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In this paper a new fully renormalized kinetic theory for self-diffusion is described. The
theory is developed in terms of time-dependent correlation functions, and the main effort is
in deriving general microscopic expressions for the memory function associated with the
phase-space fluctuation function. These general expressions are valid for all frequencies
and wave numbers and are rearranged in a way such that approximations can be made at a
microscopic level in a straightforward manner. The main idea in the rearrangement is the
expression of the memory function in terms of an effective two-body problem where the dy-
namics are described by the two-particle Liouvilleoperator and an effective source repre-
senting the effect of the other N-2 particles in the system on the colliding pair. An exact
microscopic expression for the two-particle source is derived. It is shown that even the
simplest approximation in this scheme leads to the nontrivial Boltzmann —Enskog approxima-
tion for the memory function.

I. INTRODUCTION

In this paper a new fully renormalized kinetic
theory (FRET) for self-diffusion in single-compo-
nent monatomic fluids will be presented. This the-
ory will be a microscopic theory and is designed
to calculate time-correlation functions in realistic
systems. The emphasis is on the calculation of
time-correlation functions since all of the modern
scattering techniques use these functions to inter-
pret their experiments and these correlation func-
tions are determined in molecular-dynamics ex-
periments. In neutron scattering experiments one
can measure S,(k, +), which is the Fourier trans-
form in space aad time of the correlation of the
position of a tagged particle with its initial posi-
tion

S,(r —r t —t )= (N5 (r —rq(t)) 5 (r —&q(t ))),
(1 1)

where Ã is the number of particles in the system.
In molecular dynamics ' one can calculate the ve-
locity-autocorrelation function (VAE) V~(t), which
is just the correlation of a tagged particle's ve-
locity with its initial velocity

VD(t) 3 (N~1(t) ' +l(0) ) (1.2)

One can show that the Fourier transforms of VD and
S, are related by

V~((u) = lim ((u'/u') S,(k, (u) . (1.2)
0

Theoretically there has been a tremendous
amount of effort to calculate V~(t) One fruit. ful ap-
proach is to write an equation of motion for VD(t)
in terms of a single-component memory function
as was done originally by Berne, Boon, and Rice'
using Zwanzig' s' projection-operator technique.
Mori has generalized this projection-operator
technique to give general expressions for the mem-

ory functions associated with a wide class of time-
correlation functions. This single -component de-
scription suffers from two basic computational dif-
ficulties which are related to the feasibility of cal-
culating the memory functions from a microscopic
point of view.

The first of these difficulties is related to the
mathematical properties of the projection operator
introduced by Morie which projects onto a vector in
Hilbert space that depends on the phase-space co-
ordinates of N particles. Resibois and co-workers
have discussed the difficulties in making theoretical
headway with the projection-operator expression
for the single-component memory function. This
is discussed further in Sec. IV of this paper.

The second difficulty is related to the fact that
an explicit calculation can only be carried out after
one has reduced the problem, through some series
of approximations, to an equivalent few (one or
two)-body problem. The obvious prototype of such
a reduction is the Boltzmann equation, where one
describes an N-body system in terms of the two-
body dynamics. Consequently, since one wants to
derive expressions for the correlation functions in
terms of the dynamics of a few particles, it is
most natural to describe these events in terms of
the phase-space coordinates of these particles.
The single-component description, however, does
not treat the momentum and spatial coordinates on
an equal footing. It is, therefore, desirable to ex-
tend the description to the more general correla-
tion function C,(12), defined in Sec. II, which is a
matrix labeled by a continuous momentum index.

A complete theory for C,(12) for a low-density
system has been developed and a few results
will be discussed in Secs. IIB and V. In this pa-
per, however, it is of primary interest to develop
a microscopic theory valid beyond the low-density
regime. In developing such a microscopic theory
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there are several possible approaches to writing
down a "perturbation scheme. " These depend on
the choice of the fundamental units in the scheme.
For example, in the mode-mode coupling formal-
ism of Kawasaki he writes a self-consistent
scheme involving the correlation functions them-
selves and certain equal-time-correlation func-
tions. Of course, this analysis considers only the
contributions from fluctuating hydr odynamical
modes and is, therefore, not intended to be a gen-
eral microscopic theory. Forster' has developed
a perturbation scheme involving the correlation
function itself and the bare two-particle Liouville
interaction operator. This theory is similar in
approach to the diagrammatic analysis of the
Prigogine school. " In these theories, it is quite
difficult to make contact with the Enskog theo-
ry, ' '"which is quite good up to moderate den-
sities (q=6 vnro-0. 3, where xo is a hard-sphere
diameter and n is the particle density). Another
approach is the binary-collision expansion (BCE)
approach due to Zwanzig, where the basic units
are the bare two-particle propagators. While one
can make contact with the Enskog theory using this
approach, it leads to unphysical divergences since
the interaction of clusters of particles with the
medium are not taken into a,ccount and it is quite
difficult to include the statistically correlated
events in the theory.

A major difference in these schemes is in the
choice as to the relative importance of static or
dynamic phenomena. In the FRET one does not
have to make this decision; instead the dynamics
and statics are treated simultaneously. One major
benefit of this approach is that the Enskog result,
with its static effects, can be obtained in a very
direct fashion (see Sec. V).

In developing a new theory of dense gases one
will be confronted with the "divergence" problem
encountered in the BCE approach. For three-di-
mensional systems these divergences ~ appear
first in the four-body terms and presumably in all
higher terms. Kawasaki and Oppenheim' pro-
posed a remedy for this lowest-order divergence
by resuming the most divergent terms in the den-
sity expansion. This resummation removed the low-
est-order divergence and introduced logarithmic
terms into the density expansion for the transport
coefficients. This same renormalization tech-
nique —summing of ring diagrams —has recently
been used by Dorfman and Cohen, ' Pomeau, and
Dufty in analyzing the very-long-time tail ob-
tained by Alder and Wainwright' ' in their molecu-
lar-dynamics calculations of correlation functions
for hard-sphere fluids. The long-time behavior
obtained by Dorfman and Cohen seems to be cor-
rect at low densities and a good approximation at
least up to half the close-packing density. Inter-

estingly, a number of authors have obtained similar
results using a mode-mode coupling or hydrody-
namical approach. '

In the theory proposed here, the various one-,
two-, and three-particle clusters are renormal-
ized before one makes any type of expansion or ap-
proximation. Thus one never isolates the clusters
that lead to the divergences in the BCE approach.
Instead, each cluster of s particles is governed by
the s-particle Liouville operator plus an effective
external part to the Liouville operator represent-
ing the effect of the other N-s particles on the s-
particle cluster. It will be shown in the second
paper (II) in this seriesso how a full renormaliza-
tion leads to an inclusion of the ring diagrams in
the theory in a natural way. It will then be shown
in II how these ring terms lead to the mode-mode
coupling expressions for the memory functions.

Before going on to the basic formulation of this
new theory, it is useful to comment on the rela-
tionship of this theory to some other fundamental
theories. In Ref. 10 the calculation of memory
functions via the method of thermodynamic Green's
functions was discussed. It was pointed out there
that the Green's-function method has the advantage
that dynamic and static properties are calculated
self-consistently. Unfortunately, as can be seen
from the analysis in Ref. 10, this simultaneous
treatment leads to extensive rearrangements if one
is going to, for example, identify the pair-correlation
function when it appears in the theory. To lowest
order in the density, where g(x)=e '"', this iden-
tification is relatively simple, but for higher or-
ders in the density, where g(x) will be given by
something like the Percus-Yevicks' equation, the
couph. ng between the statics and dynamics will lead
to untractable equations where, for example, the
three-body scattering dynamics will be intimately
connected with the static correlations between
three particles. This same difficulty is inherent
in the perturbation scheme due to Resibois and
Deleener, where they must eventually argue that
the approximate static-correlation functions in
their theory should be replaced by the "correct"
ones when comparing with experiment. In the
FRET, as in the mode-mode coupling-type theo-
ries, ' ' the exact static-correlation functions ap-
pear in the analysis and their calculation is de-
ferred to a separate analysis.

There are some similarities between the work
of Mori and the FRET in that projection operators
are used in both and the resulting general expres-
sion for the memory functions "look" similar, but
as will be discussed in Sec, IVC, there are some
important differences which lead to a computational
advantage for the FRET.

While the theory described here has thus far
been developed only for the case of a diffusing par-
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g(11)= WN5(1 —q, ) Z 5(1 —q, ) (2. 2)

g(111')=@ N5(l —
q&) Z 5(1 —q;) 5(1 —q;) .

j $gA1

(2. 8)
It is very easy to calculate the thermodynamic av-
erages of these fields:

(f.(1))=
N

~5(1-q;) = nf (P ) (2 4)
vN " 1

N

where fo is the normalized Maxwell distribution

ticle obeying classical mechanics, it is the au-
thor's opinion that the theory can be readily ex-
tended to the quantum case and the case of density
fluctuations. In this first analysis the simplest
realistic system is treated.

II. BASIC DEFINITIONS

A. Fundamental Fields

In the theory of self-diffusion a fundamental the-
oretical quantity is the phase-space density as-
sociated with a tagged particle (say particle 1) de-
fined as

f,(1)= WN5(1 —q~), (2. 1)

where q~ = (r~, p~) are the phase-space coordinates
of particle 1, and there is a total (counting particle
1) of N particles in the system. One is also in-
terested in the fields correlating particle 1 with the
other particles

and

C(1 11';222') = (g (22 2') g(11 1'))

(2. 12)

= 6(12)([5(l 2) 5(l'2') + 5(1'2) 5i(1 2')]

x~o(111')+[5(12)+5(l'2)]

x Mo(111'2')+ [5(12 )+5(1 2')]

xo)o(1 1 1 2)+ o)o(l 1 1'22')} . (2. 13)

B. Static Correlations

One is also interested in the correlations be-
tween the fields defined above. In particular, one
needs the static -correlation function

C,(12)= (5f,(2) 5f,(1))

5(1-2)fo(p ) -( '/N)fo(p )fo(p )
(2. 10)

where 5f, indicates the deviation oi f, from its av-
erage value. Note that static-correlation functions
are denoted by a tilda. It should also be noted in
the case of self-diffusion that the deviations of the
fields from their equilibrium values are not im-
portant in the thermodynamic limit and can, there-
fore, be neglected. One also needs the results

C(11;2) = (f,(2) g(11))= 5(1 —2) (uo(11), (2. 11)

C(ll; 2 2) = (g(22) g(l 1)}

=5(l —2) [5(1 —2) o)o(11)+~o(112)],

3/2
f (p )

~

P op&/2)))-

(g(11))= (1/v N) n g(rz —ri) fo(p))fo(pj)

(2. 5)

C. Time-Dependent Correlation Functions

The basic quantity of interest in the discussion
will be the time-dependent correlation function

where

-=(1/WN) (uo(11), (2. 6)

(2.7)

where the fundamental fields are displaced in time.
One is also interested in the Fourier transform of
this quantity

C,(12; u&) = f d(t —t') e"""' ' C,(12; t —t ),
(2. 15)

is the pair-distribution function, and

(g(111'))= (1/v N) n' (rg„rg r)f. )

and the Laplace transform

C(12)= —1g , d(t —1)e'""'C, )12; 1)1
xfo (pi) fo (p;) fo (pp ) d(d Cd(122 (d)

2w 8 —co
(2. 16)

=(1/v N) (u (111), (2. 8)

where

n g(ri)r&2rp)= Z 6(r&-r, )5(ri-r, )6(rq. -r, )

(2. 8)
is the triplet-distribution function. It is clear that
the equilibrium averages of these fields vanish in
the thermodynamic limit N, V- ~ with N/V=n. Lp+L (2. 18a)

where Imz )0. One can deduce a useful represen-
tation of C,(12) if one notes the time propagation
property of Koopman's operator34

(2. 17)

where L is the Liouville operator
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with the free part [A —I3] = A +A B [A —B] (3. 6)

and the interaction part

(2. 18b) to find the equations of motion

[z —Lo(1)]C,(12) —f d 1 LI(1 1)C(l 1;2) = C,(12),
(3.6)

E
Lg=i 2 V„.V(x; —rq) ~ V~

f&j =1
(2. 18c)

[a+Lo(2)] C(11;2)+f d2 I.,(2 2) C(1 1; 2 2)

= C(11;2), (3. '7)

Using (2. 17) together with the time-translational
invariance of the equilibrium ensemble, (2. 16) can
be written as

C.(12)= - f d(f t') (f-(2) e"'-"""f(1))
0

C(1 1; 2) = („f,(2) [z + L] g(1 1)},
C(l; 2 2) = (g(2 2) [z+ I.]-'f,(1)),
C(l 1; 2 2) = (g (2 2) [z+ I ]

'
g (1 1)),

(2. 20)

(2. 21)

(2. 22)

and, among other obvious generalizations,

C(111;222 ) =(g(222 ) [z+L] g(111 )) .
(2. 23)

III. EQUATIONS OF MOTION

A. Hierarchy

In developing techniques for calculating these
correlation functions it will be useful to obtain the
equations of motion they obey in Laplace transform
space. First one needs to know the effect of the
Liouville operator on the fundamental fields. It is
shown in Appendix A that

Lf,(1)= —Lo(l)f, (1) —f dlI.,(11)g(11), (3. 1)

where Io(1) is the single-particle Liouville opera-
tor

L, (1)= -ip, V„ /m,

and L,(1 1) is the interaction part of the two-par-
ticle Liouville operator '

(3.2)

(3.3)LI(11)=iV„V(r& —r&) ~ (V~ —V~ ) .7f 1

It is also easy to show that the effect of the Liou-
ville operator on g(1 1) is given by

Lg(l 1)= —L(l 1)g(l 1)

—f d 1 [LI(l 1 ) + LI(1 1 )]g (1 1 1 ) .
(3.4)

The effect of L in (3. 1) and (3.4) is to introduce a
field depending on the coordinates of one more
particle. It is a simple matter to combine the def-
initions (2. 20) through (2. 23) with (3.1) and (3.4)
and the operator identity

(2. 19)

In the following discussion it will also be useful to
consider the correlation functions

[g- L(1 1)]C(l 1; 2 2)

—f d 1 [LI(1 1 ) + LI(1 1 )] C (1 1 1;22)

= C (1 1;2 2) . (3.8)

It should be clear that these equations are essen-
tially equivalent to the lowest-order equations in the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of equations familiar from conventional
nonequilibrium statistical mechanics.

B. Renormalization of Collisional Effects

It has been appreciated for some time that the
efficient method for avoiding the unphysical secu-
larities inherent in a direct expansion of a time-
dependent correlation function is to make approxi-
mations for the inverse of the correlation function,
To lowest order in the density or for very large z
one knows that the inverse operator for C,(12) is
just the free-streaming operator z —Lo(1), where
I.o(1)= —

ipse ~ V„ /m is the one-particle Liouville
operator. It is then conceptually useful to define
the full inverse as a sum of this free-streaming
term and another function describing the collision-
al effects. This reasoning has led several au-
thors ' '~'38 3 to investigate C,(12) via a general-
ized kinetic equation of the form

[8 —LO(1)] C,(12) —4,(1 2) C,(2 2) = C,(12), (3.9)

where C, (12) is the static-correlation function given
by (2. 10). $,(12) is called the memory function and
has a relatively simple physical interpretation.
Since z-Lo(1) is just the operator that describes
the streaming of a single free particle, it is clear
then that the memory function describes the effect
of the other N —1 particles on this free-streaming
particle. The memory function renormalizes the
free-particle motion in the system. A physically
fruitful interpretation is that the memory function
is a nonlocal non-Markovian external source acting
on a single free-streaming particle. Since the free
motion is well understood and all of the N-particle
dynamics are included in the memory function, one
can switch one' s attention from the correlation func-
tion to the memory function. This can be particu-
larly useful in those cases where one expects the
memory function to be a "less varied" function of
its arguments than the correlation function.

The relationship of the kinetic equation (3.9) to
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the Boltzmann equation can be made clear via lin-
ear-response theory. It can be shown ' that the
deviation from equilibrium of the singlet distribu-
tion function f (1), for a system initially held in
constrained equilibrium, is proportional to
C(11)U(l), where U is the weak adiabatic external
potential that set up the constrained ini.ial state.
Consequently, in the region where f (1}satisfies the
linearized Boltzmann equation, one expects C(1 1}
will also obey the linearized Boltzmann equation.
It can be shown, to lowest order in the density46

and in the limit of long time and distances, that

lim lim p, (k, pp', z) = i Kz(p p'), (S. 10)
z~i0+ 0 0

where E& is the linearized Boltzmann collision op-
erator for a diffusing particle. Equation (3, 9) is
then essentially the Boltzmann equation. Expres-
sions for the memory function have been found that
are correct to lowest order in the density, that are
valid for all frequencies and wavelengths, and
which satisfy all the constraints that one knows to
put on it. ' ' It is very important to realize that
an approximation to lowest order in the density for
the memory function corresponds to keeping an in-
finite set of terms in the density expansion for the
cor relation function.

From the discussion above it is clear that one
wants to use the equations developed in Sec. IIIA
to investigate the renormalized kinetic equation
(3. 9). On comparing (3.9) and (3.6) it is easily
seen that4'

IP,(1 2) C, (2 2) = f d 1 LI(1 1) C(1 1; 2) . (3. 11)

Next, it is shown in Appendix B that C, satisfies the
adj oint equation

[z + Lo(2)] C,(12)+ C,(1 2) p, (2 2; —z) = C,(12) (S. 12)

and it follows, after integrating (S.7} over 1 and
dividing by N- 1, that

C,(12)y (22; —z) = J d2Li(22) C(1; 22) .
(3. 13)

One can then apply the operator z+ L~(2) to (3.11),
and use (3. V) to obtain

y, (l 2) C, (2 2) —y, (1 2) C,(2 3) p, (3 2; —z)

= f d 1 L~(1 1)C (1 1; 2)

—f d 1 d 2 LI(l 1)I i(2 2) C(1 1; 2 2) . (3. 14)

It should be noted that the first term on the right-
hand side of (3. 14) vanishes since L, is odd in
r, —r; and C(1 1; 2) depends on r; only through the
difference r, —r;. Equation (3. 14) can then be
written in a more useful form if (3. 11) and (3.13)
are used to eliminate the p, in the quadratic term.
One then has the compact expression for the mem-
ory function

p, (12)nfo(P~) = —f d1 d 2Lq(1 1) Lq(22) G(11;22),
(3. 15

where

G(11;22) = C(11;22) —C(11;3) C, (34) C(4;22) .
(3.16)

Equations for the memory function similar to
(S. 14) have been known for some time, 4'8'48 but
Eqs. (3.15) and (3. 16) are a new result. 49

The calculation of p, (and correspondingly C,)
has now been "reduced" to calculating the correla-
tion function C(11;22). It should be immediately
clear that this is more difficult than calculating C,
since one now has a four-point function rather than
a two-point function. It will be shown, however,
that one can make simple approximations for
C(1 1; 22) which lead to nontrivial results for Q, .
An important step in motivating these approxima-
tions is to realize that just as C,(12) satisfies a
kinetic equation in terms of an effective one-body
"source" so also C(11;22) satisfies a kinetic equa-
tion in terms of an effective two-body "source":

[z —L(1 1)]C (1 1; 2 2) —M (1 1; 3 3) C(3 3; 2 2)

= C(11;22) . (S. I&)

It should be immediately clear from (3.8) that

M(1 1; 3 3) C (3 3; 2 2)

= f d1 [L,(11')+L,(11)]C(111';22). (3. 18)

As one expects in a "hierarchy" approach, M is de-
termined by an even-higher-order correlation func-
tion. One can follow the same method of attack
that was used to obtain (3. 15) to obtain the result

M(11; 3 3) C(33; 22)

= f dl [Li(11')+L~(11)]C(111';22)

—J d 1' d2' [L,(11')+L,(1 1')]

x [L,(2 2 ) + L,(2 2 )] G(1 11';2 2 2 ) (3. 19)

G(111;222 )= C(111;222 )

—C(111';33)C (33;44)C(44;222') . (3.20)

C. Properties of N

One can continue this process of introducing
higher-order memory functions, but the usefulness
is not transparent. It is more instructive to stop
and consider the physical interpretation and prop-
erties of M. It can be seen from (3. IV) that M
serves as an effective external source which modi-
fies the dynamics of a two-particle system. Clear-
ly M is of first order in the density.

It can be seen from (3. 19) that M has a static
(independent of z) part
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M "(11;33)C(33; 22)

= f dl [Li(11 )+Li(11 )]C(111';22) . (3.21)

—M, (11;22) =0 . (S. 32)

There are a few interesting observations one can
make in light of the properties of M just discussed.
First, if one wants to derive (3. 6) from (3, 1V), as
is usual in the BBQKY hierarchy approach, by
integrating over the 1 index, then, owing to (3.32),
it is only the static part of M that contributes.
Next, it should be clear that M, has the effect of
replacing a bare interaction L, with an average
force between two particles. This effect could be
quite important at high densities. A third observa-
tion is that these equations are exact and they can
be used to generate phenomenological descriptions.
For example, it is rather simple to extract the
short-time, large-z behavior for these quantities.
This could lead to an analysis of M similar to that
carried out for p by Duderstadt and Akcasu, '9

which led to good agreement with computer cal-
culations for short times. On the other hand, of
course, one can continue on with a first-principles
approach.

Z(l 1; 3 3) C (3 3; 2 2) = —(g (2 2) I.g(l 1)) . (3.24)

It is clear from (S.24) that 2 satisfies the sym-
metry condition

$(1 1; 3 3) C (3 3; 2 2) = —C (1 1„33) 2 (2 2; 3 3) .
(s. as)

While the right-hand side of (3.24) can be evalu-
ated exactly in terms of &uo(11 2) and ~0(11) this
result will not be needed here. If one ignores trip-
let correlation functions, then the interaction part
of 8 can be written

g, (11;22)

= —i P
'

V„,Ing(r, - r-, ) ~ (vp —v~ )5(12)5(T2)
(3.26)

and the interparticle force is replaced by the mean
force. "' If one further expands (S.26) to lowest
order in the density, one finds

z,(11;2 2) = I.,(11)6(la) 6(I 2) . (s. av)

On comparing (S. 19) and (3.21) it can be seen
that the "collisional" part of M is defined by

M, (l 1; 3 s) c{s3; 2 2)

fd I' -d a' [L,(I 1')+ L,(l 1')]

x [L,(2 2')+ L,,(2 2')] G(111';222') . (S.26)

One sees immediately that (3. 28) leads to a "con-
servation of particles" property

f dpidpiM, (11;22) =0, (3.29)

and M, satisfies the symmetry condition

M,(11;3 3) C(S S„22) = —C(11;3 3) M, (2 2; 3 S; -~) .
(3.30)

If one notes that

f G(11 1;222') = C(11';222 )(x- 2)

-c(11' ss)c-'(ss 44)c(44 222')=0 (s 31)

one then has the very useful property

Using (3.4) one can rewrite (3.21) as

M'"(ll 33)c(ss 22)

=-L,,(11)c(1I;aa) -(g(22)L, g(11)) . (3.22)

Consequently the "static" operator in (S. 1V) can be
written

L(11)c(11;2 2)+ M"'(l l; 3 3) c(s s; 2 2)

-=z(I I; ss) c(33;2 2), (s. 23)

y, =re [x+4] '. (4. 3)

To lowest order in the density the memory func-
tion and the FFC are equal. If one wants to use
(4. 3) to go to higher densities and if one approxi-
mates C in (4. 3) by its low-density value, which

IV. PLATEAU-VALUE PROBLEM AND PROJECTION

OPERATORS

A. Plateau-Value Problem

In any first principle analysis of the microscopic
expression for the memory function given by (3. 14)
or equivalently by (3. 15), one is immediately faced
with the so-called plateau-value problem. This
problem has been discussed by Kirkwood, "
Zwanzig, "Martin, "Mori, ' Kubo, ' and, in his
original formulation of the mode-mode coupling
theory, by Kawasaki. The difficulty can easily
be seen from (3. 14):

v.(12)~fo(p. )

= e (12)+y,(13)c,(3 3) y, (32; —z) nfO(p2), {4.1)

where 4 is the force-force correlation function
(FFC) and is given by the last term on the right-
hand side of (3. 14). In terms of spatial Fourier
transforms (4. 1) can be rewritten as

e.(k-FiFa ~)ufo(p2)=4(k, piF2, ~)

-q, (k, pip, ~)c.(k, Fpi, ~)w. (k, p'pi, ~)~f (p2)

(4. 2)
One can then solve this equation for P in terms of
C. Then, schematically, neglecting the k ~ p/m
terms for simplicity, one finds
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approaches a constant as z-0, one finds that the
memory function vanishes as z goes to zero. This
leads to the unphysical result that the associated
transport coefficients vanish. The previously men-
tioned authors have "solved" this difficulty in the
case where the memory function is that associated
with the conserved quantities in the system. In
that case they required that one take the limit of
slowly varying spatial quantities before taking the
z-i0' limit. Then, in this case, where the FFC
corresponds to the current associated with the con-
served quantities, one has

C'current k ~(kr z) t (4. 4)

where 4 goes to a well-defined constant as 4 and g

go to zero. Consequently, one has then

lim —
z p,~86»«=lim ~zk L(k~z) [z+k 4(k, z)) '

=n(0, z) (4. 5)

and the transport coefficient associated with the
memory function has a well-defined value as k, and
then z, go to zero. Clearly this approach does not
lead to a useful method for approximating P for
arbitrary k and z. Also, for our matrix memory
function, there are momentum moments of 4 which
do not go as ja for small 0 and, therefore, this
limiting procedure is not useful. One must, in
the final analysis, face up to the collective be-
havior in the FFC which arises for long times.
These collective effects give rise to a long-time
contribution such that the time integral over the
FFC (or limit as z- 0) is zero. It can be under-
stood from the work of Mori that the memory func-
tion itself should not involve these long-time pro-
cesses. '8 It is for this reason that the memory
function in the Mori formalism contains the modi-
fied time propagator e'" ~' ' which operates in
the subspace orthogonal to the subspace of con-
served variables. Since this "orthogonal" sub-
space, by definition, must contain only rapidly de-
caying quantities, the memory function will decay
rapidly compared with the time-correlation func-
tions. '

While the Mori formalism allows one to make
qualitative statements about the "separation" of
time scales, it is very difficult to make mathe-
matical headway with the "thermodynamic projec-
tion operator" introduced by Mori. In some sense
the Mori expression for the memory function is
just a convenient way of writing (4. 1). These ex-
pressions do not tell one how to combine the two
pieces of G(11;22) in (3.15) such that the collec-
tive behavior in the two pieces cancel. Thus,
while one wants to avoid the mathematical difficul-
ties presented by Mori's N-particle projection op-
perator, one does need to remove that part of

C(11;22) in the FFC that has a component along
C,(12) and which therefore contains the unwanted
collective effects.

B. Tvro-Particle Vector Space

1= 1 di di I»&&»l . (4. I)

One can then define the operators C(z), C, and

M(z) such that

C(1 1; 2 2) = (1 1
I
C(z)

I

2 2 ), (4. 8)

C(11;22)=(11ICI22),

M(11;»)=&1 il~(z) I»&

(4. 8)

(4. 10)

The two-particle Liouville operator is diagonal on
these vectors:

(i 1
I

I, I22) =i(i I) 5(12) 5(12) . (4. 11)

Using this notation and the completeness of the
states, one can write the kinetic ecluation for C(z)
in the operator form

[z -i -~(z)]C(z)=C, (4. 12)

which one can formally invert to find

C(1 1; 2 2) = (1 11[z —I"] ' C
I
» &, (4»)

where V= I, +M. Equation (4. 13) will be used to
great advantage in Sec. V. It is also quite useful
to introduce "transpose" operators

(4, 14)

Then, for example

(1 ili'l2» = &22l

ill�

»= i(22) 5(») 5(»)
(4. 15)

(» 1~ii'I22) = is(»)(» 1~122) (4 18)

One can then write (3.25) and (3.30) in the compact
forms

ZC=-CZ (4. IV)

M, (z)C=-Cm,'(-z) .
C. Useful Expression for the Memory Function

(4. 18)

In order to write the expression (3. 15) for the
memory function in a more manageable form, it is
convenient to introduce the projection operator

Before going on to further formal manipulations,
it is convenient to introduce a linear vector space
spanned by the complete and orthonormal set of
vectors

Ii»= I»l»,
where

&11I22)= 5(12)5(12)
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22) =C(l 1; 3) C, (32)/(X —1) (4. 19)

which, for the case of self-diffusion, can also be
written

( 1 1
I
P

I
2 2 &

= u&0(l 1) (n fo(p~)) 5 (12)/(N —1) .
(4. 20)

The proof that this is a projection operator (P = P)
is straightforward. One can now use P and its
complement Q= 1 —P(PQ=O) to rewrite the formal
expression (4. 13) for C(11;22). Using the oper-
ator identity (3. 5) one can write

&»I[z —V]-'CI22&=&»l[z-(P+Q) V] 'CI2»

=&11 [z —qV] CI22&

+&»I[z —V]-'PV[z —qV]'CI22) .
(4. 21)

It is then easy to show that

&1 1 l[z —v] 'P 22&=c(11;4)c,'(42)/(x —I),
(4. 22)

and with

C,(1 I;22)=&1 ll[z-qV] 'CI22&

one has

C(1 1; 2 2) = Co(1 1; 2 2) + C(1 1;4) C, (43)(iV - 1)

x&33I V[z qV]-'CI22& . (4 23)

It is shown in Appendix C that

C.'(43)(&-1) ' Jd 3&33
1
v [z -qv] 'c I»)

= C,'(4 3) C(3; 2 2) —C,'(42) &u, (2 2)/z . (4. 24)

Combining this result with (4. 23) one finds that

C(11;22) = Co(11;22)+ C(11;4)C, (44) C(4; 22)

—C(1 1;4) C,i(42) &uo(2 2)/z (4. 25)

and, using (3. 16),

G(11;22) = Co(11;2 2) —C(11;4)C, (42) +0(22)/z,
(4. 26)

It is cl ar from (4. 26) that

J d 2 LI(2 2) G(1 1; 2 2) = J d 2 LI (2 2) C Q(1 I I 2 2),

f d2Li(22) (uo(22) = 0

due to the oddness of the spatial integration. Qne
then has the compact expression for the memory
function

p, (12)n fo(p, ) = —f d 1 d 2

x&»IL, [z Qv] 'cLI l22&, (-4. 28)

which is very similar in form to the Mori expres-
sion. There are, however, some important dif-
ferences, First, the projection operator intro-
duced here acts only on a two-particle vector

y, (12)n fo(Pz) = —P,(21; —z) n fo(P$) . (4. 31)

One can prove this by eliminating the projection
operator and reintroducing the associated G(M, =O)
propagator.

Qne can now go on to discuss the second terms in
(4. 29). This term has a somewhat assymetric
appearance, with the L, on the left "shielded" by
a generalized two-particle propagator but with a
bare LI on the right. Qne also wants to shield the
L, operator. To do this one must commute the
full propagator with C, As a first step in doing
this, one can use (4. 2'I) and the fact that G(z)
= —G (-z) to find

f d2co(z) Lir I»'= J d2[- G'(-z)]L' I»&.
Then, using (4. 23), one finds that

&»
I

G'(-z) I») = &»
I
Co(- z) I»&

—C(22; 4; —z) C,'(43; —z) nfo(3)

x[ z&uo(34)j &34IPCI11&,

which leads to a term in (4. 29) proportional to

space. The Mori projection operator P~ projects
onto an N-particle vector space. Next, since
V= X+M, and PM, =O, it follows that the projec-
tion operator defined by (4. 19) acts only on 2 in
(4. 28). It can further be shown (see Appendix D)
that the term PRO does not contribute and can be
neglected. Consequently the projection operator
appears only in the form PZ„which can be eval-
uated more explicitly (see Appendix E) and is of
first order in the density. In particular, to lowest
order in the density, QZI = LI. In comparison, the
form P~L that appears in the "modified time prop-
agator" in the Mori formalism is not completely
defined until one specifies the field on which it op-
erates.

One can now use the identity (3. 5) to iterate
(4. 28) and give

y, (12)nfo(p, ) = —f d 1 d 2

x &11IL,[z —QZ] CLI I22&

—f d 1 d 2& 11
I
Lg[z —Q&]

'

xM,[. Qz-~i, j-'CL~rl»& ~

(4. 29)
The first term in (4. 29),

qr, (12)nfo( pz) = —J d 1 d 2

x &11IL [z —QZ] CL I»&
(4. 30)

contains the information that is found in the Boltz-
mann and Enskog equations. This is discussed in
Sec. V. It is noted here that this leading term sat-
isfies the symmetry condition
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T'( )= [ -Lo][z-(~&)']'L;. (4. 37)

Then, with the introduction of these T matrices
into the exact expression for the memory function,
one has

p, (12)nf~(p, ) = —J d 1 d 2 & 1 1 T Go C L,
I
2 2)

+ f dl d2(11ITGOM, CG (-0z)T ( z)I22)-
—J d 1 d 2(1 1

I
T GOM, co(z)

xM, (-z)GO(-z) T ( z)I22), (4.-36)

M.(I»'33)&55IacI33&=&11IM.c& I55)=0.
(4, 32)

One has then that

J d 2 M, Co(z) LPI 2 2& = —f d 2 M, Co(- z) L~
I

2 2&,
(4. 33)

and the second term in (4. 29) can be written as

5y, (12)n fo(Pz) = —J d 1 d 2 ( 1 1
I
Ll[z —q2]

x M, C[z+(qZ)'+M,'(-z)] 'Lp»& .
(4. 34)

One can now iterate this expression once more us-
ing (3. 5) to find

5p, (12)nf~(pz) = —f d 1 d 2 & 1 1
I
Lz[z —qZ] ~

xM, c[z+(qz)'] 'LI'I 2 2)

+f dl d2&11IL~[z —qZ] ~

xM, C[z+ (qZ) + M, (-z)] M, (-z)

x[z+(qZ) ] 'LpI22& . (4 35)

One can show, using arguments like those below
(4. 31), that these two terms separately satisfy the
symmetry condition (85). One sees therefore that
each of the three terms in the expression for the
memory function satisfies this symmetry condition
separately, and all of the L,'s are shielded.

It is useful to take one more step in the general
formulation. First one defines the classical T ma-
trix

&11ITI22&=(11IL,[z -qz] '[z -L,]I22&

(4. 36)

V. ENSKOG APPROXIMATION

It should be clear that M, has the effect of chang-
ing two-particle collisions via dynamic shielding
and by introducing recollision events. Consequent-
ly the approximation M, = 0 corresponds to neglect-
ing these dynamical effects. One then has the ap-
proximation for the memory function

p, (12)nfo(p2)= —J d1 d2(1 1 IT GOC Lz
I
22) .

(5. I)
It should first be noted that (5. 1) is not strictly a
low-density approximation since C and the 2 op-
erator in T include the static effect due to the
structure in the system. Second, it should be
noted that (5. 1) saturates the first sum rule (coef-
ficient of z ) for the full &f&, (z) As .a first ap-
proximation in analyzing (5. 1) it is reasonable to
assume that one can approximate QZ, with its low-
density value Iz. The T matrix in (5. 1) then re-
duces to the standard form introduced by Zwanzig.

In order to go further one must introduce some
form for the interparticle potential. In this paper
and in II the case of a hard-sphere gas is treated.
This is motivated by mathematical convenience and
the desire to compare the results with the machine
calculations of Alder, Qass, and Wainwright. In
applying the theory developed here to real gases it
is important to add an attractive tail to the hard
core, Rice and Allmatt ' have argued that this tail
has the important randomizing effect of destroying
correlations between clusters of particles. This
randomization involves adding a Fokker-Planck
term to the hard-core expression for the memory
function. It follows from the work of Forster and
Martin" and Akcasu and Duderstadt that the Fok-
ker-Planck term follows from an expansion of the
memory function to lowest order in the weak part
of the potential. This tail is neglected in the fol-
lowing. Using (4. 30) one can write

yo(12) n fo(p2) = Jd 1 d 2—Lz(1 I)

&[z —L(11)] &11 CLP22& . (5.2)

If one notes that

J d 2 & 1 1 C L~ 2 2) = —(uo(I 1) L~(I 1) 5(12),
(5.3)

where

where

GQ(z) = [z Lo]

G,'(-z)= -[z+L,']-'.
(4. 39)

(4. 40)

LI(11)= —i p [V„ ing(r~ —rI)] ~ (V~ —V~ ),
1 1

(5.4)
one can write (5.2) as

q
0(12)n fo(p, ) = f d 1 L,(1 1)

These exact expressions are useful only if one can
make approximations in a natural way. In Sec. V
it will be shown that even the simplest type of ap-
proximation leads to nontrivial and interesting re-
sults.

x [z —L(1 1)] ~ ~0(l 1)LI(I 1) 6 (12) .
(5. 5)

To put this in a more convenient form one intro-
duces the identity 1 = I d 2 6(1 —2) and Fourier
transforms over the spatial variables r& and ra to
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obtain

dl d2
((o,(k, P1 Po, z) nfo(&o) =

V f, (P1, 1) Lr(2 1)

x [z —L(2 1)] (()o(2 I) L1(2 I)f.„(Po, 1), (5.6)

where
W

fl(P1 I) e 15(P1 P1) ' (5.V)

After integrating successively by parts one can
write (5. 6) in the form

d 1 d2
V.'(k, P1P., z)nfo(po)=-

V
~o(»)

tween the momentum indices. Strictly speaking this
is true but there is a vast literature available on
approximation techniques for solving this "Boltz-
mann" equation. The general ideas discussed here
have been treated elsewhere, ~ '" so the discussion
will be brief. If one introduces a complete set of
momentum states li), as defined by Eqs. (3.9), and

(6. 1)-(6.5) in Ref. 10, which are complete and
orthonormal, then one can formally invert the ki-
netic Eq. (3.9) to obtain

C, ,(k, z) =& i
~
[z —(oo(k) -q, (u, z)]-'~&), (5. 12)

where

x [Li(21)f ~(po, 1)][z+ L(21)]

xL,(21)f„(p„1) . (5.8)

&Pl &o&) I&'& = (k'p/m) 5(p

One has then immediately that

S,(k, &u) = —2 ImC11 (k, &u+ i0')

(5. 13)

(5. 14)

It can easily be seen that this equation is the same
as the memory function discussed in Ref. 62, where
one replaces g(r) in (5. 8) by e o '"'. One can use the
results derived in Ref. 62 if one makes the approx-
imation

&, g (r1 —r1)=g(1'o) V, 8 "'"1"1' (5 9)

The corrections to this approximation in (5. 8) have
been investigated and for k, z-0 (where the cor-
rection should be the largest) the relative correc-
tion to (5.9) is (0. 291l + 0.21' )/g (ro) to second or-
der in g. This is a rather small correction. With
this approximation and assuming a hard-core in-
teraction, (5.8) is in a form evaluated in Ref. 62.
One finds then

P (k P1P2 z) nfo(pz) = i n 1 o g(1o) (P/zm)

x J dQ d pd ne ( '~)~ (2r ~ p /m)e (j p)

x5(pa —o'+p) [5(p1 o'yp) 5(p1 o'+p*)] i

(5. 10)
where

p =p-2r(~ p) (5. 11)

and e (x) is the step function which is equal to one
if x is less than zero and zero otherwise. The
surprising simplicity of this result is discussed
in Ref. 62. It is noted here that pz is independent
of k and z in agreement with the long-maintained
view that the "bare" transport coefficient is "es-
sentially" local and Markovian. The expression
for P, given by (5. 10) will be referred to as the
Enskog memory function for self -diffusion.

Given this Enskog memory function the question
arises: How does one practically compute the dif-
fusion constant and the momentum contracted cor-
relation functions'? This is discussed here since
the analysis is simpler than it initially appears.
From (3.9) it appears, to find C,(kz), that one must
solve an integral equation due to the coupling be-

and it follows from (1.3) that

)e (e)= —e'f dee'" )e (e)
0

=lim Coo(k, z)
d(d V ((d)

Z —CO I,-o

and

Va((o) = —2 Im Va(u) +i0') .

(5. 15)

(5. 16)

Consequently, one sees that the velocity-autocorre-
lation function is related to the memory function by

V, (z) = V,'(2~[z —q, (0, z)]-'~2}, V', =(Pm) '. (5. 17)

(5. 18)

and its complement Q~= 1-P~. One can then fol-
low Forster to write the equation for C„

C,(k, z) = [z+ ik D(k, z)] (5. 19)

where

D(k z)=iVo&2~[z-Qze'QH] '~2)
and

(5. 20)

p(a, z) = no(k) + V,(k, z) .
Hydrodynamics then tells one that the diffusion
constant is given by

(5. 21)

In many cases, one is interested in the hydro-
dynamic behavior in the system. This hydrodynam-
ic behavior reflects the existence of conservation
laws that hold in the small-wave-number and -fre-
quency regimes. One can use the projection-op-
erator technique due to Forster ' ' to extract this
collective behavior shown by C, (k, z). This method
depends on projecting out those momentum states
on which Q, vanishes. These states are by defini-
tion the hydrodynamical states. In the case of self-
diffusion there is only one such state, the state

I 1). It is therefore desirable to define the projec-
tion operator
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D= lim limD(k, s)
e~ fo+ A~O

=- vl&al(Q. 9.(0, 0')0 ) '~».

(s. as)

It is interesting to note that the Einstein ' formula

D= J dtv(t)
can be written as

limW(t) =0 (s. 88)

Boltmmann equation g (x~) = 1 shows deviations from
the Gaussian model that are less than 6% for the
lowest "spatial moment. " The width function W(t)
can be determined from (1.3), (5.28), and the ob-
servations that

D= lim i,Vo(z) .
io+

lim W (t) = 2tD .
$~00

(s. 84)

which immediately leads to the result

Vs(t) Vo8-Fo(/Ds (s. 28}

If one introduces the mean-free time

~=(4~wn~o Vog(~o)) ' (s. 29)

and measures time in units of v, s = t/~, one finds

VE(t) VR -Rs/o (s. 80)

One has then that Vo(t), in this approximation,
falls to 10% of its initial value after about four
mean-free times. It is clear from the work of
Alder, Gass, and Wainwright that this approxi-
mation for the velocity-autocorrelation function
serves as a very good zeroth approximation to the
"observed" result even for rather dense systems.

The calculation of C,(k, s) or equivalently
D(k, z) given by (5.20) are nontrivial calculations
even in the Enskog approximation. Qne can ob-
serve that a reasonable approximation for C, is
given by the so-called Gaussian approximation ~

(k t)
-(i )(i(t) /2 (s. 81)

Ol'

On combining this with (5. 1V) one sees that one ob-
tains agreement with (5. 22).

The set of equations from (5. 12) to (5. 24) are
exact. Qne can nom evaluate these various quanti-
ties using the Enskog expression for the memory
function. It is very useful to note that to a good
approximation (t)s is diagonal on the stateoo j 2} and

&2~~,'~a) =-to~~o'g(~o)n(o/mP)"'. (S.aS}

Since (()), is essentially diagonal one has, using
(s. 22),

D.=-t(&al~'Ia)) ' V'o=8vo[«Voog (~o) ~~]'
(5.26)

The assumption that p, is diagonal on I 2) leads to
an error of less than 2%. o If one now goes back
to the expression (5. 17) for Vo(z) and uses the ap-
proximate diagonality of (t), on [ 2) one finds

V ()(z) = V o [z —
& 2

~
qF, ~

2 )] ' = V o [z+ tv o/Ds] ',
(s. av)

Using these results one finds without further ap-
proximation that

W(t) =2D[t+(D/V', ) (e 'o'" -1)] (5 85)

Better approximations for C,(k, z) can be obtained
by using the klnetlc-modeling technlgue, The
results of such an analysis will be published else-
where.

VI. CONCLUSION

A new fully renormalized approach to the many-
body problem has been described in this paper.
The theory was developed without the use of any
molecular chaos assumptions or the use of the
Bogliubov36 functional assumption. The results
are therefore not restricted to any time regime.
At this point the only practical result derived-
the Enskog memory function —has been available
via the BCE method for some time. However,
this result has been obtained here via simple phys-
ical approximations and the treatment of the static
correlations seems considerably more straight-
forward than in the BCE treatment. This alone,
however, does not justify the elaborate formalism
described in this paper. Such a development can
only be useful if it leads to new results or to new
physical explanations of old 1'esults. As will be
shown in II, simple approximations for the two-
particle source M, lead to new insights and results
in an analysis of the dynamics of dense systems.
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APPENDIX A

In this appendix (3.1) is proven. One has first,
on applying 2 to f„ that

Lf (1)=(-iZ ~ ''+iE V, )'(r, —r&) ~ i'~

C,(r, t)=(vW'(t)) "e '""(')'. (s.82)

The validity of this approximation has been dis-
cussed by Desai and Nelkin. They show that the Ly, (1}= —L,,(1)y,(I)
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APPENDIX 8

In this appendix the symmetry properties of the
correlation functions are considered. It should be
noted from (2. 19), that if one integrates succes-
sively by parts, one finds

C,(12;z) =(f,(1) [z —L] f,(2)) = —C,(21; —z),
(Hl)

since the I iouville operator commutes with the
canonical distribution function. The other correla-
tion functions C(1; 22), C(11;2), and C(11;22) sat-
isfy similar symmetry properties. If one now in-
vestigates the equation of motion (3. 9), letting
z- —z and using (Bl) one finds

[z + I, (1)]C,(21;z) + q), (l 1; —z) C,(2 1;z) = C,(21)
(H2)

or, on defining

q), (1 1;z) = q), (1 1; z),
one obtains (3. 12). One can next observe that the
symmetry (Bl) and the related symmetries ob-
served by C(l; 22), C(11;2), and C(11;22) imply,
using (3. 16), that

G(1 1;22; z) = —G(2 2; 1 1; —z) (a3)

and, using (3. 15), one has the symmetry condition

q), (11)C,(12)= —q), (21; —z) C,(11) (84)

or
q), (12)nfo(Pz) = —q) (21 i z) nfo(P1) .

APPENDIX C

Here (4. 24) is proven. First, since PQ=0, one
has

&»IP[z-qv]'CI»&="&11IPC 22).
(Cl)

Next, one can write the left-hand side of (Cl) in the
form

(1 llP[z —(1 —P) v] 'cl22&=&11IP[z —v] cl

-&11IP[z—V] 'PV[z -qV]-'CI22&

N

+ i 2 V„V(r; —r&) ~ V), v N 5(1 —q) ) ."1 1

One can then introduce the identity f d 1 6(1 —
q&)

to obtain

N

If,(1)= —Lo(1)f,(1)+i d 1 2 5(1 —qq)
j~i

x'q„v(r; —) &)
~ V& WN5(l —q&),

and finally

Lf,(l) = —Lo(1)f,(1) —f d 1 Li(11)g (11),
where

N

g (11)=Z 6(1 —q, ) WN5(1 —q, ) .

= C(11;3) C,'(34) C(4; 22)

—c(l 1; 3) c,'(3s) c,(sv) c (vs)

C,(14)C (4S)) (SS V[z-qV]-'C 22)

= C(1;22) —5(12)z ~ ~o(22) . (C3)

After applying C,~ to the left-hand side of (C3), one
obtains (4. 24).

APPENDIX D

Here the effect of the PLo part of Q V in (4. 28) is
investigated. First one notes that one can write

&» IPLol») =-&»l~oLo~o'PI22&

Then, since

[z-qV][z -qV]-'=1
ol

[z —I —Q(Z +M, ) —5L P] [z —QV] =1,

(D2)

one can separate out the effect of &LOP on the left-
hand side to find

[z —Lo —Q(&g+M, )] [z —QV] —SLoP[z —QV] = 1,

and since PQ=0,

[z —Lo —Q(XI+M,)] [z —QV] —z 5LoP= 1 .
(»)

One can now invert this to obtain

[z —QV] = [z —QV](J ro=o) + [z —Qv](s);o=o) z SLoP ~

Since all of the "end states" on which this operates
are orthogonal to P, one can neglect the PI.O term.

APPENDIX E: PROPERTIES OF THE OPERATOR PX

The operator PZ, is completely specified by its
matrix element (1 1 I PZ, I 2 2&. Using the complete-
ness of the two-particle vector space one can write

&11IP~.I22&=f d3 d3&11IP 33&&331&il22&
(El)

The matrix element for P is given by (4. 20) and Zz
is given by (3.24). Combining these results one
can write

(1 1 IP~I
I
22& = —~o(11)[nfo(P~)]

'

, (sslv[z-qv]'cl22&. (C2)

Combining (C2) and (Cl) with (2. 10) and (2. 11), one
has
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x&g(33) Lg f,(1))C (33;22) . (E2)

If one uses the result I.z f, (1)= —1'd 1l.z(11)g (I].)
it is easy to show

&»
I
&&i 1 2 2& = —~o(») l.fo(~i) l

'
I-~ (22) 6(12),

(E3)
which is of first order in the density.
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In a previous paper a general formalism was developed for treating the time-dependent
correlation functions that arise in the theory of self-diffusion. In this paper this formalism is
used in conjunction with the approximation where the two-particle source is approximated by
a sum of one-particle sources. This approximation follows from physical arguments and

from an analysis of the exact equation for the two-particle source. The resulting expression
for the memory function is similar to that found previously by Pomeau and is related to the
ring terms studied by Kawasaki and Oppenheim. It is further shown that this correction to
the Boltzmann-Enskog memory function can be writteninterms of a product of phase-space
correlation functions. This theory, to the extent that the hydrodynamical projection onto
these correlation functions is dominant, provides a microscopic basis for the various mode-
mode coupling theories. The associated long-time behavior of the velocity-autocorrelation
function is shown to go as t 3~ and the coefficient agrees with that found by Dorfman and

Cohen for low densities. For higher densities there are differences. It is further demon-
strated how one can remove the wave-number cutoffs used in other theories, and the velocity-
autocorrelation function is calculated, in a particular approximation, over the complete
range of times with no adjustable parameters.

I. INTRODUCTION

In the preceeding paper' (I) a new approach to
the theory of time-dependent correlation functions
was described. This approach was specifically ap-
plied to the case of self-diffusion and some general
expressions for the memory function p, (12) asso-
ciated with the phase-space fluctuation C,(12) were
derived. The notation here will be the same as in
I. The expressions for the memory function de-
rived in Fare, of course, just a matter of rewrit-
ing the definition of C,(12) in what appears to be a
more convenient form for making approximations.
A crucial step in this rearrangement was a shifting

of attention from the correlation function itself to
the associated "external" one- and bvo-body
sources @, and M. At the end of I it was shown that
the simple approximation M, = 0 leads, for moder-

ensities to the Enskog resolt for the memory
function, transport coefficients, and correlation
functions. This paper will discuss how one can go
beyond the Enskog result to find important new con-
tributions to the memory function. This will neces-
sarily entail a more sophisticated appxoximation
for M, .

The first half of this paper will be concerned with
the determination of the first correction to the
Enskog memory function. This analysis is com-


