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The linearized hydrodynamic equations for superfluid He" are derived starting from the kinetic

equations of Khalatnikov. Only the lowest-order dissipative terms are considered. The Boltzmann

equation for the phonons and rotons is solved formally by expanding the distribution function in terms

of the eigenfunctions of the linearized collision operator. The resulting hydrodynamic equations contain

dissipative terms of the form proposed by Landau and Khalatnikov. Formal expressions are given for
the viscosities and the thermal kinetic coefficient. Finally, relations which may hold between the

dissipative coefficients when the collision operator has special properties are discussed.

I. INTRODUCTION

The first satisfactory explanation of the super-
fluid properties of liquid He below the lambda
point was provided by Landau' in a classic paper
in 1941. By introducing the concept of elementary
excitations, he wa, s able to give a microscopic
derivation of the two-fluid model and to clarify the
physical meaning of the model. The equations of
motion for the two-fluid model are

j = ppn+ psVs ~

p=pn+ps

8p—+divj =0

8g
—+ gradI' =08j

89—+Sdivv =0
8t rl

8v ' +gradG=O

where p„, p„v„, and v, are respectively the den-
sities and velocities of the normal and superfluid
components of the liquid, j is the momentum den-
sity, I' is the pressure, G is the Gibbs free energy
per unit mass, and 8 is the entropy per unit
mass. These equations have been linearized by
neglecting terms of second or higher ordex in v„
or v, . Equations (3) and (4) follow from conserva-
tion of mass and from Newton's second law, re-
spectively. Equation (5) is equivalent to the state-
ment that only the normal fluid carries entropy.
Equations (4) and (6) together provide a means for
calculating the relative acceleration of the two
fluids. The two-fluid theory is completed by giv-
ing expressions relating the thermodynamic func-
tions to the energy spectrum of the elementary
excitations. These expressions are '3

p„= —
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where P =1jksT, a is the energy of an excitation of
momentum p, F is the Helmholtz free energy per
unit mass, Ilo and Go are the values of I" and C,
respectively, at zero temperature and the same
density, and n& is the equilibrium distribution func-
tion of excitations at temperature T:

+0 (el/A&r l)-i

The integrals are over all of momentum space.
The thermodynamic quantities may be calculated
as functions of p and T using Eqs. (V)-(ll) together
with the dispersion relation for the elementary
excitations as measured by neutron scattering. At
temperatures less than about 3..7 'K the excitations
are weakly interacting and the results are in excel-
lent agreement with experiment. The two-fluid
model also explains such phenomena as the exis-
tence of two types of sound and the thermomechan-
xcal or "fountain" effect.

The two-fluid equations are derived under the
assumption that at each point in the liquid the dis-
tribution of excitations is in local statistical equi-
librium. This assumption is valid only if the field
quantities such as 7, v„, v~ and p are very slowly
varying in space over distances of the oxder of the
mean free path of the excitations and slowly vary-
ing in time on the scale of the mean free time of
the excitations. For more rapidly varying dis-
turbances the distribution of excitations no longer
corresponds to exact local equilibrium and extra
terms appear ln the two-fluid equations 2-12

Landau and Khalatnikov ' io have shown that to
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lowest order in the space and time variation of the
field quantities Eqs. (4)-(6) are modified as fol-
lows:

8P 8 ' 8v„8v„g 8v

4

+5~&/mdiv(j —pv„)+5 gzdivv„

88 . g—+ Sdavv„= —dzv grad T,
(13)
(14)

8v
+ gradG = grad[1 sdiv(j pr—„)+ $4divv„]

(15)
In these equations q is the normal fluid viscosity,

g», f~, &3, and g4 are second viscosities, and z
is the thermal kinetic coefficient. We use the con-
vention that repeated Greek subscripts are summed
over. P, and P4 are equal by an Gnsager relation. '6

It can be shown that these dissipative coefficients
satisfy the conditions

tion between g» and $4. These relations would
only hold if one makes simplifying assumptions
about the collision rates between the excitations.

In this paper we investigate the possibility that
there are either additional dissipative coefficients
or relations between the Landau-Khalatnikov coef-
ficients. We proceed by expanding the distribution
function for the excitations in terms of the eigen-
functions of the collision operator (Sec. II). In
the present context this approach has the great
advantage of leading to formally exact results for
the dissipative coefficients —thus enabling any rela-
tions between them to become readily apparent.
Any additional terms in the two-fluid equations
should also be exposed by this procedure (Sec. III).
Finally, we may easily find relations which should
hold between the dissipative coefficients, when the
collision processes amongst the excitations satisfy
certain special conditions. Examples of this pro-
cedure are given in Sec. IV.

x&0

g&0,
$2&Q

g, &D,

(16)

(IV)

(16)

(»)
(2o)

II. KINETIC EQUATIONS

j = p v + f spp dTp

8p—+divj =0

(23)

Khalatnikov has derived equations of motion for
a superfluid containing a distribution np of excita-
tions. The equations are

' +p, divv, = —I' (22)

Gn the other hand, it has also been proposed that
there may be extra relations between the dissipa-
tive coefficients, in addition to the Gnsager rela-

Landau and Khalatnikov have made detailed cal-
culations of these coefficients. They consider the
various possible collision processes amongst the
excitations and derive approximate expressions for
the lifetime of the different excitations. Further
approximations are used in solving the resulting
Boltzmann equation for the excitations. They ob-
tained reasonably good agreement with experiment.
It is extremely hard to judge the correctness of the
intermediate steps in their theory, particularly as
there are a number of adjustable parameters in-
volved. '4 Specific details of their calculations have
been criticized by a number of authors. " ' It has
been proposed»'~~ that the hydrodynamic equations
should be modified by adding extra dissipative
terms on the right-hand sides of Eqs. (13) and

(15). These terms are proportional to

gradI"

where I' is the rate at which normal fluid is con-
verted into superfluid, and is given by

8pn
+p„divv„= I'

!+ grad Co+ np —47p = 0
8p

8' 8np 8np 8Bp 8', 8 np

Bf Bf ~ogg Bp BR Bp Bg

The first term on the right-hand side is the con-
tribution to the rate of change of np arising from
collision between excitations. II~ is the Hamil-
tonian for an excitation with momentum p and is
given by

(2V)Bp= 6+p 'v ~

Note that Jrp depends upon position X, not only be-
cause of the spatial variation of v„but also be-
cause e depends on the density. We may linearize
the Boltzmann equation by setting

n, =(e""'s'"e' —I}'+ an, ,

Equation (23) expresses the fact that the total mo-
mentum density is the momentum density arising
from the motion of the superfluid plus the momen-
tum of the excitations. Equation (24) arises from
conservation of mass. Equation (25) may be re-
garded as a natural generalization of Eq. (6), to
situations where the excitations are not necessarily
described by an equilibrium distribution function.
The rate of change of the distribution function with
time is given by the Boltzmann equation:
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where 7.
" is a constant temperature chosen So that

M~ is a small quantity everywhere in the fiuid.
We also introduce a density p such that ~, defined
by

18 always 8m', l, LGt the energy of Rn exc1tRt1on
of. momentum p be e when the density is p.
will denote the value that a function has when the
density is p and the temperature is I' by adding a
bar to it. Thus,

ihus, en~ '(n~+ 1)' ' is an eigenfunction of the coi-
'.is1on operator with zero eigenvalue. We denote
this eigenfunction by, I) (p). It is;-.'/trai ghtforward
to show that the correctjy normalized form is

q, (p) =- (P/C p T)'" ~ n,''~'()7, + 1)'~"

:~ 18 the spec1f1c heat per unit mass R)L LQQ'~Itt~. t(azure

T Rnd deDslty I . Since DroxnentuIQ is corrsex'ver,
there ax e three more zero-eige Dvalue eip enfunc-
tions. The correctly normalized form for 1.,be.'."~

ls

n =. (86/))&T 1)-». (3O) (38)

Then, to first order in Ap and v, ,

9&
n& n& —Pn~(n&——+1) —hp+p v, + ~ep

(31)
IDsertlDg th18 result 1nto the BoltzmanD equation
gives

8s — B6 8p 0= —'-+ Pn (n + 1) ——+pP P
I g~~ gt @

(32)

where cy may be 1„2, or 3, correspond1ng to the
three components Qf momentum. We now expand

~p as

~,=n,'~'(n,
,
;1)"'5 A. ,q,.(p), (39)

where f&,j are coefficients varying in space and
time. Ii. we insert this 1nto the Bolt. mRDXI equation„
multiply through by )I);(p), and integrate ove:." mo-
Dlentum Space„we f1nd

where 5& 18 the cy component of the g1"oup velocity
for a particle with momentum p. In a linear theory
the collision term may be written

(33) where s7& is the Griineisen constant„defined by

As defined this way, the kernel of the collision in-
tegral is not, symmetric. It can be shown, how-
ever, that the functi. on

C'(p, p') =- C(p, p') [n~. (n~. + 1)/n, (n, + 1)j"' (34)

is symmetric in p and p'. We xnay then define
eigenfunctions g;(p) and eigenvalues X; by

f C(p, p')q;(p')«, =--&;q;(p) ~ (35)

Since C(p, p') is real and symmetric, the eigenfunc-
tions can be chosen to be orthonormal:

J p;(p)),l)&(p) d~& ——I);;

The total ene gy and the total momentum of the ex-
citations cannot change as a result of collisions.
Hence, for example, we have

The matrix e]ements in Eq. (40) are defined in
convent1onal way. For example,

(i~ V~, ~j) =- f tt);(p)vp (, (p)) dr,

The coeff" cients Qf the zero-eigenvalue eigen-
functions can. be related to Irracroscopic quantities.
C.onsider, for simpt. icity, a situation in which the
density of the liquid is p everywhere. Prom. Kq.
(23) the n component of the momentu~n density j.s

Using Eqs. (33) and (34), this becomes

f J C(p, p')[n~(n~+1)/»T~. (n~. +1)j"2

x c~&. rEv~ d7~. == 0

This must be true for all possible du&&~. Her. ce

f C(p, p')n~~'(n~+1)'~'edv~=o

Using Eels. (38) and (39) and the orthogonality of
the eigenfunctions, this may be put in the form

2n = psosn+ (pn/. P)

where A. is the expansion coefficient for the eiger&-
function )J)„(p) given by Eq. (38). By comparing
this with the corresponding expression for the two-
fluid model, Eq. (1), we see that the coefficients
of the zero-eigenvalue eigenfurrctions Rrisinp. froxn
momentum conservRt1orl Rx'e connected w3th the
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velocity of the normal fluid by

A = (p p„)'/'v„, o. = I, 2, 3 .
Similarly, one can show that Ao is related to the
local temperature T by

A, =(C p p//T)"2(T T).- (48)

1/2—+ Sdlvv„= — — 0 vp~

If we now take the equation for the acceleration of
the superfluid, Eq. (25), and substitute into it n2,
Eqs. (31) and (39), we find

CT '/'
x =- '-'- ~'&'~" ~'&'x'

The prime on the summation indicates that the sum
is restricted to eigenfunctions with nonzero eigen-
values. If we now set j=0 in Eq. (40), we obtain,
af ter simplification,

slowly varying quantities, the series will converge
rapidly. The lowest-order result is

p

1/2(PP„) (. iv ip)
v„2

X,
j vpe BX

CT pn
1/2

1=$4= " Z4+ CTZs (52)
P

t:2 = -,' P„( 2+ 2Z, ) + 2 (C TPP„)
' 'Z 4+ C P TZ, '

(53)
(54)t:2 = (CT/'P)Z2,

If we substitute this expression into Eqs. (47), (48),
and (50), we find exactly the Landau-Khalatnikov
results, Eq. (13)-(15), provided that we make the
identifications

Similarly, by setting j = P in Eq. (40), where
P=1, 2, or 3, we find

8 8T
P (v 2 v22)= —s

q =-.' p„(z, - z,),
K=CPZ1,

where

(55)

(58)

&&+'(p~v,. f&, ' . (49)

If we combine this result with Eq. (47) and use
some thermodynamic relations, we obtain

Bj BP
Bt BX~

z, =D

(0 I V,„l j)'
Xg

(xlV,„Ij)'
Xg

&xlv, „l j&&y lv, „l j&

(58)

(59)

vpg

III. VISCOSITY COEFFICIENTS

(5o)

~, (Olu, l j)(xlv,„lj)Z4-~
X~

gp (Olu, I j)
5

X~

(8o)

Consider the solution of the Boltzmann equation
(40) when the density and the superfluid velocity
are varying slowly in space and time. For non-
zero X/ we may write Eq. (40) as

(
— 1/2

j Upi 0 . 51

This equation may be solved by iteration. The re-
sult is a, series expansion for A& involving increasing
powers of X& multiplied by higher-order space ox

time derivatives of p, v„, or T. When these are

Here (x I and (y I denote the eigenfunctions arising
from conservation of momentum in the x and y
directions, and v» and V» are the components of
the group velocity in these directions for an ex-
citation with momentum p.

The collision operator C(p, p') only depends on

the magnitudes of p and p', and on the angle be-
tween these vectors. It follows that the angular
parts of the eigenfunctions are spherical harmon-
ics. We adopt a spectroscopic notation in which
the eigenfunction arising from energy conserva-
tion is called the 1S state and the momentum con-
servation eigenfunctions are 1P states. These
eigenfunctions have no radial nodes. From the
form of the matrix elements involved in the sums

Z„, it can be seen that only S, P, and D states con-
tribute. Let S„'(P), P„(P), and D„(P) be the radial
parts of the eigenfunctions for the nth S, P, or
D states, respectively, and let the eigenvalues of
these states be X„~, X„» ~„~. Then it is straight-
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forward to show that

fg = p CT(04+ os —0'3)
1

fg = C p T(T4

g, =(C T/p)(r, ,
3@=5 C pT(rp

a = (C'p'7'/ p„)o, ,

where

(62)

(63)

(64)

(ss)

(ss)

~, [s, I-', (p/ e)(ee/sp) I D„]'
0'2 =~

nD XnD
(ss)

g i [&g I s (p/ e)(&el&p) I ~.]'
0'3 =

7

ns ns
(69)

, [P, l ,'(a/P)-(87/sP) IP„] [P I e /P IP ]"
0'g =~ 7

nP nP (sv)

tween the viscosities.
To decide what quantities are "nearly conserved"

in a particular temperature range requires de-
tailed quantitative calculations of the collision ker-
nel C(p, p'). The only attempt that has been made
so far in this direction is the calculation of Landau
and Khalatnikov. ' Unfortunately, their results
must now be regarded as suspect on several
grounds. Three important criticisms of their cal-
culation are as follows:

(a) They assumed a 6-function interaction be-
tween rotons, thus obtaining s-wave scattering
only. It is now known that the actual interaction
has a considerable d-wave contribution and is at-
tractive, leading to bound states.

(b) The phonon and roton parts of the distribution
were assumed to come to equilbrium by "orie-
step" four-particle processes, either

P+R P +R'
~~ (~i lu~+ s (P/e)(&el&p)1~. ]'

0'4 =~ 7
ns &ns

(70) or
P+ R R'+R"

gl [Sx lu, IS„]
ns &ns

A sum over nP means that the sum is only over
P states. The matrix elements are now radial in-
tegrals only. Thus, for example,

[P If(P) IP, ]=& '
J, P (P)f(P)P„(P)P'dP

Notice that

[P,~. /P'~P, ]=C p Z/Sp„.
The sums o„as defined by Eqs. (67)-(V1) all

have the dimensions of time.

IV. RELATIONS BETWEEN VISCOSITIES

It follows from the definitions of the on sums
that they are positive definite. Therefore, p2, $3,
g, and a are all greater than or equal to zero. It
is also easy to show that g~g3~ g~. Thus, we have
rederived the Landau-Khalatnikov inequalities Eqs.
(16)-(2o).

It is clear that unless there is a very well-hidden
relation between the matrix elements, there are
no exact relations between the five dissipative
coefficients. We now consider relations which may
exist between the dissipative coefficients when the
collision integral has special properties. In Sec.
II it was shown that there exist four independent
eigenfunctions with zero eigenvalues because en-
ergy and momentum are conserved in collisions
between excitations. One therefore expects that
there will be eigenfunctions with anomalously small
eigenvalues if there are quantities that are "nearly
conserved" in collisions between excitations.
These eigenfunctions will then dominate the sums
cr„and possibly lead to approximate relations be-

where P and R denote phonon and roton, respec-
tively. Donnelly and Roberts have proposed that
it is more likely that equilibrium is achieved by a
sequence of collisions enabling a roton to "diffuse"
over the maximum in the dispersion curve which
separates it from the phonons.

(c) Landau and Khalatnikov thought that the five-
phonon process was an important mechanism for
changing the number of phonons. It is now known
that the three-phonon process is allowed ' (at
least for small momenta) and this constitutes a far
faster mechanism for changing the number of pho-
nons than the five-phonon process.

We therefore restrict attention to giving some
examples of relations that should exist between
the viscosities if certain quantities happen to be
nearly conserved.

A. Small-Angle Collisions

If all the collisions occur between excitations
with exactly parallel momenta, there is an eigen-
function

p»„-- (const)Zn~~ (n~+1)'~ Y, (8$)

where Y,„(8$) is the spherical harmonic. The
eigenvalue X» corresponding to this eigenfunction
will be zero for all l. If the collisions are of finite
but small angle, the states 1100) and 111m) will
still have zero eigenvalues because of conservation
of energy and momentum. States with E ~ 2 will
have nonzero but small eigenvhlues. Thus, we
expect X» to be anomalously small. Then, 02
should be much greater than any of the other sums,
and g will be large in the sense that

n»t;g p, 4, Cgp', &p. /Cp
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B. Energy Conserved Separately for Phonons and Rotons

Then we find

t (',";) —,d, =o,
d Ph

(73)

( ) 7idv~= 0 (v4)

a4 ~2 /~2 2

V, = (I2 —I,)'/X22

where

xIi= Sil 2 =, sp 1~2 0

j. P ~&
~l up+ 2 —

I ~2e 8

(va)

(79)

These results lead immediately to the relations

where the integrals are over the phonon and roton
parts of momentum space, respectively. Proceed-
ing as in Sec. II we find

g(p) =aphen& (n&+1) I (phonon region) (75)

=a,enp~ (np+1)' (roton region), (76)

where a» and a, are constants independent of p.
This wave function must be correctly normalized
and must be orthogonal to the 1S state. It follows
that

a „=(PC /~pTC „) ~

a, = —(pc p/hC pTC, ) I

where C» and C, are the phonon and roton contri-
butions to the specific heat. We call this eigen-
function the 2S state. If the energies of the phonon
and roton systems are nearly conserved separately,
the eigenvalue X2~ will be small. Then, o3, o4,
and o, should be much larger than o1 and o2. If
only the 2S term is retained in the sums os, o4, o5,
one finds

&3 Il /~22= 2

per unit mass, Eq. (10), can be divided into S,
and S». It is then straightforward to show that

(c,/c„)'i's„- (c,./c, )"'s,
1 (88)

I,= [(c,/c, )"'e„-(c,„/c,)'"n, ](5,/c p) .
(s4)

Below 024 K C is dominated by phonons.
may therefore make a rough estimate of C» at all
temperatures by making a T' extrapolation of C
from 0.4'K. The roton specific heat can be de-
termined by subtracting C» from the experimental-
ly observed total specific heat. Proceeding in a
similar way for the entropy and the thermal expan-
sion, we can estimate values for I1 and I2. The
ratio I~/I2 turns out to be surprisingly constant,
varying only from 0. 11 at 0.4'K, to 0.06 at 0.7'K
and to 0.05 at 1.9'K. Thus,

o'4 = o's

o'4y o'5 ~~ o'3

Hence,

V ~3=V~1=~2

(s5)

(ss)

(sv)

Although we have derived this result on the as-
sumption that X2~ is unusually small, it seems
likely that it may be more general. This remark
is based solely on the observation that for most
values of p in the phonon or roton regions the ab-
solute magnitude l&~ t of the Gruneisen parameter
happens to be considerably greater than the quantity

xP~&
~p

For example, in the phonon region as P 0,
u&- 2. 84, whereas f& is —', . Moreover, fp is zero
at the roton minimum. Thus, one expects that
Eqs. (85) and (86) will usually be valid and E4l.
(87) will be a reasonable approximation.

C. Momentum Conserved Separately for Phonons and
Rotons

K1=0203 &

2=

f2 &&g

L2C p/Pp ~~ K ~

(so)

(81)

(s2)

Consider when

( ) d„d ~=0 (ss)

More complete results may be obtained by estimat-
ing I1 and I2. The thermal expansion coefficient o
at density p and temperature T may be calculated
from the free energy, Eq. (9), giving

P ~ —- ~P~&n= e np(np+1) u, + , = —4I~2, -
TB) g ep

where 3& is the isothermal bulk modulus. We may
divide this into roton and phonon contributions, n,
and z» respectively. Similarly, the entropy S

(a9)

(phonon region), (90)

= —(PP„,h/P„P„,)'~2P cos8 n2~'(np+ 1)'12

(roton region} . (91)

( ) 0 day=0

There is then an eigenfunction $2p, (p) given by

(p) =(pp„,/p„p„,„)'"p cosen,"'(n, +1)"'
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Since 0& is much bigger than the other sums,

&Pn/~P 1 i L1Pt t 2t l8P ~ (93}

It is rather artificial to consider Secs. IVB and
IV C separately. If the phonon and roton g"ses in-
teract so weakly that the energy of each is nearly
conserved, it is likely that the momentum of each
gas will also be nearly conserved. If both energy
and momentum are nearly conserved, Eg. (87)
relating the second viscosities still holds. How-
ever, since X» and Xap may be of the same order
of magnitude, inequalities (82) and (93) must be
replaced by the weaker statement

"Pn/ CP& NtP~ lsi 03P ))'9 (94)

It is very instructive to compare our results with
those obtained by Putterman. He assumed that
superfluid helium was characterized by an "in-
ternal macroscopic variable" (IMV), whose relaxa
tion was the dominant mechanism in determining
the second viscosities. From this he was able to
derive relation (80}, fi=fgs. It is clear that the
amplitude A~~ of the 2S state is an IMV in the sense
used by Putterman and this is why his result
agrees with ours. To obtain relation (80) it is
only necessary to suppose that one of the S states
has an anomalously small eigenvalue. Nothing
needs be assumed about achy this is true, and the
eigenfunction may take any form, provided that
the relevant matrix element does not vanish. Note
that Putterman's theory takes the IMV to be a
scalar, which is therefore to be associated with an
S state. One could, however, assume that the
IMV was a vector or a tensor. Following argu. -

If the momentum of the phonon and roton gases
are nearly conserved separately, A» will be anom-
alously small. This state will dominate the 0, sum.
We find

S,„(p„,/P„,„)' ' S,-(P„,„/P„,)' '

ments similar to those given in Putterman's paper,
one would arrive at some relations between the
dissipative coefficients. It seems very likely that
these wouM be the same relations as those we
have found when the eigenvalue of one of the P
states (vector IMV) or one of the D states (tensor
IMV) is very small.

V. SUMMARY

The form of the dissipative terms that we have
found is in complete agreement with the proposal
of Landau and Ehalatnikov. There is no evidence
of extra dissipative terms of the form proposed
by Schmidt. Although there appears to be no rig-
orous relation between the dissipative coefficients,
we have shown that it may be possible to derive
approximate relations between them if nearly con-
served quantities exist. We have given examples
of this procedure.

The formal results we have obtained for the
viscosities are also useful for quantitative calcu-
lations. Since the angular dependence of the eigen-
functions is known, the integral equation (35) re-
duces to an equation for the radial part of the
eigenfunction only. For an assumed form of the
collision operator, this equation can be solved
easily by matrix methods. At temperatures below
0.6 K, where only phonons are excited, the colli-
sion operator is known. ' We have calculated the
eigenfunctions and eigenvalues in this case and
have used them to find the viscosity q from Egs.
(65) and (68). The result was in excellent agreement
with experiment. Similar calculations at higher
temperatures where rotons are important would
provide valuable tests of models for roton-roton
scattering.

ACKNOWLEDGMENT

I wish to thank Professor D. V. Osborne for
making available to me translations of some of
Khalatnikov' s papers.

~Supported in part by the National Science Foundation and
the Advanced Research Projects Agency.

*Science Research Council Senior Visiting Fellow for the year
1972-73.

~Permanent address.
'L. D. Landau, J. Phys. USSR 5, 71 (1941).
'I. M. Khalatnikov, Introduction to the Theory of

Superfluidity (Benjamin, New York, 1965).
'J. Wilks, The Properties of Solid and Liquid Helium (Oxford

U.P., London, 1967).
L. D. Landau and L M. Khalatnikov, Zh. Eksp. Teor. Fiz.

19, 637 (1949).
'L. D. Landau and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz.

19, 709 (1949). English translations of this paper and Refs. 1

and 4 are included in Collected Papers of Landau, edited by
D, ter Haar (Pergamon, London, 1965),

I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 20, 243 (1950).
'I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 23, 8 (1952).

'I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 23, 21 (1952).
I. M. Khalatnikov, Usp. Fiz. Nauk 59, 673 (1956).

' I. M. Khalatnikov, Usp. Fiz. Nauk 60, 69 (1956).
"I. M. Khalatnikov and D. M. Chernikova, Zh. Eksp. Teor.

Fiz. 49, 1957 (1965) [Sov. Phys. -JETP 22, 1336 (1966)].
"I. M. Khalatnikov and D. M. Chernikova, Zh. Eksp. Teor.

Fiz. 50, 411 (1966) [Sov. Phys. -JETP 23, 274 (1966)].
"Note that the four second viscosities do not all have the

same dimensions.
'"For a discussion, see Chaps. 7 and 8 of Ref. 3.
"R. J. Donnelly and P. H. Roberts, Phys. Lett. 30A, 468

(1969).
' J. Yau and M. J. Stephen, Phys. Rev. Lett. 27, 482 (1971).
"I. A. Fomin, Zh. Eksp. Teor. Fiz. 60, 1178 (1971) [Sov.

Phys. -JETP 33, 637 (1971)].
"W. M. Saslow, Phys. Rev. A 5, 1491 (1972).
"K. Nagai, K. Nojima, and A. Hatano, Prog. Theor. Phys.

47, 355 (1972).



DISSIPATIVE COEFFICIENTS OF SUPE RF I.UID HELIUM

' J, Solana, V. Celli, J, Ruvalds, I. Tutto, and A.
Zawadowski, Phys, Rev. A 6, 1665 (1972).

"H. Wiechert and L. Meinhold-Heerlein, J. Low Temp. Phys.
4, 273 (1971).

R. Schmidt, Phys. Lett. 35A, 439 (1971)
"S. Putterman, Phys. Rev. Lett. 26, 421 (1971). In this

paper Putterman claimed to have shown that p'$3 p(1
This was retracted in an erratum |26, 677 (1971)] and replaced
by the weaker result f,'=$2)3.

"G. Leibfried, in Handbuch der Physik, edited by S, Fliigge

(Springer-Verlag, Berlin, 1955), Vol. 7-1.
"H. J. Maris and W. E. Massey, Phys. Rev. Lett. 25, 220

(1970); H. J. Maris, Phys. Rev. Lett. 28, 277 {1972).
"B. M, Abraham, Y. Eckstein, J. B. Ketterson, M. Kuchnir,

and P. R. Roach, Phys. Rev. A I, 250 {1970); Phys. Rev. A
2, 550 (1970).

"H. J. Maris (unpublished).
"R. %. Whitworth, Proc. Phys. Soc. I.ond. A 246, 390

(1958).

PHYSICAL REVIEW A VOLUME 7, NUMBER 6 JUNE 1973

Qnad«poi«on«ihntions to the Electron Broadening of Overlapping Neutral-Atom pines
in a Plasma

C. Deutsch
Laboratoire de Physique des Plasmas, Universite Paris-Sud, 9140S-0rsay, France

S. Klarsfeld
Institut de Physique Nucleaire, B. P. n' 1, 91406-0rsay, France

(Received 16 October 1972)

The impact-parameter formalism for Stark broadening of partially degenerate neutral lines emitted by
an atom immersed in a dense plasma is extended to include the quadrupole term of the electron-atom
interaction, considered in the second order of the Dyson expansion. The corresponding nondiagonal

broadening functions and their impact-parameter averages are derived and their properties are studied in

det»1. The «ndiagonal quadrupole shift function is shown to be negligible with respect to the dipole
term, for most situations of physical interest. These new functions are also useful in the collision theory

of electrons with atoms and molecules.

I. INTRODUCTION

Within the framework of the generalized impact
theory, the impact-electron contribution to the
complete profile of partially degenerate neutral
lines arising from atoms immersed in a dense
plasma is usually evaluated by retaining only the
first (dipole) term in the multipole expansion of the
potential energy for the system electron pertur-
ber-excited radiator. The expression is written

V(r, R)= — +
Iri I r -&1

in atomic units, where r = p+ vt(p l v ) denotes the
parametrized trajectory of the perturber refer-
enced with respect to the nucleus of the emitter
and R is the position vector of the optical electron.
The use of a classical picture for the plasma sur-
rounding the radiator allows us to evaluate (l. 1)
with the condition x&R, so that the Legendre ex-
pansion makes the 2 -polar series

3r R 1 (r R) R ~ R
I r I' 2 I r I

'
I r I'

appear in a straightforward way.
Only the first two terms with I.= 1 and L = 2have

been worked out. The second (quadrupole) term
has already been considered by Griem, for the

special situation of the fully degenerate hydrogen
I.y line. Griem included dipole terms to every
order of the Dyson time-dependent perturbative
expansion

s=r- (N)
'j„dt v(t)

+(tm) 'f dt, v(t-, ) J ' v(t, )dt, +. . . (1.3)

for the collision S matrix, given in terms of

V(t) = e*"o' V(r, R) e '"0', (1.4)

where IIO is the unperturbed atomic Hamiltonian.
Cooper a,nd Oertel' have also evaluated the quadru-
pole term for the particular situation of isolated
lines, using the second-order approximation of
(l. 3), which gives the first nonvanishing term,
once the plasma average over p and v has been
taken into account. The more general problem of
the quadrupole term for the intermediate situation
of partially degenerate lines was treated briefly in
a previous work, ' giving a rough estimate for its
real part, with the excitation transfer effect be-
tween the statically split sublevels taken into ac-
count by including nondiagonal matrix elements in
the collision operator. The purpose of the present
work is to give special attention to the full (not only
diagonal) quadrupole contribution of the electron


