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Multiple-Scattering Expansions for Nonrelativistic Three-Body Collision Problems. VIII.
Kikonal Approximation for the Faddeev —Watson Multiple-Scattering Expansion

Joseph C. Y. Chen, Lars Hambrog and A.-L. Sinfailamr
Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, I.a Jolla,

California 92037

Kwong T. Chung
Department of Physics, North Carolina State University, Raleigh, North Carolina 27607

(Received 19 June 1972)

The Faddeev-%watson multiple-scattering {FWMS) expansion is investigated in the eikonal
approximation. For the case with the classical trajectories taken to lie along straight lines, the
second-order FWMS expansion reduces to the well-known Glauber-eikonal approximation. Application
of the second-order F%'MS expansion in the eikonal approximation is carried out for elastic and
inelastic (e,H) scattering with the classical trajectories taken as intersecting two straight-line segments.
The result suggests that there is a substantial cancellation between the first-order and second-order
terms in the FVA4S expansion for pair Coulomb interactions.

l + (2, 3)- l + (2, 3) (2. l)
has been considered both for the on-shell and off-

I. INTRODUCTION

The Faddeev-Watson multiple-scattering
(FWMS) expansion for nonrelativistic three-body
systems' has been applied to high-energy atomic-
collision problems. ~ Calculations have been
carried out in the first-order FWMS approximation
for both the scattering and rearrangement colli-
sions. '6 The results converge to the first-order
Born results at energies higher than normally ex-
pected. For rearrangement collisions, the total
cross section in the first-order FWMS approxima-
tion is found to lie between the first-order Born
IJackson-Schiff~ (JS)] cross section and the Brink-
man-Kramerss (BK) cross section obtained with
the repulsive pair interaction neglected. The
cross section approaches the first-order Born
cross section in the high-energy limit, where the
nonrelativistic approximation is no longer expected
to be valid. For scatterings, the first-order
FWMS approximation yields results which converge
to the first-order Born approximation at energies
one magnitude higher than normally expected; the
magnitude of the cross section is much larger than
the first-order Born approximation. This then
gives rise to the question whether the second-order
FWMS terms are of importance. The purpose of
the present paper is to investigate the second-or-
der FWMS approximation. The use of the eikonal
approximation permits the evaluation of the FWMS
expansions to second order for scattering pro-
cesses.

II. FADDEEV-WATSON MULTIPLE-SCATTERING
EXPANSION

The multiple-scattering expansion for a three-
body scattering process

shell cases. ' The transition operator T„ in the
transition amplitude between asymptotic states
y(l) and q(1)

(2. 2)

takes the form in the FWMS exapnsion

T3= T2 +T3+T2Gp T3+ T36p Ta + ' ' '
&

with

T; = V; + Vg Go T;, Go= (F. —Ho+ i5) ',

(2. 3)

(2.4)

where V, is the two-body potential Vz„, Qp is the
Green's function for the three-body system in the
absence of interaction, and 7'. , is the two-body T
matrix in the presence of a spectator particle i.

The asymptotic states in coordinate representa-
tion are of the form

(r,R,
~
g )= (2g) ~

X
(r~ ) e'"~ a' (2. 5)

(g"'~r„R,)= (2m) '~'X"'(r, )* e '"~'"~ (2. 6)

where r, is the internal coordinates of the two-
body subsystem (2, 3) pointing from particle 2 to
particle 3, with bound-state wave function x" (r,),
and where R, and k are the coordinates and asymp-
totic momenta of particle 1 with respect to the cen-
ter of mass of the subsystem (2, 3). Utilizing these
asymptotic states, the transition amplitude given
by Eq. (2. 2) can be rewritten as

(2. 7)

with

Y (r r') = (2') ' J dR dR'e'" '"

where T,(r„r',) is the Fourier transform of the
transition operator T, in the coordinate representa-
tion.
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Substitution of T, given by E(I. (2. 3) into Eq.
(2.6) yields the multiple expansion of Y,(r„r)):

Y,(r„r',) = Q Y,"'(r„r',),
A~i

with

Y'"(r, r', )=(2v) 'fdR, dR', e'"&'"('" '
&

(2. 9)

x&r,R, r, +r, r', R', &, (2. 10)

Y(2)(p r~t) (2v) sfdR dye el ~)'(a) Ny'R)

with

IP KpE 4 + ~(1) & +~(1)
2P1 ~ 2P1

m, (m, +m, )Pg=
mg +m2+m3

(2. 12)

(2. 13)

(2. 14)

where m„m2, and m3 are the particle masses
and &,'."and z&" are the energies of the two-body
system (2, 3).

III. EIKONAL APPROXIMATION FOR FWMN EXPANSION

We consider the reduction of the multiple-scat-
tering expansion of T,(r„r,') in the eikonal ap-
proximation. ' ' The eikonal approximation will
be valid if

&rlR) TSGOT3+TSGO Tzl r)R1 &~ (2 11)

etc. The differential cross section takes the form
2

= (2v)' u' ~ ~ &x"'( )) I Y."'(r), r)) x&"(f'))&
I

X=1

where the path integrals are taken along the clas-
sical trajectory, with ds denoting the element of
path. In Eq. (3. 5), we have taken the eikonal am-
plitude to be unity and neglected the energy of the
bound two-body system. These are reasonable
approximations for the energy region of our in-
terest.

It is worthwhile to recall that we are here deal-
ing with the scattering of a particle by a two-
body target through pair potentials V2 and V3. The
Newtonian equations of motion for the determina-
tion of the classical trajectories must include both
potentials. In the multiple-scattering approxima-
tion, these two potentials are treated one at a
time. It is therefore convenient to introduce
eikonals for each potential such as S& given by
E(l. (3. 6). Care must be taken, however, in the
evaluation of the path integral along the classical
trajectories provided by the two potentials. Of
course, for the simple straight-line approxima-
tion for the classical trajectories, the problem is
trivial.

When the eikonal approximation given by Eq.
(3.5) is adopted in the multiple expansion for
Y,(r„F',), we obtain for the first-order term

a l~
(r) r)) =

(2 )3 dR)
77 J

X(V ef(sz )(g'R)) ~V ei 3 )(g ~ ) ) (3 q)

It is convenient to evaluate the integral in the
cylindrical-coordinate system (p, z, ((()). To rela-
tive order I 8, I (8, is the classical scattering angle)
we have

ff/zoo«1, (3.1)

where z is the magnitude of the relative momen-
tum of the colliding particles. For the energy re-
gion E -g'"» 1, the eikonal criterion is satisfied.

The channel coordinate for the elastic scatter-
ing process is R&. We consider that the pair po-
tentials are of the form

dR&= pd pdkd y =-bdbdgd y.
The eikonal can be written in the form'2

Sg —Ify 'R) = q)) z +(I) I) cos Q + C(g(zq b )q

with

q„= w, —
x& cose, q, = —

K& sine,

(3.9)

(3.10)
Vg(rz)= Vz( R)+yzr, l),

V&(rs) = Vz(l R)+ ysr) I),

with

m2 m3
'v

822+ m3 m2+m3

In the eikonal approximation we have'2

&r,R,
I
V', lr,'R,'&e'"~'"( =- V, (r, ) e"~'"))

(3.2)

(3.3)

(3.4)
C, (z, t)) = —z, f (-,' [ p —p (z'))+(p, /z, ) V, )dz',

(3. 11)with P = limP(z) as z ~ and,

(((g)= df — ( —(—1- z-' ((', +v, ))

where q„and q, are the longitudinal and transverse
momentum transfer, 8 is the scattering angle, and
4&(z, b) are the local eikonal phases, which depend
also on the internal coordinates of the target.

To order zeo~ 8, ~', 4&(z, 5) takes the form'z

x 5(R, —R', ) 5(P', —r', ), (3. 5)

with the eikonal defined by the path integrals
w

SJ(R,) =f )[z, -2p, V&(IR, + y~ r, I)]'~'ds, ( ~ )

.0(p'). (3.»)
Here d is the distance of closest approach. If we
assume the classical trajectories lie along straight
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lines, the eikonal phase takes the simple form

C,'"(z, b) = —(p. , /K, )f dz' Vi. (3. 13)

A simple generalization of the straight-line tra-
jectory consists of a trajectory with two straight-
line segments intersecting at an angle 2P. In this
angle approximation for the trajectory, the eikonal
phase takes the form

:—(2&()
' fd Kdr,"dr', "dR,"dR',"5(r,"—r1")

I I
&ft&.'sRg -fksRfI'

&&(r,R,
I r, ir,"R,")

x (r', "R'," Tier,'R,')e'"i' I, (3.18)

where we have again assumed the energy of the
bound-state particles (i.e. , particles 2 and 3) to
be negligible in comparison with the energy of the

projectile particles. Applying the eikonal approxi-
mation given by Eq. (3. 5) to Eq. (3.18), we obtain
from Eq. (2. 11)

+pS.(Ry)-fK Rf

2zl E+ zg —tc/ 2p. ,

xV. e'*1" "'"i'" +(i -i'&I.~ I

At high energies, the Green's function propagates
essentially in the forward direction. We may ex-
pand 'kabout k, and, to order ie, i, neglect terms
of second order in k-'k, . We then obtain"

(3.19)

8 i8&(R&)-5@sR& 9 S&(Ry)-et~ %i
dry — . ~

-=
p& dKE +St —K7/2t&1 g 2t&+&Ebb

4 "&(z, b)=C,'."(z, b)+2(t&, /K, )f V dz'.
(3.14)

This simple generalization of the straight-line ap-
proximation has been found to be more accurate. '

To evaluate the integral in Eq. (3.7), we take the
z axis to be parallel to the incident direction and
write

R1 = b + zz, r& = s +B,
where b =(b, y) and s= (s, y, ) are two-dimensional
vectors in the xy plane. From Eq. (3.7), we ob-
tain

(~
T(1&(~ ~i) 1 1 1& d2bei &bcaoqss(1&(b g S $)s 1t 1 (2 )3 s

(3.16)
with

&1&(b g () f d (V eio2 s, V eio2(s, b&)e&ag

(3. 17)

Similarly, the eikonal approximation can also be

applied to the second-order multiple-scattering
term T,"'(r„r,). We have

(r,R,
I
Ti G(& Ti,

I

r', R', )e'"i'"1

—i(2&()2 e"&&"2& dt
0

xe ' 5(R, —R', —&&; t/i1, ). (3.20)

This then permits Y,' ' to take the form

C, (b) = lim C, (z, b),
g» co

where we have made use of the integral

(3.23)

22 dt V (R, —K, t/t&, )e' i'&z& "i&i'1&=1 e& i'-&b&
0

(3.24)
coming from the action of the Green's function

I Eq.
(3.20)] in Eq. (3.19).

The second-order multiple scattering in the ei-
konal approximation can now be obtained by com-
bining Eq. (3. 16) with Eq. (3.21). We obtain

6'r r"
T (r ri) ( 1 1) I d2be& b a1coqss(b g ~)

(3. 25)

Q, (b, g, s, $)= —'[(I+e'ob'b') J dz Vbe'"os+o2" "]
+ —,'(3—2). (3. 26)

The z integrals in Eq. (3. 26) can be evaluated
analytically, if the longitudinal momentum trans-
fer can be neglected. The neglect of the longitudi-
nal momentum transfer is a characteristic of the
well-known Glauber-type eikonal approximation, "
by taking the momentum transfer

q~, =k, —k~ (3.27)

to be perpendicular to the incident direction 0,
This is equivalent to the approximations

9'~ = Q'y 7, ~ I ii
= 0 (3.28)

In this case, the g integral can be evaluated to rela-
tive order i0, (:

Q (b e $ ) Z ( K / t& ) (e i & O 2 ( b s s I i & x O 2 ( b ~ s i i & ] 1)
(3.29)

Substitution of Eqs. (3.28) and (3. 29) into Eq.
(3.26) yields

1. ~ dzbeiat& b(ei(a2+o2&. 5(r-r')
(3 30)

Equation (3.30) would reduce to the familiar ex-
presssion of the Glauber type if C~ and 43 are
evaluated in the straight-line approximation. The

T&2&(r ri) 1 1 d2beca1b cosa q(2&(b g 2 ])5(r, —r, ')
s 1& 1 (2&)2

(3.21)
with

( g ]) ([( (oi ~ b 1)f d V io s»+i „s]

.(~ -~')], (3. 22)
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increased generality in the eikonal phase, 4~ and
C ~ has not altered the simple form of Eq. (3.30).

IV. PROBLEMS WITH COULOMB INTERACTION

Qwing to the long-range nature of the Coulomb
interaction, the Coulomb T matrix has branch-
point singularities on the energy shell. ' At high
energies, we have in momentum representation
[see Eq. (VI4. 2)]

Z y P(. E ~2) I/ y Pi) &-ivi 1n(6i/4) (4 1)

with [see Eqs. (III2. 14) and (III2. 15)]

(4 2)
where g, is the product of the charges of particles
j and k, and p, ~ is their reduced mass. The mo-
mentum variables in Eqs. (4. 1) and (4. 2) are de-
fined in the previous papers of this series. From
this equation, it is clear that in the high-energy
limit, the Coulomb T matrix approaches the Cou-
lomb potential with a phase factor which contains
branch-point singularities. It is this singular
phase factor in the two-body amplitude which gives
rise to difficulties in the treatment of three-body
amplitude involving pair Coulomb interactions.

Mathematically it is clear that the branch-point
singularity in the two-body amplitude would give
rise to integrals of discontinuity in the three-body
amplitude. Such integrals can be handled and in
certain cases be evaluated numerically in the first-
order FWMS approximation. For elastic as well
as excitation scatterings, the result depends on
the difference of contributions coming from two
pair Coulomb amplitudes. Substantial numerical
accuracies are required for reasonably reliable
results. The task of evaluating these integrals of
discontinuity for the higher-order FWMS approxi-
mation numerically is not at all straightforward.
It is therefore necessary to rely on approximations.

I

The difficulties with the branch-point singularity
are completely avoided in the Born approximation
by simply taking the phase factor to be unity. Thus,
in the Born approximation one encounters in the
pair interaction at the most a pole singularity at
the forward-angle elastic scattering. For three-
body Coulomb problems in which the two-body tar-
get is neutral, even this forward-angle singularity
in the elastic scattering gets canceled. Conse-
quently, the three-body Coulomb amplitudes are
well behaved in the Born approximation. The situa-
tions, however, are not well defined once one goes
beyond the Born approximation. This is not un-
expected, since one must then take the singular
phase into consideration.

The eikonal approximation considered in Sec.
QI also gives rise to singularities in the two-body
amplitude for Coulomb interactions. The problem
here, however, is not as subtle as in the other
types of distorted-wave or impulse approximations.
The interesting feature of the eikonal approxima-
tion lies in the fact that the singularity in the two-
body Coulomb amplitude gets canceled when the
first-order three-body amplitude is combined with
the second-order three-body amplitude in the sec-
ond-order FWMS approximation. It is this analyt-
ic cancellation of the branch-point singularities
which permits the evaluation of the three-body
amplitude for Coulomb problems (involving neutral
two-body target) to the second-order FW1UIS ap-
proximation.

For Coulomb interactions, the pair potentials
[see Eqs. (3. 2) and (3.3)] take the form

[ lb+ y, s I'+(»+ y; $)']'/'

where we have made use of Eq. (3.15) for r, . It
can be easily shown that the eikonal phase for Cou-
lomb interaction is singular. For simplicity, let
us consider the eikonal phase in the straight-line
approximation. From Eq. (3.13), we have

Z/d»' i/ gi I,. [ Ib+ y& s I'+(»+ y, 5)']"'+(»+ y/&)
Il J (Ib+Y&S( +(8'+Y i) ] && -„(lb+ Y &I (ga Y&()'] (Ca r, (])'

(4.4)

It is then clear that the local eikonal phase for the
Coulomb interaction is not defined in the z- ~ and
zo- ~ limits. This difficulty with the long-range
Coulomb interaction can be found in various im-
pulse approximations.

As a consequence of these singular phases,
neither the first-order nor the second-order multi-
ple-scattering terms are defined in the eikonal ap-
proximation. These difficulties can be circum-
vented by taking these limits after the first-order

and second-order terms are combined together in
the form given, for example, by Eq. (3.30). This
follows from the fact that the sum of the phases
takes the form

O "'(b) +C "'(b) = lim [O,'"(», b) + e,"'(», b)]

)b+y, et "3~
ln

Ib+&3s I
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( g, — g, ) lim [ill(48z, )] ~ (4 5)
'o&~"

For a neut, ral target, we have IS31 =
I g&1 and the

sum of the eikonal phases is well behaved.
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FIG. 1. Comparison of angular dependence of the differential elastic (e, H) scattering cross section in the first-

order Born (B) and Faddeev-Watson multiple-scattering (MS) approximation, and in the second-order Faddeev-Watson

multiple-scattering expansion in the eikonal approximation )G(straight-line) and G(angle)] with experiment (Hef. 20), at

several fixed laboratory energies. The experimental data are normalized both to the MS and G (angle) theoretical re-
sults, at 60', for each energy.
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V. APPLICATION TO (e, 8) SCATTERING

The three-body (e, H) problem involves Coulomb
pair interactions. Applications of the first-order
FWMS approximation to the (e, H) problem have
been carried out in Paper VII. It is observed that
the first-order FWMS result converges to the Born
result at energies much higher than previously ex-
pected. The question was raised whether the in-
clusion of second-order FWMS mould give rise to
cancellations and bring the FWMS approximation
in agreement with the first-order Born approxima-
tion at a somewhat lower energy. The eikonal ap-
proximation presented in Secs. III and D/' permits
an estimate of such cancellations.

We shall consider the application of the eikonal
approximation given by Eq. (3. 30) with the longi-
tudinal momentum transfer neglected. This is a
type of Glauber-eikonal approximation. Since the
application of the Glauber -eikonal approximation
to the (e, H) system has been carried out~7 '9 in
the straight-line trajectories, we should consider
the "angle" approximation for the classical tra-
jectories.

The additional phase in the "angle" approxima-
tion given in Eq. (3.14) can be evaluated for Cou-
lomb interactions. We have

0' 20' 40' 60' 80' 100' 120' d sing
~C»(b)-=2~ (V, +V,)dz

K] 0

FIG. 2. Angular dependence of differential ls-2s-exci-
tation cross section obtained in the second-order FWMS
scattering expansion in the eikonal approximation, with
straight-line and angle trajectories.

with

p, g= 2 —d sinP (Vq+ V ),„„,z,

p = (2~ )-' —[C '"(b)+e"'(b)jd

(5. 1)

(5. 2)
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FIG. 3. Comparison of the energy
dependence of the 1s-2s-excitation
cross section obtained in the first-
order Born, Vainshtein, and the
second-order FWMS scattering ex-
pansion in the eikonal approxima-
tion with straight-line and angle
trajectories.
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Thus, the eikonal phase in the "angle" approxima-
tion takes the form

(6.S)

Calculations have been carried out for the elastic
and 2s-excitation differential and total cross sec-
tions in the "angle" approximation. The results
are presented in graphic forms.

In Fig. 1 comparison of the present result with
the first-order FWMS and Born results, as well
as with the experimental data, is made. The ex-
perimental data are normalized to both the first-
order FWMS and the Glauber-eikonal (in the angle
approximation) theoretical results at 60' for each
incident energy. It is seen that the angle approxi-
mation does increase the differential cross section
from the straight-line approximation. The magni-
tude of the Glauber-eikonal results is, in general,
consistent with the Born approximation~' and is
much smaller than that of the first-order FWMS
results. The difference between the Glauber-
eikonal and the first-order FWMS result decreases
with increasing energy. These results suggest

that there is a substantial cancellation bebveen the
first-order and second-order terms in the FWMS
expansion for pair Coulomb interactions.

It is, however, difficult to assess the accuracy
of the eikonal approximation. Since the complete
cancellation of the singularity in the eikonal phase
took place only in the approximation in which the
longitudinal momentum transfer is neglected, the
Qlauber-eikonal approximation, just like the Born
approximation, is incapable of distinguishing the
electron scattering from positron scattering. It
is possible that the Glauber-eikonal approximation
overestimates the cancellation between the first-
order and second-order FWMS terms. The simple
trajectory correction does increase the magnitude
of the differential cross section. This is also
true for the excitation differential cross section
as shown in Fig. 2.

A comparison of the total 1s-2s-excitation cross
section with other theoretical results2~ is shown in
Fig. 3. It is seen that the inclusion of the second-
order FWMS term has the importance of preventing
the overestimation of the total cross section at
low energies.
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