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Exact formulas are derived for the factorial cumulants of the photoelectric counting distribution of
partially polarized Gaussian and Gaussian-plus-coherent light for arbitrary detector areas. The results

make it possible to follow the transition from Bose—Einstein statistics in the small-area limit to Poisson
statistics in the large-area limit. Numerical results are presented for a circular geometry. These
methods, which enable experimentally measured photocount statistics to be extrapolated to zero detector
area, are expected to be useful in measurements of small departures from Gaussian statistics. Other
theoretical results make it possible to express the statistics of the sum of photocounts from different

photocathodes, or the multiaperture, single-cathode (MASC) photocount statistics of light of arbitrary
coherence properties, in terms of the multicathode (MC) counting statistics. Explicit expressions are
derived for the MASC photocount cumulants for the special case of partially polarized Gaussian light.

I. INTRODUCTION

The photoelectric counting statistics of Gauss-
j.a,n and Gaussian-plus-coherent light at a
single detector have been the subject of extensive
experimental and theoretical investigation. How-

ever, the theoretical work to date has been incom-
plete in one respect: It is generally assumed that
the area of the photoelectric detector employed is
negligibly small compared to the coherence area
of the Gaussian light. In actual, finite detectors,
the tendency for the intensities at different points
in the photocathode to be less fully correlated af-
fects the observed statistical correlations among
the photoelectrons. Closely related theoretical
methods can be used to analyze both of the follow-
ing experimental arrangements: (i) measurement
of the statistics of the photoelectrons produced
over the entire surface of a single photocathode;
(ii) measurement of the statistics of the photoelec-
trons produced at several small, spatially sepa-
rated areas on a single photocathode. Situation
(i) will be called a single-cathode (SC) experiment,
and (ii) will be called a multiaperture, single-
cathode (MASC) experiment.

In this paper, the following results are obtained:
(a) For partially polarized Gaussian light, and
Gaussian-plus-coherent light, exact formulas are

. derived for the SC photocount cumulants observed
with finite detectors, in terms of the mutual co-
herence function of the Gaussian light. Knowledge
of the photocount cumulants is equivalent to knowl-
edge of the full photocount probability distribution.
The physical significance of the photocount cumu-
lants has been discussed elsewhere. ' ~ (b) A

numerical method is outlined and illustrated which
can be used to calculate the SC photocount cumu-

lants for partially polarized Gaussian light with
arbitrary spatial-coherence properties. (c) A

general relation, valid for light of arbitrary co-
herence properties, is obtained between the MASC
photocount statistics and the statistics of photo-
electric counts from N separate photocathodes.
The MASC technique is, of course, equivalent to
measuring the sum of the counts received at sepa-
rate detectors in a multicathode (MC) experiment.
(d) For partially polarized Gaussian light, an ex-
plicit expression for the MASC photocount cumu-
lants is derived.

These results are useful in enabling normaliza-
tion of the measured photocount statistics to zero
detector area. This should be particularly impor-
tant for experiments seeking to measure small de-
viations from Gaussian statistics, such as have
recently been suggested for light scattered from a
fluid near the critical point, 7 and observed in light
scattered from a small number of particles, 8 be-
cause the effect of spatial coherence on the photo-
count cumulants increases with the order of the
cumulant, and because the higher cumulants are
generally more strongly affected than the lower by
small departures from Gaussian statistics. '~ ~5

If. SINGLE-CATHODE PHOTOELECTRON STATISTICS

The probability of counting z photoelectrons in
the time interval [t, t+ r] if light of intensity I(r, t)
is incident on a detector with surface area A is

where W is the intensity, integrated over the count-
ing ti.me and the surface of the detector,
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and )!(r) is the mean number of photoelectrons pro-
duced per unit area, for unit incident intensity.
Quantum mechanically, the intensity

I(r, t) = E(-)(r, t) X"(r, t)

is an operator, and the powers of E" and 8' '

which occur in equations such as (1) must be nor-
mally ordered, as indicated by the symbol:
However, the calculations in this paper depend on
a statistical theorem (the Gaussian moment the-
orem) which is valid whether I is regarded as an
operator or as the intensity of a classical field.
In what follows, it will always be correct to inter-
pret E classically.

The effects of spatial coherence on the photo-
counting statistics have a simple physical inter-
pretation in terms of the coherence time T, and
the coherence area A., of the Gaussian field. If
T«T, and A«A„ then 8'=gATI; in this approxi-
mation the photoelectron factorial cumulants are
identical to the intensity cumulants. However, if
W depends on the values of I(r, t) over a range of
positions and times such that A~A, or T~ T„ then
the intensity and photoelectron cumulants are dif-
ferent. In this case, it is convenient, both theo-
retically and experimentally, to describe the sta-
tistics in terms of the cumulants of the intensity„
K„(W), and the factorial cumulants of n,

2~

Gaussian light is cross-spectrally pure, and is
partially polarized with degree of partial polariza-
tion P. In this case it is possible to choose a co-
ordinate system for E in which the mutual coher-
ence matrix is

(EG( )(P t )Ec(+)(r t ))
= —,'(1+P) (I ) y(rl, r2y 0)y(tp —tl) i (5)

«2' '(rip tl)E2 (r2) t2) )

= —,'(1 —P) (I ) y(r„r~; 0)y(t, —tl), (6)

(Z", '( „t,)Z', "(„t,))=0, (7)

where E, and Ea are the components of E in the
chosen coordinates; y(rl, r), ; 0) is the usual two-
point mutual-coherence function, evaluated for
zero time delay; and y(t) is the Fourier transform
of the spectral distribution of the Gaussian light.
%e also assume that the coherent field is mono-
chromatic:

gc(+)(r t) =e((Ic))1/ e(07 ~ r-&ac&)

where e is a unit vector with components e, and e2
in the coordinates of Eqs. (5)-(7). Then

u„(n) =K„(W) =g„+X„,
where the contribution from the Gaussian light
alone is

k„(n) =K)((W) . (4) 8 ={(l(I+P)j"+[l(I -P)1"}
If the incident light were fully coherent, the photo-
electron distribution would be Poisson, and the
factorial cumulants of order N&1 would vanish.
Nonzero values for Q„(n) (N& 1) are thus a mea-
sure of the departure of the field from full coher-
ence. In general, the Nth-order cumulant repre-
sents the "true" Nth-order correlation among a
set of variables, with all accidental correlations
and correlations of lower order subtracted away.
This property is reflected in the behavior (derived
below) of k)((n) as the detector area A is increased
to a point where A, «A. In this case the factorial
cumulants are all proportional to A//A„ i.e. , to
the number of cells of phase space observed by the
detector. This is consistent with a picture in
which the Nth factorial cumulant is the sum of Nth-
order correlations from individual cells of phase
space with no "accidental" correlations between
different cells.

The desired cumulant K„(W) is obta, ined by spa-
tial and temporal integration of the N-fold inten-
sity cumulant Kll ".)(I(rl & tl)& ~ ~ ~ 1 I(rN i 4))
Ref. 23, Eq. (11), the latter cumulant has been
calculated for superposed Gaussian and coherent
light

E=E +E

For simplicity we assume from now on that the

x (n )"(N- I)!S„g v'„g, (10)

s)( g
= (l!A) "f d'); d'~„l!(r,) ~ ~ ~ )!(r„)

x y(r» r» 0)y(r~, r» 0) ~ ~ ~ y(r» r„0), (11)

T„g = T- f dt, " dt, y(tl —t2)'0

x y(4 tg) -y(tN —tl), (13)

and the contribution of spatial and temporal het-
erodyning of the Gaussian and coherent light is

~ =( ')( ')" 'N'(I:l(1+P)j"(e )'+ll(1-P))"(e2)'}

xs„)cg„3:, (13)

S~,x=%/I) "f„d'~l d'~~@(rl") .n(r~)"
x y(rl, ra; 0)y(rz, rs, 0) y(r)(, rl, 0)

x e(k ~ (r)(- rl) (I 4)
T

dtl ~" dt y(t, —t,)y(t, —t, ) ~ ~ ~

1 0

)(y(t t )e (tllg(tN (l) -(15)
In (10)- (15), (ne ) and (n') are the mean numbers
of counts due to the Gaussian and coherent light,
respectively, and g is the mean quantum efficiency,
such that (n) =)!AT(I). It has been assumed that
(Ie) is constant in space and time. All of the
spherical assumptions made in deriving (10)-(15)
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may be removed if more general formulas are
needed, by use of the equations of Ref. 23.

III. DISCUSSION

The factors s and f' in Eqs. (10)-(15) represent
the modification of the photoelectron statistics by
the spatial and temporal coherence properties of
the incident light. The effects of temporal coher-
ence are well known, and we shall concentrate on
discussing spatial effects. When A «A, , y, &

= 1
and s „=1, so that k„(~)~ A". For larger areas,
the fact that the integrands in S„have a "ring"
structure (i.e. , the integrand has the form
y„y,s ~ ~ ~ y») implies that whenever any of the
points r&, . .. , r„ lie in different coherence areas,
the integrand tends to zero. Thus for A»A„
k„(n) increases as A/A„since different coher-
ence areas contribute independently. (This is
true only of the factorial cumulants, and not of the
factorial moments. )

This result implies a modified central limit
theorem for photocount statistics. When A» A„
the Nth normalized factorial cumulant

one polarization and —,'(1-P) (n ) for the orthogo-
nal polarization, then we can equate (1V) to (10) to
obtain an effective number of cells of phase space:

(16)

As defined by this equation, c is also the number
of coherence volumes sampled by the detector.
In general, c will depend on N, and thus cannot be
taken as a well-defined effective number of cells,
characterizing the whole photocount distribution of
the Gaussian component of the incident light. ~

This is clearly evident in Table I, where for a giv-
en geometry (corresponding to a given normalized
aperture radius tc), c~ is seen to take on different
values for different orders ¹

Equation (1V) also gives a physical interpretation
to the fact that the photocount cumulants are
(crudely speaking) additive in the number of co-
herence areas on the detector, and thus provides
an interesting basis for the claim that the cumu-
lants represent the "true" correlations.

The heterodyne terms XN can be analyzed simi-
larly.

p' '(m) = II [1+(m;)] '[1+1/(m )]

where (m& ) is the mean number of photons in the

j th cell. Evaluation of the generating function for
(16) leads to

(16)

(1V)

A comparison with (10)-(12) indicates that the be
havior of k~(n) for A»A, is the result of sampling
the photon distribution over A/A, cells in phase
space. Such a comparison also facilitates a phys-
ical interpretation of the correction factors 3~ g
and V'~ 8. If we assume that the occupation num-
ber of each cell of phase space is —,'(1+P)(n ) for

tends to zero as (A, /A)" ~, for N& 1. Thus as
A/A, becomes infinite, the statistics of n approach
the Poisson distribution, for which kq(n) =(n),
k„(n) = 0 (N& 1). The physical reason for this is the
averaging out of uncorrelated intensity fluctuations
in different coherence areas.

As is well known, ' one coherence volume is de-
fined as A, T, = k~/b p„hp, np„where hp& is the mo-
mentum uncertainty along the j axis. Thus a single
coherence area at the detector corresponds to a
single jz3 cell in photon phase space. With this in
mind, further insight into k~(n) can be gained by
comparing (10)-(12)with the factorial cumulants
k) '(m) for bosons distributed in more than one
cell of phase space. The Bose-Einstein distribu-
tion for m = m q+ ~ ~ + m, photons distributed among
c different cells is

IV. NUMERICAL RESULTS FOR SINGLE-CATHODE
STATISTICS

TABLE I. Numerical comparison between exact and
approximate correction factors for factorial cumulants.

Exact Approximate

Aperture radius = 0. 5 coherence radii

0. 8034
0.7094
0.6322
0.5696
0.5109

0. 8034(fit)
0.6455
0.5186
0.4166
0.3347

Aperture radius =1.0 coherence radii

0.4729
0.2875
0. 1835
0.1139
0. 0730

0.4729 (fit)
0.2236
0.1058
0. 0500
0. 0237

The main computational problem in this method
of correcting the photocount distribution for the
effects of spatial coherence is the evaluation of
the multiple integrals, Eqs. (14) and (15), of N-
fold products of the mutual coherence function. In
this section we summarize a calculation of the
spatial correction S& &

for Gaussian light, for the
special case of a uniformly efficient circular de-
tector which is on the same axis as a uniform cir-
cular source (Fig. 1). Although this case is of
considerable practical interest in itself, the meth-
ods used can be generalized easily to other (non-
uniform or differently shaped) apertures and
sources.



C. D. CANTRELL AND J. R. FIELDS

FIG. 1. Geometrical relations for the calculation of
the finite-aperture corrections to the photocount distribu-
tion, for a uniform circular source (radius zs) on the
same axis as a uniform circular detector (radius gz).

The mutual-coherence function in this case is

2Z, (&'
I r &

—rz ) )
&~r» r2 i Oj =

Iry —r2

where

(19)

(20)

Combining (11)with (19) and scaling the variables
of integration, one finds that

~1 8 2' 1+ 211

~ g g —
~ v]dvg f g de ' d~y ANN

W Q a Q "Q

& =kr,r~/z, R . (22)

J, (~z,r„) Z, (~,z,r„,)
( )

K,Z&y &2 KZ p'N

depends on the single parameter

tive since it can provide reasonably precise re-
sults, and is as well if not better suited for sixth
order as for third.

In this example the points r;= (x&,y&) were se-
lected by a random-number gener ator which produced
values of x& and y&, each uniformly distributed be-
tween —1 and 1. If the resulting point r& did not
fall within the unit disk, the point was rejected and
another point drawn. The uncertainty in the Monte
Carlo estimate of the integral was estimated using
standard techniques; the details can be found in
Ref. 26.

The results of the calculation are presented in
Fig. 2. Second-order values computed from the
Jakeman-Pike formula ' are included for compari-
son, as a check on the accuracy of the Monte
Carlo calculation. The results of the two methods
are in agreement, within the calculated statistical
limits of the Monte Carlo method. Of the eight
values which were compared, six of the Monte
Carlo values are within one standard deviation of
the exact result.

V. MASC PHOTOCOUNTING STATISTICS

In an interesting series of papers " "Bures,
Delisle, and Zardecki have reported measure-
ments of the multiaperture, single-cathode (MASC)
photoelectric counting statistics of Gaussian light,
and have obtained good agreement with theoretical
calculations. This work is of interest because it
represents the first measurement of the higher
photocount factorial cumulants at more than two
space-time points, and provides the basis for a
new method of measuring the coherence area of

The numerical factor 2z&=3. 83171.. . is the first
zero of the Bessel function J,(z) such that z &0;
and z,.&= ~r, —r,. ~. The scaling has been chosen
so that K is the ratio of the radius of the aperture
to the radius of an aperture occupying one coher-
ence area. If we take the coherence area A, to be
the area of the circle jr, —r2~ =const, such that
p(r„rz) =0, then

I.O

0.8

FINITE-APERTURE CORRECTIONS

(DIMENSIONI ESS UNITS)
I / I I I I I I l

/
~ I I

f
t I ~ i I

A, = m(z,R) '/(kr, )' (23) 0.6

(24)

For second order (N=2), one can represent the
Bessel functions by power series which can be in-
tegrated term by term to give a power series for
S2 ~. ' However, this method does not generalize
to larger N or to other geometries. Furthermore,
since the dimension of the domain of the integral
is 2%, a direct numerical integration is cumber-
some if not impractical even for third order, be-
cause of accumulated rounding errors. However,
Monte Carlo integration is an attractive alterna-

0.2

0.2
I i & s I i i +~~~~ A--i. . .

I.O l.4 I.B

APERTURE RADIUS K
(IN UNITS OF ONE COHERENCE RADIUS)

FIG. 2. Finite-aperture correction S~ 9, for N
running from 2 to 6, as functions of the aperture radius.
So1.id line: N=2. The curve is calculated from the Jake-
man-Pike formula, Hef. 29; the points are the results of
the Monte Carlo calculation. Dashed line: N =3. Dotted
line: N =4. Single-dot-dashed line: N =6.
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P()1) ~ ~ IN()11 l ' ' ' y +N) 6n, n)+"'+nN
n1=0 nN=0

(26)
where PN is the N-fold joint photocount probability
distribution. Because of the spatial coherence
properties of the light, pN will not in general be a
product of onefold distributions. The generating
function for P(n) is

8(s) = Z (1 —s)"p(n)
n=0

= «1-~)"&

= &N(S1 r ' * ' t SN) ls)=so="'=sN=s

where QN is the N-fold generating function,

(26)

sN) = &(1 —s1)"' ~ ~ ~ (1 —sN)" & ~ (27)

The factorial-cumulant generating functions are

F(s) = lnB (s)

for the MASC case, and

6'N(s)~ ~ ~ ~ ~ sN) =»9N(s) ~ ~ ~ ~ ~ sN)

(28)

(29)

for the MC case.
Using E(l. (26), we can express the MASC fac-

torial moments

( d M

6 ( ) l.=o (so)

and factorial cumulants

Ajar
— 5 S 8-0 (31)

in terms of the corresponding MC quantities

~(n) 1 n1 8
~ ~ ~1''"' N tl1 I82, SN' @1 ".)

& PN(S) ~ ~ ~ ~ SN)
I s1=sO=" =sN=O

Gaussian light. The new technique, which em-
ploys a single photocathode illuminated by the light
which is transmitted through a set of N apertures
in a screen covering the photocathode, is substan-
tially easier experimentally, but gives somewhat
less information, than earlier techniques employing
N separate photocathodes. 5'

We shall now derive an expression [E(l. (37)] for
the MASC photocount factorial cumulants in terms
of the MC factorial cumulants, which are well
known. Suppose that N nonoverlapping areas on a
photocathode are illuminated with Gaussian light.
The total number n of photoelectric counts regis-
tered in a time interval T is the sum of the counts
produced in the N different illuminated areas, and
has the probability distribution

f(s) =f,(s)" f„(s),
and the summation runs over all sets of non-nega-
tive integers a» . . . , aN such that

N

pa~ ——M . (36)

When (34) is used to evaluate (30) and (31), making
use of (26) and (27), the resulting Mth-order
MASC factorial moments and factorial cumulants

~(N)

tag}

I, = Z I.'",
,
'. .., ,„, (3

Lay)

where the summations are restricted by (35).
For example, for N=2, the third-order MASC

factorial cumulant is

u, = u, 0+ u2, + u, 2+ u0,(2) (2) (2) (2) (38)

The cumulants 0,'0 and k0'3 can be measured by
occulting one or the other of the two holes in the
aperture. Thus, it is also possible to determine
the sy~~et~ic q~a~tity k2, 1+ ~1,2 &

but not k2, 1

or k1 2 separately. Similar conclusions apply to
higher-order cumulants. For many experiments, "
however, the full information given by the separate
N-fold cumulants such as k» may be unnecessary,(2)

and the MASC result ks may be sufficient.
From the derivation it is evident that the equa-

tions in this section are valid for light of arbitrary
coherence properties; no special assumptions have
been made regarding the ratio of the counting time
to the coherence time, or the ratio of the areas of
the N apertures to a coherence area.

VI. PARTIALLY POLARIZED GAUSSIAN LIGHT

Vfhen the known results ' '" for the N-fold
photocount cumulants of cross-spectrally pure
partially polarized Gaussian light are substituted
in (37) one finds that

( T T
M I I O 2

0 o &N

xV &s'- N 1 ~ ~ ~ Ã
~ ~1=2= ~ =~N=Os )I

We make use of Leibniz's rule,

&d~ 1 t'd
t t 1&ds (, .) a, Ia2t ~ ~ a~! ( ds

x
( ) fy(s) ($4)

where

and

~ ~ o

g1 t/2 t ~ ~ ~ /N t 8S1 ~SN

2
5 1 (v, v) 1(v,g)

(a1, ~ .~, a~} C u =1

(se)
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where C: l&- Cl& is any cyclic permutation of the
set of lntegex's ll. . . . . lM, %'hex'e d~N d Xl ' d1,', I 2 2

0 "Al "AN
l l —l2 —~ ~ ~ —l

nfl

(40)

N N

(45)

la. +...+aPr l+l ' ' ' lM

(41)

In (39), the counting-time interval is 0 ~
t~ ~ T,

dth dt ct — p t A, . . . , A
In (39) and (41) V„,(r, t) is the p component of the
electric field amglitude with respect to a polariza-
tion basis. For cross™spectrally pure light, one
can choose the polarization basis so thats

I &v, ~) 5 &1(u) && {42)

where the normalized mutual-coherence function

y» depends only on r,-, r„, and t„- f» not on p, or
vp and

&I"'&=- l(1 —P) &» (43)

are the intensities of the two statistically indepen-
dent polarizations of Eq. (42), expressed in terms
of the degree of polarization P and the total inten-
sity &I&. Relations (42) and (43) have been used in
derivi. ng (39).

Interchanging summations in (39) and using (42)
a.nd (43), we find

& = o."f(l(I+P)]"+I.l(I - P)]g &I&"

X dtl dt d I

0 0 "Al

N N

~~ "&~„,,r„,„" r, „,„, (44)

which reduces to

u, = (m-1)!o.'ft-,'(I+a)]'+[-,'(I —I )]g &I&&

since different cyclic permutations of the summa-
tion indices ll, ... , l„can all be reduced to the
same permutation by renaming the indices. When
the light is fully polarized (P = 1) and all the aper-
ture areas A&, ... , A.N are neg1igible compared
to a coherence area, Eg. (45) reduces to the re-
sults obtained by Bures et al.33 using a special
technique for Gaussian light.

The property of cross-spectral purity implies
that the spatial and temporal coherence properties
can be sepax'ated:

(45)
where y, &(r, , r~; $„—f&) is the same function of f for
all points r,. in the aperture. When (46) is substi-
tuted i.nto (45), one obtains the full dependence of
k„on the degree of polarization P and on the tem-
pol Rl Rnd spRtiR1 cohex'ence propex'ties of the inci-
dent light. The resulting integrals can be eval-
uated in a. straightforward way, as outlined in Sec.
IV. These corrections may be significant in
MASC experiments. 3
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The ratio p, , of the cross section for circularly polarized light to that for linearly polarized is

numerically investigated for N-photon ionization of atomic hydrogen. For N &4, it appears that the

gain factor is greater than unity. For N )4, the ratio p, ,- is generally smaller than unity and decreases
when the multiphoton order N increases.

I. INTRODUCTION

A number of discussions' 7 have recently ap-
peared concerning the question of whether cir-
cularly polarized light ionizes atoms more strong-
ly than linearly polarized light. Experiments '9

on two- and three-photon ionization of atomic Cs
have shown that the ratio of circular- to linear-
polarization cross sections p„=o, /v", took val-
ues equal to p, 2 =1.28 and p,3=2. 15, respectively.

Though this result seems to be in contradiction
with the general. conclusions of theoretical com-
putations performed a few years ago, '~ Lambro-
poulos3 has given a clear interpretation of these
data. Klarsfeld and Maquet5 have found an upper
bound for the ratio p,„, suggesting that circularly
polarized radiation may often be more efficient in
multiphoton ionization than in linearly polarized
radiation. By using the momentum-translation
method Reiss has improved this bound and shown,
in contrast with the previous conclusion, the strong
dominance of linear- over circular- polarization
cross section for high-order multiphoton processes.

Within the f ramework of time-dependent per-
turbation theory, precise values for linear- and
circular-polarization cross sections, as a function

of radiation wavelength, have been computed for
N=24 and N=3. ~ But, a lack of information con-
tinues to exist concerning the situation under dis-
pute in the case of high-order multiphoton pro-
cesses. The purpose of this paper is to give the
additional results, for N= 2-8, which should pro-
vide a clear interpretation of the effect of light
polarization on the cross sections, and which
should contribute to a better understanding of the
ionization process in gases. To achieve this we
present a detailed analysis of the dependence of
the gain factor p, „on the photon wavelength and
multiphoton order N. Section II contains the
analytical formula for the multiphoton ionization
cross section of hydrogen atom with circularly
polarized light. A comparison between the values
found for the linear- and circular-polarization
case is given in Sec. III, where we discuss the
reasons causing the decrease of the values which
are calculated for the ratio p, „as N increases.

II. IONIZATION CROSS SECTION FOR CIRCULARLY
POLARIZED LIGHT

In previous papers" the computation was re-
ported for the multiphoton ionization cross section
cr", of atomic hydrogen by linearly polarized light.


