting with an
estimated e, we get a stable value after three
iterations. The resulting universal curve for He
is shown in Fig. 6. n determines the slope of the'
curve and R can be then obtained from the inter-
cept. The weak dependence of the frequency v on
8 is no problem here because it is dominated by
the exponential R dependence in Eg. (5). Taking an
image-potential coefficient A = 1099 KA derived

2 0
— Time (SeeOnds)

FIG. 4. Exponential decay of the surface current when
the ion source is switched off.
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FIG. 5. Experimental measured trapping times v as a
function of temperature T for pure He . v' varies from
about 1 to 100 sec.

from the dielectric constant &=1.05V, ~ we obtain,
from Fig. 6, a=0.431 A and 8=24. 8 A. ~ With
these results the solid lines in Fig. 5 were calcu-
lated from Eq. (5). It is interesting that the value
of A. can also be determined directly from the ex-
perimental data. This is discussed in detail at the
end of this section.

The results obtained by applying the same pro-
cedure to pure Hes are shown in Figs. V and 8.
Taking A=83V 'K A calculated from & = l. 042, '
we obtain, from Fig. 8, n=0. 384 A and 8=30.1
A. With these values, Eg. (5) gives the solid lines
shown in Fig. V. The trapping times are consid-
erably shorter for equal temperatures and fields
than in He4. Therefore, we had to take our data
at lower temperatures by cooling the sample in the
He cryostat. The experimental results again can
be described nicely by Eqs. (5) and (5), as can be
seen in Figs. V and 8. The universal curve in Fig.
8 shows the predicted straight-line behavior for
ln(P/y) vs T '~ even though P/y changes by five
orders of magnitude.

In Fig. 9 our data for two Hes-He4 mixtures are
shown together with those obtained in the pure liq-
uids. Two pecularities of the mixture are evident.
First, a straight-line behavior of the data in Fig.
9 holds only above 1 'K. From these portions of
the curves we obtain for the 19.5/o mixture o,

= 0.232 A ~ and R= 21.7 A, and for the 12% mixture
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FIG. 8. ln(P/y) vs T ~ for pure He and pure He .

tioned that this unexpected behavior of the mix-
tures was associated with a strong increase of the
dc currents from the surface as the temperature
was lowered.

Before we start to discuss our results, we can
check whether the theoretical value for the image-
potential coefficient A= e (c —1)/4e(&+1) which we
used is in agreement with our data. This was done

by analyzing the 8 dependence of the trapping times
in the following way. The dominant 8 dependence
is given by the factor e '"'~' ~ in Eg. (5). The
function G($, T) can be computed because it does
not depend very much on A (the absolute value of
G, which depends on A, is presently not of in-
terest). The factor e-«~m~» ~ is known from the
curves in Fig. 9. From Eq. (5) we therefore can
calculate

~ / ~ j. 2eB 2 (Aeh )» 2/ 7ryg —2Ve 8 7

where p=G(S, T)e'~' r' . Taking the experi--(me r)~~~

mentally determined values for e, we can deter-
mine A from a plot of ln(P/p) vs (eS) ~s/T, which
should be a straight line. The resulting values for
A deviate less than 2% from the ones previously
calculated' using the known dielectric constants
and assuming a flat liquid surface. It should be
emphasized that only one set of values for A and

a=0. 298 A and A=23. 6 A. These values are be-
low those of the pure liquids, and not between as
one might have expected. Second, at lower tem-
peratures there is a strong deviation from the
straight-line behavior. In fact, the trapping time
in the 19.5/o mixture was found to go through a
maximum near 0. 6 'K (at 8 = 263 V/cm) and to de-
crease if the temperature is lowered to 0.48 K.
In the 12% solution, the deviation from the straight
line is much smaller, and no maximum was found
above 0.4I8'K. In the 12% mixture, the plot of
ln(P/y) vs T ' ' fits a straight line over a range
of eight orders of magnitude in P/y. The general
form of Eqs. (5) and (6) seems to be valid for the
12% mixture down to T=0.9 'K.

Below 0. 6 'K another unexpected observation
was made. After the source voltage was switched
off, the current first dropped very fast and only
after about 40 sec was a well-defined exponential
decay recorded. This behavior cannot be attrib-
uted to the influence of space-charge fields de-
scribed in Sec. III, since they produce the opposite
effect on the time decay of the current. An analy-
sis of the decay curves indicates that a second de-
cay constant might be present (which is about 10
sec) and which does not change appreciably down
to 0.48'K. However, within the first 10 sec, the
decay is still too sharp to be fitted by these two
exponentials. No attempts were made to fit these
curves to other functions. It should also be men-
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FIG. 9. 1n(P/y) vs T for two different He -He
mixtures and for pure He and pure He3.
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TABLE I. Summary of the experimental results.

pure He
12% He
19.5% He

pure He

g (c —.1)
4e(&+1)

Experiment Theory

10S9
1069
1047

837

0.431
0.298
0.232
0.384

In
Ef -Ep=

2ypgs R
(eV) (A)

0.70 24. 8
23.6
21.7
30.10.56

In this section we shall discuss our results for
the binding energy E1—Eo and the radius R of the
electronic bubble states in liquid helium. A com-
parison will be made with corresponding values
obtained from other experiments and from theoreti-
cal calculations. We shall also consider some dif-
ficulties and obvious shortcomings of our theoreti-
cal model presen. ted in Sec. II.

There are several theoretical approaches to cal-
culate the energy of a quasifree electron in liquid
helium. Burdick investigated the propagation of
an, electron in an unperturbed regular lattice of He
atoms. The ground-state energy turned out to be
insensitive to the particular lattice selected. For
a density corresponding to that of liquid He he
finds an energy E1=1.1 eV, and E&=0.78 eV for
He . Other authors have used the signer-Seitz
approximation to calculate E&, considering an atom
as a hard sphere of radius a (the low-energy-elec-
tron scattering length) arranged in a periodic array
with a, Wigner-Seitz equivalent sphere radius y,
given by

where n is the number density of the liquid. Match-
ing boundary conditions for s-like wave functions,

sin =0,
8

gives a condition for the wave number 40 of the
electron,

kor, = tank~(r, —a),
from which Eq=k kz/2m, can be computed. The
results for He4 indicate Ej = 1.3 eV, and for He3,

E1=0.93 eV, the uncertainties arising from the
treatment of the polarization effects. ~

n can describe both the 8 and T dependence of our
data correctly. Therefore, our assumption for the
image-induced potential V(x) = A/x+ eSx with A
= e (g —1)/4a(@+1) is justified.

Our results are summarized in Table I. The
accuracy of the results depends on the accuracy
with which the straight lines in Fig. 9 can be de-
termined, i..e. , about 1/o. Hence E~ —ED may
have an error of about 4/0.

V. DISCUSSION

Alternatively, an optical approximation has been
used to study the problem. ' In that model, the He
atoms are considered as randomly distributed
scattering centers. One finds that the liquid acts
like a potential barrier of height

E, = 2ma'an/m, ,

where a is the scattering length and n the number
density. It is interesting to note that this result
agrees with the Wigner-Seitz result in the limit of
low. densities. 3 At liquid-helium densities, how-
ever, the optical model yields .Ej = 0. 6 eV, i.e. ,
about a factor of 2 less than the Wigner-Seitz
model.

Recently Fetter has improved the optical model
by taking into account two-body correlations be-
tween the He atoms, the so-called shadowing ef-
fect. This approximation yields

2vn'an
I

1 —4wan rF (r) dr)m,

(1 + 2manr, ),27t'8 Qg

where F(r) is the two-body correlation function.
From this formula one obtains

E&=0.87 eV for He

=0.64 eV for He3 .
So far, three different types of experiments have

been performed in liquid He from which the energy
E& could be inferred. Sommer injected electrons
from the vapor phase into the liquid and found a
required minimum energy of 1.3 eV for injection
of the electrons, with an accuracy of about 30/p.
Woolf and Hayfield measured the shift of the spec-
tral response of a phototube after it was broken
and filled with liquid He . They found the response
curve to be shifted by 1.02 eV. There remains
some doubt, however, whether this shift is really
the change of the work function. Northby and San-
ders4 and Zipfel studied the photoexcitation of
electronic bubble states in liquid He . An inter-
pretation of their data by Miyakawa and Dexter~7
yields E&=0.95 eV. Details of this experiment are
not clear to us, in particular, the role played by
quantized vorticity.

In order to compare our results with the experi-
mental and theoretical investigation above, we have
to know the ground-state energy Eo of the electron
inside the bubble. Since Eo is mostly determined
by the bubble radius R (and rather insensitive to
changes in E~), we could compute Eo from our mea-
sured values for R. However, as we will discuss
below, our absolute values for R should not be tak-
en too literally. We therefore prefer to compute
Eo in He from the so far generally accepted value
of R= 16 A, around which experimental evidence
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has centered. Taking this value, we obtain J."o

= 0. 12 eV from the simple bubble model. A recent
attempt to measure this energy by a stopping-po-
tential measurement at low temperatures gave a
value 0.03 eV higher, corresponding to 8=14 A.28

Because of the difficulties inherent to that experi-
ment, we continue to use the computed So =0. 12 eV
in He . No such data are available to calculate Eo
in Hes. The bubble model, however, predicts a
r lation between Eo and the surface tension cr..

Taking the known surface tensions, ae we obtain Eo
= 0.09 in, He~. Combining these values with our
experimental results, we finally get

Z, =0.82 ev for He'

=0.65 eV for He3.

We find a fair agreement with Fetter's optical
model. '4

We now turn to the discussion of the bubble radii.
They were determined from the intercepts of the
straight-line fits in Fig. 9. The value of 24. 8 A
in He is considerably larger than that derived from
other experiments, e.g. , ion trapping on vortex
lines. Since 9 determines the absolute value of
the tunneling probability, we believe that the ex-
cessively large value we find for 8 is a result of
a tunneling probability which is actually larger than
the expression in Eq. (5) by some constant factor
This situation is often encountered in tunneling
phenomena: it is difficult to predict the absolute
value of tunneling currents, whereas its variation
with parameters such as barrier height and barrier
width can be calculated accurately. Though our
model gives a tunneling current which is too low,
the electric field and temperature dependence is in
excellent agreement with the data. Assuming that
a constant factor is missing in Eq. (5), we can
compare the experimental values for the radii in
He4 and Hes:

densation of He3 atoms at the free liquid surface
and at the walls of the bubble. From the experi-
ments by Guo et al. ,3 one can conclude that the
first layer of He3 atoms at the free liquid surface
is completed at -0.9 'K for a concentration of
-10%. This will decrease n, because most of the
electrons tunnel through only 2-3 atomic layers as
can be inferred from an analysis of the divergence
of the tunneling current in Eq. (3) (see Fig. 10).
Simultaneously, g will become temperature depen-
dent, since a similar condensation of He3 atoms is
supposed to occur at the walls of the bubble~~ (8
will increase). These processes will increase the
escape rate P, in qualitative agreement with our
results (see Fig. 8). The observation, however,
that the data for the 19.5% mixture finally lie
above the pure Hes data (see Fig. 8) might indicate
that the entire escape mechanism changes (the
temperatures are close to the phase-separation
temperature of 0.4V 'K).

The most peculiar feature of the data for the
mixtures is their straight-line behavior at higher
temperatures (& 1 'K), yielding a binding energy
Ej - Eo which lies below that in Hes and a radius R
below that in He . For example, the 12% mixture
should have a negligible He surface condensation
at these temperatures. A straight-line behavior
is shown in Fig. 8 over eight orders of magnitude.

52.8 A

30. 1
A4 24. 8

In the simple bubble model one has 8~ 0 '~4;
hence~9

The bubble radii scale exactly as predicted by
the bubble model. So far we have discussed the
pure liquids only. Our results for the mixtures
(see Table I and Fig. 8) are peculiar. At lower
temperatures (& 1 'K) the data deviate from the
straight lines in Fig. 8. Obviously, an additional
temperature dependence shows up. It seems
plausible that this behavior is caused by the con-

Distance from free surface (A)

50
I,

FIG. 10. Divergence of the tunneling current Q(x)n(x)
as a function of distance from the free surface for pure
He with 8 =150 V/cm and T=1.0'K. The position of the
maximum depends on b and T.
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Presently, no reason is available to suggest that
the binding energy of a bubble state in a Hes-He
mixture might actually be lower than that in pure
Hes. Instead, we can only speculate that an addi-
tional temperature dependence [e.g. , R(T) = Ro
+ R, //T] might exist, which in our plot would still
give a straight-line behavior, with a different
slope. The intercept of the straight lines would
then be determined by the temperature-indepen-
dent part of R.

We conclude this section with a discussion of the
assumptions we have made in our tunneling model.
We assumed that the bubble remains spherical
even in the strong and inhomogeneous electric field
of the image charge. This can be justified by com-
paring the force f exerted by the electron on the
walls of the bubble with the image force acting on
the electron. The equilibrium radius of the bubble
is determined by a cancellation of the pressure of
the electron and the pressure due to the curvature
of the bubble surface:

f/4vR =2o/R .
Hence

f= 8~Ro = 87.4 'K A ~ for R = 16 A .
On the other hand, the total image force on the
electron located at x= 25 A below the surface is
only

KA =1.8 'KAx~= (26)2

The bubble therefore will remain spherical. We
also assumed that the image force acting on the
liquid-vapor interface would not disturb the planar
surface appreciably. This effect can be estimated
by comparing the pressure produced by the induced
surface charge density &~ in the presence of the
Coulomb field $0 of the electron with the pressure
of a curved surface 2a/~, where r is the radius of
curvature:

2o e e(» —1) 4A
»x' 2m(»+1)x' 2mx'

We have used the maximum value of w~, which ex-
ists right above the electron. Hence the maximum
curvature is

x=vox/A .
Since most of the tunneling takes place at distances
z larger than 25 A, z will always be greater than
100 A. The curvature of the surface therefore can
be neglected. This can be concluded also from the
good agreement between the calculated and the ex-
perimental values for A.. The assumption of a rec-
tangular squar'e-well potential for the bubble and a
discontinuous density change at the liquid surface
as shown in Fig. 2 is clearly an oversimplification

of the actual situation of a continuous density pro-
file. Unfortunately, this density variation is not
yet known accurately enough to incorporate it in
our model. It is, however, obvious that a finite
density profile would enhance the tunneling prob-
ability. One might try varying the density profile
to fit our measured escape rates. But in agree-
ment with what we have said earlier, the result
will remain uncertain because of the general diffi-
culty in predicting the absolute values of tunneling
currents correctly. Finally, it should be men-
tioned that our model is a semiclassical treatment
of the tunnel effect. A more rigorous theoretical
calculation which includes a more detailed picture
of the barriers would be desirable.

VI. CONCLUSIONS

We have demonstrated that the transport of elec-
trons through the free surface of liquid helium can
be described as a tunnel effect from the electronic
bubble state into the vapor phase. From the mea-
sured escape rates, the binding energy and (to a
lesser extent) the radius of the bubble state can be
determined. Our results for the binding energies
in He4 and He3 are in good agreement with a. recent
calculation by Fetter based on a,n optical model.
The radii in both liquids scale a,ccording to the
prediction of a simple bubble model; however,
their absolute values are too large. We obtained
peculiar results in two He -He mixtures which we
cannot explain presently. 33 Our method is appli-
cable to all dielectric liquids in which electronic
bubble states exist with a positive ground-state
energy; neon and hydrogen appear to be promising
candidates for future study.
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APPENDIX

A brief discussion of the particle distribution
inside the image-induced potential well V(x) = A/x
+ eSx is now presented. Assuming conditions in-
side the well are such that the distribution of ions
n(x, t) can be discussed in terms of the diffusion
equation, we have

sn(x, t) s ( sn=—
~

D —+ —V'( )xn( xt) —@(x)n(x, t),
~t ~x I, ax T

8
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with

—PXp =—D + —V x x — x x,
(9)

—PT~(t)=„—T~(t) or T~(t)=e

with —P being the separation constant.
Equation (9) may be recognized as a special

form of the general Sturm-Liouville equation:

-' ~+[a( )+&f( )]X =o
dx i dx

&

where

(10)

V'(x) = = -—.+el, P(x) =-.' ve"' W(x)
x

[see Eq. (2)], and D being the diffusion coefficient
of the particles.

This equation is sometimes called the Smolu-
chowsi equation and in our case includes a loss
term [Q(x)~(x, f)] due to tunneling.

We have attempted to find an analytical solution
to this equation and have been unsuccessful. Great
difficulty is encountered, owing to the second-or-
der pole at x=0.

The general form of the equation allows separa-
tion of variables. Using n(x, f) = X(x) T(t) and sub-
stituting into Eq. (8) yields

f(x) = (I/&) &(x)

and P is the eigenvalue corresponding to the eigen-
function X . If Q(x) = 0, then the eigenfunction
X (x) = e "' ~ (Maxwell-Boltzmann distribution)
has as its eigenvalue P=O (noparticles escapefrom
the well); if Q(x) is "small, " then a first-order ap-
proximation to the eigenvalue P may be found us-
ing the unperturbed eigenfunction Xo(x) = g ~~'~r.
We have by substituting into (9) and integrating

f, y(x)X,(x)dx=~f, X,(x)dx,

then

jo y(x)e ""'"dx
r -v(x)/T ~x

which is essentially Eq. (3) in the text.
A direct solution of Eq. (9) for the eigenfunc-

tion is again hindered by the pole in V(x). A vari-
ational technique may give a better approximation
to the eigenvalue P than the one we have used in the
text. Deep insi. de the liquid, Q(x) vanishes and the
Maxwell-Boltzmann distribution should be quite
good. The electric field and temperature depen-
dence of the measured escape rate P from the sur-
face is in very good agreement with our approxi-
mate solution and the observation that the current
from the surface decays exponentially once the
source of ions is turned off.

A numerical solution of Eq. (8) on a computer
should be possible and we are investigating this
approach.
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The theory of the distribution of the time average of the time-dependent microfield in a quantum

plasma taken over a finite time interval is introduced and developed. The short- and long-time limits

are derived. The Wigner phase-space representation is employed to derive the correct distribution for a
classical plasma and to establish a formalism which can be used for low-order quantum corrections.
Numerical results are presented for a classical gas of charged noninteracting particles. It is found that
for time-averaging intervals, which are larger than the time it takes a particle traveling with the

average thermal velocity to cross the ion-sphere radius, the distribution deviates from the corresponding
Holtsmark distribution for the quasistatic model.

I. INTRODUCTION

The work reported here is an investigation of
the distribution of the time average of the low-
frequency component (ion produced) of the time-
dependent microfield in a plasma taken over a finite
time interval. While the distribution of the static
(time-independent) microfield has a rich history
of development 3 and application, the distribu-
tion of the time-dependent microfield has received
significant attention only recently. Most investi-
gations of the time-dependent microfield have dealt
with the distribution of the instantaneous value of
the microfield when it is relaxing from some initial
value rather than with the distribution of the finite

time integral of the field. ' " Though the particular
distribution introduced here developed originally
from a scalar-additivity theory of the effects of
ion motion on spectral line broadening in plasmas,
it should have broader application, possibly in
those experimental situations such as probe mea-
surements, where fields at a point are determined
over finite rather than infinitesimal time inter-
va].s."

In Sec. II the quantum-mechanical version of this
distribution is defined and its extreme time limits
(t- 0, ~) are determined. The Wigner phase-space
representation of the distribution is developed in
Sec. III, and the classical limit is obtained in Sec.
IV. The simple model of a charged ideal gas is


