
CASCADE TIME OF NEGATIVE Ã MESONS IN LIQUID. . .

M. Leon and H. A. Bethe, Phys. Rev. 101, 1216 (1956).
'J. G. Fetkovitch and E. G, Pewitt, Phys. Rev. Lett. 11, 290

(1963).
'M. M. Block, J. G, Kopelman, and C. R, Sun, Phys. Rev.

140, 143 (1965); J. G. Fetkovitch, J. McKenzie, B. R. Riley,
I-T. Wang, K. O. Bunnell, M. Derrick, T. Fields, G. S. Keyes,
and L G, Hyman, Phys. Rev. D 2, 1803 (1970).

J. G. Fetkovitch, J. McKenzie, B. R. Riley, and I-T. Wang,
Bull. Am. Phys. Soc. 15, 54 (1970).

"For details see J. G. Fetkovitch, B. R. Riley, and I-T.
Wang, Carnegie-Mellon University Report, 1971 (unpublished),
and references therein.

"J. H. Doede, R. H. Hildebrand, and M. H. Israel, Phys,

Rev, 136, 1609 (1964). See this article for an excellent
summary and comparison of capture processes in hydrogen and
deuterium.

"Due to Fermi motion of nucleons, higher angular momenta
are introduced into the annihilation process; however, these
effects are small. For details see R. Birzarri, G. Ciapetti, and
M. Gaspero, CERN preprint No. 69-22, 1969 (unpublished).

"D. Berley, Brookhaven National Laboratory AGS Internal
Report No. DB-1, 1963 (unpublished).

"T. B. Day, University of Maryland Technical Report No.
649, 1966 (unpublished).

"A. Rittenberg, A. Barbaro-Galatieri, T. Lasinski, A.
Rosenfeld et al. , Rev. Mod. Phys. 43, 1 (1971).

PHYSICAL REVIEW A VOLUME 7, NUMBER 6 JUNE 1973

Theory of Optical Free-Induction Decay and Two-Photon Superradiance"

Frederic A. Hopf and Robert F. Shea
Optical Science Center, University of Arizona, Tucson, Arizona 85721

Marian O. Scu11yf
Physics Department and Optical Snence Center, University of Arizona, Tucson, Arizona 85721

(Received 28 January 1973)

The Stark-pulse technique of Brewer and Shoemaker allows one to observe phenomena such as optical free-
induction decay, optical nutation, and two-photon superradiance. In this paper, we develop a theoretical
treatment of these phenomena under the appropriate experimental conditions. The calculations of the
free-induction decay and the corresponding optical nutation are shown to be in excellent agreement
with experiment. We also discuss the two-photon superradiance phenomenon of Brewer and Shoemaker
as a Raman effect appearing in first-order perturbation theory. The analysis illustrates the essential
features of the experimental observation.

INTRODUCTION

A recent series of experiments by Brewer and
Shoemaker' have opened up new areas in spectros-
copy and have provided a simpLe means of mea-
suring relaxation times. In these experiments,
molecules are Stark shifted in and out of resonance
with a laser, and their resulting emission heter-
odyne detected. The present paper offers a the-
oretical analysis of the observations.

In the experiment, a cw laser is incident on a
Doppler-broadened gaseous medium. A Stark field
is applied moving either all or part of the atomic
ensemble in (or out) of resonance with the laser.
The Stark shift thus enables the laser to interact
with molecules belonging to different velocity
groups.

In the case of a simple two-level system, there
are two separate physical processes which take
place when the Stark field is applied (taken to be
at t=0). Those molecules which interacted with the
laser for t &0 are switched out of resonance and
exhibit free-induction decay. " Those molecules
which are switched into resonance at (= 0 exhibit
optical nutation. This separation of the probl. em
into two parts depends on the frequency shift ~v

caused by the Stark field being large enough so
that the two velocity groups do not overlap.

The experiment of Brewer and Shoemaker is the
first observation of free-induction decay in the
optical regime. The molecules which radiate in
this manner are coherently excited by the laser for
times t& 0. After the Stark shift, these molecules
are far off resonance and the macroscopic dipole
radiates at a frequency determined by the amount
of Stark shift they experience. The exponential.
decay of the amplitude has the usual T& term and a
term describing the coherent dephasing of the fre-
quency spread in the ensembl. e of initially excited
mol. ecules.

The optical. -nutation effect6 is well known and
our calculation will concentrate on the free-induc-
tion decay. A brief discussion of optical nutation
is included so that we can compare our results with
the experimental. data.

For most of the molecular transitions studied by
Brewer and Shoemaker, we are justified in con-
sidering only a two-level system. In the special
case where the Stark shift removes a molecular
degeneracy, many levels are brought into play and
an additional process appears. This process, which
was called two-photon superradiance, ~ is charac-
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terized by a lifetime longer than that of the free-
induction decay. As originally suggested, it may
be interpreted in terms of a Baman effect. Since
atomic velocities do not enter into the Raman shift,
the Doppler broadening does not contribute any
dephasing and as a consequence, the radiation has
a longer lifetime than in the case of free-induction
decay.

In a later section of this paper, we will discuss
two-photon superradiance in enough detail to bring
out the essentials of this process. In this section,
however, we concentrate on developing the theo-
retical basis for the treatment of the free-induc-
tion decay and optical nutation.

The density-matrix equations of motion for a
two-level atom of atomic frequency ~ interacting
with a classical. electric field are given by

1
p„(t, g, tu) = —p„——i

@
E(t, g) ( p„- Pb, )

1
(1)

1
p„(t, g, tu)=(1 —p„) T +i

@
E(t, g)(p~ —p„),

(2)
1

Pab(tx gi &) t& Pab " Pab
2

—i
@

E(t, g)(pa, —pbb), (2)

where P is the dipol. e matrix element. The laser
field is taken as 80 cos(kg —vt), and we write the
total field as

E(t, g) = S{t,g) cos(kg - vt)

The slowly varying envelope 8(t, g) consists of two
parts: the constant laser amplitude go and a con-
tribution g, from the medium. g, in turn has two
contributions. One is from the free- induction de-
cay process (S»n) and the other from the optical
nutation (SoN).

In our cal.culation, both gF» and go„are small
compared to the laser amplitude 80, and we are
therefore in a position to replace the total electric
field in the density-matrix equations by the laser
field alone. This approximation, known as thin-
medium perturbation theory, 6'8 is valid under the
experimental conditions of Brewer and Shoemaker.

At the detector, the field is {$0+h Fn) + So„)
x cos {kg —t)t). Since g0 is much larger than the other
terms, the intensity averaged over the optical
period is

2 80+ (~Fn) + ~ON)~0 ~

The signal in which we are interested, 8FgD+ SpN,
is measured relative to the dc contribution, & S~.
We also note that by means of optical heterodyne
detection, the magnitude of the term SF~+ SpN
has been amplified by a factor of Sp.

Our system of equations is completed with Max-
weB's equations coupling S{t,g) to the polarization.

With the slowly varying ampl. itude and phase ap-
proximation, the mave equation becomes

t' 8 1 8 &0v&
~

—+ ——8(t, g) = — f de cr((u)
&ez c et '

2c&0

xRe[2ie ' ' ""p„(t, g, tu)] .
(4)

We have used N0 for the density of atoms and o(0))
for the Doppler distribution.

We assume that those molecules which exhibit
free-induction decay have reached a steady state
when the Stark field is applied (at t=0). In this
case, we have from Eqs. (1)—(3)

, . ;„, f TS 0(1 —i&T,)P.b(0, g, tu)= bie'"'~ ~0T0a+ i a8o+

pbb{0 ~g~tu) paa{0 ~gt&)=1 0 0
&~&2~a

P. + 1 P. SO
(6)

with 80= (IP/k)$0 and 4=0) —v. Once the Stark field
is applied, these same molecules move to a fre-
quency &+ 5v and no longer interact with the laser
(they are too far off resonance). These coherently
excited molecules simply decay and oscillate:

(t)0 gV)
) tet(b ta) vt-/rb -t(s&+bv-v)-t g

C being an integration constant (complex) to be
determined from the boundary conditions. The
boundary condition we impose is that the contribu-
tion to p~ from each group of molecules be con-
tinuous across t=0. Thus, we write for p,~

p (t )0 g + gV) tet(ba vt) e t/Tb ---t(g gv v)t

8,(1 —i&T,)/T,
t"+(T,/T, )8', +(I/T,') .

(7)
Rewriting the resonance denominator in Eq. (5)

as & + F~, where

I = [(T,~.'/T. ).(1/T,')]'",
we see that the Stark shift &v must be greater than
1 in order to resolve different velocity groups.
This is well satisfied under typical experimental
conditions.

The contribution to 8, from the free-induction-
decay process we cal.l g»D. It is obtained by use
of the integral. form of Eq. (4):

p, +3L, /c
SF), =--', ctF f d)i f dtuc((u —5v)

xRe[2i exp( tkc[(r/ -tt)/2- ()-l+ tt)/2])

x p ab(b ( l+ tt)~ b c(fj —tt)~ (u)]

where )l-=t+ g/c, p. —= t g/c, L is the length of the-
Stark cell (10 cm), and tF = )/)bf)/0v/Mcg0. .
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The phased array of dipoles which are shifted

out of resonance at /= 0 have their frequencies
changed, but not their wave vectors. A phase mis-
match then occurs when these dipoles begin to
radiate. If we do the integration over g, we pick
up the phase matching term sin(5vL/2c)/5v(L/2c)
which, under the prevailing experimental condi-
tions, is nearly equal to one (5vL/2c«1). We can
neglect the phase matching by evaluating the inte-
grand at g= p and multiplying by 2L/c. The in-
tegration over ~ may then be done if we assume a
slowly varying Doppler curve (i. e. , 1/2'~h&oo, »„,
«1), since in that case the function a(&u) can be
removed from the frequency integral, and the re-
sult is just a Fourier transform of a Lorentzian.
In a straightforward manner, one then obtains

L
gpm =+ CD g 0(0)VENT

T2C

„(i—r,[(r,/r, )sl+(i/2', &I'")
.&[(&g/&g)S'+(I/&g) l' "

1 (T - 1
~exp —— —'8~+ ~ p. cos &v p,

T& ~ T& Ta
(s)

The free-induction decay is therefore a sinusoidal
oscillation at a frequency 5v with a decay rate 1/r
given by

(s)

We notice that there are two contributions to this
decay rate. The first is the usual I/Tz term. The
second comes from the frequency spread in the
phase array of dipoles set up by the laser field for
t~0. This can be seen from the denominator in
Eq. (7).

OPTICAL NUTATION

The electric field at the detector results from
a superposition of the free-induction decay and the
optical nutation. This latter process is somewhat
more complicated algebraically and we make some
simplifying assumptions. In Eqs. (1)-(3), we take
T, = Ta= T, and again use thin-medium perturba-
tion theory to replace E by Eo.

In optical nutation, we are talking about mole-
cules which are initially far off resonance and
which, at t=0, are suddenly shifted into resonance
with the laser. For t~0, we take steady-state
values to be p,~=O and p»- p„=l. Because the
electric field amplitude is constant, the density-
matrix equations (1)-(3) (after making the rotating-
wave approximation) become a set of three simple
linear differential equations which can be solved
by standard techniques. The algebra is somewhat
complicated, however, and we just write the
answer here. The off-diagonal element of the den-

sity matrix is then

x ((1 —ib, T) cos(g', + b,')' +t

vs~~(il+c'/ "t)) . po~

The contribution to E from the optical nutation
we write as 80N and it may be found by integrating
Eq. (4). This expression for the optical nutation
is complicated by the fact that this experiment
imposes an initial condition at t = 0 rather than at
p, =O, as in more conventional optical-pulse exper-
iments. This introduces a negligible contribution
provided the atoms respond slowly in the transit
time of the cell [(2L/c)go«1]. This is well satis-
fied and we write our result as if the initial condi-
tions were imposed at p, = 0:

goN(V) = —
2

o(~ —&v) ~~

ccrc

2L ( g()/7

x(l —e " [cos(g'+ 4 )' p.

T(go+ b )
i sin(g + 6 ) / ~]) d~

. (11)
This integral cannot be computed analytically.

If, however, we assume go»1/T, and that the
Doppler line is very broad, then we can do the in-
tegration:

ce I
gos = 0'(v '5v)2 7f

x[1+e "'r(g, T) J,(g, p, )]—.

Thus we recover the usual Bessel-function behavior
of optical nutation.

The limiting case go» 1/T is not what is encoun-
tered experimentally. Consequently, we have done
a numerical integration to find go„. When go„ is
comparable to I/T, the optical nutation behaves
like a critically damped harmonic oscillator in-
stead of a Bessel function. As a result, the optical
nutation appears mainly as a, decaying background.
This is shown in Fig. 1, where we have plotted
SoN+ 8»D. The fast ripple due to free-induction
decay (at a frequency 5v) rides on top of the slowly
varying optical- nutation contribution.

For Fig. 1, we have chosen parameters consis-
tent with the available experimental data. Certain
information, such as the initial position of the
laser frequency in the Doppler l.ine, was not known.
This will have an effect on the relative amplitudes
of the free-induction decay and the optical nutation.
In our numerical calculation, we used a value of
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FIG. 1. Computer generated plot of the sum of optical

nutation and free-induction decay effects. For this graph,
Tf T2 1~ 4 psec. 6'0 = 4 MHz, 6v = 70 MHz. All frequen-
cies quoted are in angular units.

40 MHz off the center of the Doppler line in a direc-
tion so as to enhance the amplitude of the free-
induction decay. This amplitude is then about 15%
greater than it would be if the laser were initially
at the center of the Doppler distribution.

In the experiment, both the Stark pulse and the
detector have a finite rise time. As a result, there
is a slight discrepancy between our predictions
and the results of Brewer and Shoemaker for very
short times (-40 nsec). With this proviso, Fig.
1 is in very good agreement with the experimental
results.

TWO-PHOTON SUPERRADIANCE

As mentioned in the Introduction, the two-photon
superradiance of Brewer and Shoemaker is basi-
cally a differentprocess from those we have been
considering up to now. Whil. e optical nutation and
free-induction decay can be obtained from pulsing
the atoms (with a Stark field) or pulsing the radia-

tion (the more conventional approach), the two-
photon superradiance effect can only be obtained
from the Stark-pulse technique.

This effect was observed when a degenerate
transition, initially in resonance with the laser,
was subsequently split by interaction with the Stark
field. Under these circumstances, there are sev-
eral transition frequencies and several free-induc-
tion-decay signals which quickly disappear due to
mutual destructive interference. Brewer and
Shoemaker observed these signals, but in addition,
they found another rapidly oscillating signal with
a lifetime on the order of T2 rather than that given
in Eq. (9).

Since the magnetic sublevels in the upper (and
lower) state are equally split by the Stark shift,
Raman scattering from these levels can take place
at one frequency only. As the atomic velocities
do not enter into the Raman shift, 9 there is no de-
phasing due to the Doppler distribution as was the
case in Eq. (9). This led to the suggestion that
the radiation was a superradiant Raman effect be-
cause it occurred when the upper and lower Raman
levels were equally populated (i. e. , it was neither
spontaneous nor stimulated) and it arose due to the
coherence between the levels. It will. be shown in
the present section of this paper that this viewpoint
is in accord with the theoretical analysis.

Because we are now dealing with many levels
rather than just two, we will need a somewhat ex-
panded notation over the one used in the previous
sections. We will use g and b as before to refer
to the upper and lower states, andm and m'torefer
to the magnetic sublevels. Thus, p ~. refers
to (aml pI fsm ), where p is the density operator.
With this notation, the general density-matrix equa-
tions (using the fact that there are no dipole matrix
elements between the magnetic quantum states of
a given level) are

p~,~ = —b(&u,m
—Sd~.) p~ ~.—r~ ~. P~ ~. + —E(t, Z) p (a mm" pbm ~.—P~ b „SS'm„m, )m"

Pbm bm' b(+bm Ss bm') Pbm, bm' rbm, bm Pbm, bm + @&(t,Z) Z (a„"p ",b„~ —PSb„, » as' " .)
tnlt

1 Z») p. , ~ —-z p, ~ + + &(t, s) Z (&..~ p ~, ~ -p, - ss' - ) .
2 nt

(14)

We have not included any "pump" terms of the
sort appearing in Eq. (2) since they cannot give
rise to the effect we are looking for and merely
complicate the analysis. Another change from
Eqs. (1)-(3) is that rather than taking the medium
to be inhomogeneously broadened, we have explicit-
ly written the velocity v in these equations. In our
final expression for the radiation, this term will

cancel out, emphasizing that there is no dephasing.
The axis of quantization for our equations is

chosen to be the direction of the Stark field. Since
the experiment is carried out with the Stark field
orthogonal to the polarization of the laser, the
selection rules for electric dipole transitions are
4m= +1. The dipole matrix element is then given
by
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The constant laser field for times E~P estab-
lishes a steady-state situation in the atoms and
gives a density operator p (t=0) which will serve
as an initial condition for the response of the atoms
after the shift. The zeroth-order solution to the
density-matrix equations is then

p' ' .(t)= p, .(0)exp[ —t((o —(u, .)t y -.t],
(i5)

(0)

(i6)
p",„', ~ (t) =p, ( .(0)

xexp[-i((u —(uh„—kv)t —(1/Ta)t] . (17)

Using Eq. (4), we can calculate the electric field
radiated after the Stark shift exactly as we did in
our previous discussion. In this case, however,
the levels are split apart and there are many al-
lowed values of co —~~. which cause the free-
induction decays to destructively interfere and the
signal to quickly disappear. (We are neglecting
the optical nutation since, as we have shown, it is
an easily identifiable background. )

Since the effect we are looking for is a Raman
effect, we expect that it will only turn up in higher-
order perturbation theory. Substituting Eqs. (15)-
(1V) back into the density-matrix equations, we find

tt
p' ',, (t)= p, ,„.(0)exp[ —i((d —u&h„. —kv)t- (1/Ta)t] —

@ ho dt cos(ke —vt )
0

xp[ —'((d —~( —kv)(t —t )] '" ' ' Z (& ~ ~ p "(0)exp[ —t((d —&o ")t' —y „t']
mtt

I Ilq—P„„.p " (0) exp[ —t((d "—&u .)t —y „„,t ]t . (18)

When the integration is performed, the polariza-
tion wil. l decompose into three types of terms. The
first oscillates as exp[ —t(v —&u~. —kv)t] and
gives no net contribution since, as noted before,
the frequencies co —co~. are distributed over a
wide range and will destructively interfere. The
second type of term goes as exp[- i(&u~
—v~" —v)t] with m =m +2. Since ~the Stark
effect is linear, l~b -~b,2I is the same
for all m, and there is no cancellation due to
mutual interference. We also note that the veloc-
ity-dependent exponentials have canceled out, and
there is no contribution to the dephasing from the
Doppler broadening. This is exactly what we were
looking for, and represents, as noted by Brewer
and Shoemaker, the Raman emission from the two-

photon transition.
This process contributes to the density matrix

a term given by

tnt g

e-f(& -co ~, ) t e-@gal

i((u - —(o,„.—kv —v) + [(1/Ta) —y " ]

"ps ~ ~, s '(0)
e'"b ""b "e "bb'

X.
i((u —(u "—kv —&)+ (1/Ta —y( ")) .)

(19)

Here, we use the symbol y„ to refer to the decay
rate of the density-matrix element p, ~, which,
in the absence of collisions, is —', (y + y,a).
Similar considerations apply, of course, to y».
We use this symbol. to differentiate such a decay
from the lifetime 1/y, or the usual phase-memory
time T~. The word "intracoherence" time'0 has been
used for y„and ybb to emphasize that they are co-
herence times and hence, strongly influenced by
collisions.

The radiation from this term, $z~, may be
found by summing over the product of P ~ and
p~~ ~., and integrating over the distribution of
velocities. Since the velocities appear only in the
resonance denominator and implicitly in the term
p))„" (,„.(0). This integral contributes only to the
amplitude of the signal:

h 0 ~ g eat ()(««() )'

2~, h c

Nov 8 L~ —C„ea'~"(» &(,(,
"+ c. c-. (20)

2&0 5 c

As in the case of free optical nutation, there are
small factors coming from the application of boun-
dary conditions at t=p rather than p. =P. We
ignore such terms in this case as well. The am-
plitudes of the two-photon radiation are then

&(k ) m .«))+1 m+2 .m+11 I P p P sm+1 .m+2i Itn+1, nt p, ,a d(kv),2 J
"

((« „—«~., —(:« —«)«((/r« —«..) —((« —«~., —(;« —«) «((/r« —«..) )
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We have pointed out before that there is no de-
phasing to contribute to the decay time of this
radiation. We should, however, note the fact that
it decays with the intracoherence'0 time y„(or
y»). This is the same intracoherence time mea-
sured in the Hanle effect. " Since measurements
reveala that this decay rate is on the order of
I/Ta, the resonance denominators give a large con-
tribution to the amplitude, and we expect the signal
to be quite strong. This has been found experi-

In Eq. (20), we see that there are actually two
contributing terms: one at a frequency 2h&, and
the other at a frequency 24~~. These frequencies
are very close, but a spectrum analysis reveals
the two components of Eq. (20).

As in the case of the free-induction decay, this
signal appears on top of the optical nutation for
the atoms switched into resonance. Since many
levels are involved, it becomes tedious to solve the
problem completely. For this reason, we have
attempted only a qualitative discussion rather than
a precise fit to the data as in the previous sections.

CONCLUSION

In this paper, we have discussed two new obser-
vations that have come from the work of Brewer
and Shoemaker. These are the optical free-induc-
tion decay and the two-photon superradiance. Free-
induction decay has a complicated decay time as it
involves the dephasing of a set of molecules with

a finite spread in spectral width which are simul-
taneously decaying owing to collisional dephasing.
The signal, which beats against the laser at a fre-
quency determined by the magnitude of the Stark
shift, rides on top of the optical nutation of the
atoms switched into resonance. A specific calcu-
lation was made which showed excellent agreement
between experiment and theory.

Two-photon superradiance occurs when a reso-
nant degenerate line, interacting with the laser,
is split by the Stark field. We have shown that it
is a Raman effect which shows up in first-order
perturbation theory and comes about due to the co-
herence established by the laser among the mag-
netic sublevels. The radiation is emitted without
a dephasing contribution and decays according to
the intracoherence times of the sublevels. Since
these times are comparable to the ordinary co-
herence times, the resonance denominators can be-
come nearly zero, causing large-amplitude signals.
All these properties are in accord with the experi-
mental observations.
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