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Photoelectron angular distributions should show pronounced variations with energy across
autoionization resonances. This prediction applies quite generally to both atomic and molecular
autoionization. Examples illustrate both the magnitude of the spectral variation and the inability of the
Cooper-Zare model to account for the phenomenon. Calculations are reported for autoionization in
xenon between the fine-structure levels 5p° 2Pj, and 5p ° 2P{), of the ion ground-state doublet. An
analysis is given of the recent measurements by Niehaus and Ruf on autoionizing levels of the mercury
Rydberg series 5d °6s 2(*D)np and 5d °6s 2D )n’f below the Hg* 5d °6s ?> D5, threshold.

I. INTRODUCTION

The determination of the spectral variation of
photoelectron angular distributions threugh auto-
ionization resonances is a new and essentially un-
tapped resource for photoelectron spectroscopy.
Here this class of spectroscopic measurements is
theoretically analyzed. The analysis predicts quite
generally not only sharp spectral variations of the
angular distributions across resonance features,
but more importantly, angular distributions that
should depart markedly from those predicted by di-
rect (nonresonant) ionization models, such as the
Copper-Zare model.! Deviations from direct ion-
ization predictions arise owing to the enhancement
by the autoionization process of the effects of just

those forces that are often sufficiently weak as to
go undetected in nonresonant photoionization. Ac-
cordingly, these resonances in photoelectron angu-
lar distributions are a sensitive new probe of photo-
ejection dynamics.

This study rests on the angular-momentum-
transfer formulation of angular correlations, given
recently by Dill and Fano.? It also draws on ex-
tensive experience in analyzing the dynamical
origin and significance of the various angular mo-
mentum transfers allowed in any given ionization
process., This paper reports the most important
implications and results for autoionization of the
general dynamical analysis, whose full description
is deferred to a separate report. 8
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Consider the schematic ionization process
A(Jym) +¥(jy=1, m=—-1)
~A*d,m)+ellsj,m= (=101, ()

in which photoelectrons are ejected by electric
dipole interaction from a generic unpolarized
(atomic or molecular) target A. Dill and Fano
(DF)? obtain a general expression representing
the photoelectron angular distribution of process
(1) in terms of separate components characterized
by alternative magnitudes of

je=do+8-J5=, -1, @)
the angular momentum transferred in the ioniza-
tion, The allowed values of j, are those congistent

with the balance of total angular momentum J and
parity m,

F=Fy+3,=7,+8+1 , ®3)
=TTy =TT,
==me=(=1)V7, . (4)

For any given ionization process, a range of j,
will be allowed, with ionization dynamics deter-
mining the relative contribution of different j, com-
ponents, However, each angular-momentum-
transfer component has a characteristic angular
distribution with an analytical structure independent
of the dynamical details of the ionization. The
predicted sharp variation of the angular distribution
across resonance features follows from (a) the
general structure of the distribution for each j,
and (b) the spectral variation of the weights of dis-
tributions with different j,. The deviations of the
resulting angular distributions from predictions
of direct ionization models, such as the Cooper-
Zare formula,® follow from autoionization enhanc-
ing angular momentum transfers that can be un-
important in nonresonant ionization, 2’3

Resonances in photoelectron angular distribu-
tions have already been calculated for the example
of rotational autoionization in H, and the results
show clearly the effects predicted here.* Addi-
tional examples will be given in this report. The
specific examples have been chosen for their
amenability to experimental verification: The
resonances are wide and the spectral variations of
the angular distributions are quite pronounced.
Further, for both examples energy analysis of the
photoelectrons is not required since only one group
of photoelectrons is produced. Calculations are
given for the angular distribution of xenon photo-
electrons ejected into the autoionization region be-
tween the ionization thresholds of the 5p°%P3,,
and 5p° %P5, levels of the Xe* grourd-state doublet,
The results illustrate both a pronounced resonance
in the angular distribution as well as substantial
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deviations from the predictions of the Cooper-
Zare model.! The photoionization of mercury is
analyzed in the resonant region between the
5d'%6s %S, ;, level of ion ground state and the
5d°6s%2D; ), level of the first excited state of Hg*.
This example is particularly striking: Since the
ionization proceeds by an s - p transition, one
might expect the photoelectrons to carry away the
full anisotropy of the photon-target interaction,
i.e., throughout the spectral region one might ex-
pect a fixed cos?@ angular distribution, peaking
along the electric vector of the light. Actually,
owing to the enhancement of spin-orbit effects in
the resonant region, the analysis here predicts
strong variations with energy which can extend over
the full range from cos®6 to sin?6, Evidence of
this sharp energy dependence of the Hg photoelec-
tron angular distributions is seen in the recent
measurements of Niehaus and Ruf, ®

It is to be emphasized that a variety of dynamical
interactions can result in multiple angular momen-
tum transfers, In particular, the forces are not
vestricted to just those of magnetic ovigin.*® Thus,
in rotational autoionization of H,, it is the torque
exerted by the anisotropic electricfield of the
molecular ion that leads to parity-unfavored an-
gular molecular transfer. For both the Xe and Hg
examples, as we shall see, the anisotropy is pro-
vided by a combination of the electrostatic (ex-
change) interaction which separates different LS
terms of the electron-ion complex and the spin-
orbit interaction which results in a breakdown of
LS coupling. Effects of spin-orbit interaction alone
on photoelectron angular distributions have been
theoretically analyzed recently by Walker and
Waber [T. E. H, Walker and J. T. Waber, Phys,
Rev. Letters 30, 307 (1973)]. As these authors
point out, their results are an example of the an-
gular-momentum-transfer formulation and, in
fact, can be obtained directly from the general ex-
pression for the angular distribution given below
[Eq. (8)]. Nonetheless, it is important to realize
that spin-orbit interactions are but one mechanism
for the production of multiple angular momentum
transfers.

II. ANGULAR-MOMENTUM-TRANSFER FORMULATION ;OF
ANGULAR CORRELATIONS

The differential cross section for the ionization
(1) is given by

% = % [1+ BP,(cost)], (5)

where o is the integrated cross section and the
asymmetry parameter B pertains to light linearly
polarized along the z axis. The resolution of the
differential cross section into components with dif-
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ferent angular momentum transfers proceeds as
follows®: The allowed j, values are determined
from Egs. (2)-(4). Then one determines an asym-
metry parameter §for each value of j, according

)
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to whether the parity change in the target is
+(-1)t: Values of Jji for which mg7m,=(=1)"t are
said to be parity favored and have an asymmetry
parameter

B(]t )fav

where S,(j;) denotes the photoionization amplitude®

for a given j; and for I=j,+1; values of j, for which
moTe=—(—1)t are called parity unfavored and have
a sin®0 angular distribution, i.e.,

B(je)ume==1 , (0

independently of dynamics. The observed asym-
metry parameter is an average over the asymmetry
parameters B(j;), weighted by the corresponding
partial integrated cross sections o(j,),

fav unf
ﬁ?(zl 0(]})3(]',)—2' U(]t))/z o(j) . 8)
It I It
In (8) the primed sums are over only the parity-
favored and parity-unfavored j, values, respec-
tively. The integrated cross sections have the
structure

0(Jy)eay = TR2[ (24, + 1)/(2dy + 1)]
x[]5.G) 2+ 5.G0)*1,  ®)
(G une = T2°[27, + 1)/ @+ V1] 55(5) |2, (10)

where 5,(j,) is the photoionization amplitude® for
the value of j, equal to the escape orbital momentum
1; X is the photon wavelength (divided by 27).

The expression (8) for B is the essential tool of
our analysis. It is a general result, following only
from the specification of the total angular momen-
tum and parity of each element of the ionization
reaction.? No assumptions are required about
angular-momentum coupling schemes or indeed in
regard to any details of internal structure of the
various reactants (e.g., atom or molecule, charged
or neutral), Accordingly, (8) embodies a very
general conceptual framework with which to analyze
effects of autoionization on photoelectron angular
distributions.

That photoelectron angular distributions should
vary markedly with energy across a resonance in
the integrated cross section ¢ follows from the
analytical structure of this asymmetry parameter
B: o and Bare merely two sides of the same coin,
namely, alternative manifestations of the resonant
behavior of ionization amplitudes that is character-
istic of autoionization. That is, a resonance in
o implies and is implied by a resonance in 8. Note

_ G 218,12+ Gy = V1S,G)12 - 305 Gy + D) 125, (5,)S. () + 5, ()] 6)
B @7, + DI15,(G) 12+ 15.() 1 2] )

however that, whereas the integrated cross section
depends only on the squared moduli of the ioniza-
tion amplitudes, the asymmetry parameter depends
as well on the moduli and phases of these ampli-
tudes through the interference terms in the B(j;);ay.
Therefore, the resonance in 8 can be an even more
pronounced spectral feature than the resonance
in o.

That autoionization may enhance the role of other-
wise weak terms of (8) can be seen as follows®:
The initial stage of photoabsorption imparts j, =1
units of orbital momentum to the photoelectron,
which has initially orbital momentum fo, yielding
an orbital momentum

=747, . 1)
At this point the angular momentum transfer is
(A A (12)

with the single value j, =7,. Additional angular
momentum transfers are in general allowed, aris-
ing from anisotropic interactions of the photoelec-
tron with the rest of the target (including its own
spin) during its subsequent escape. Such interac-
tions—both electrostatic (orbit-orbit) and magnetic
(spin-orbit)—can change the orientation and even
the magnitude of the orbital momentum from i’ to
f, thereby requtin_gl in additional angular momen-
tum transfers j, — j, . Of course, the electron must
interact with a nonzero angular momentum, for
only in that case will it experience a torque and
thereby be able to exchange angular momentum.
[Thus, e.g., interaction with a 'S, core, even if
polarized, cannot be lead to exchange of angular
momentum, ] Now autoionization consists of the
decay of a bound state in which the electron exper-
iences a protracted and generally anisotropic in-
teraction with the core. This extended interaction
should enhance the angular momentum transfers

in addition to j,' =ly. In contrast, the Cooper—-Zare
model, ! for example, implies complete absence of
any anisotropic electron-core interaction and leads
to a formula obtained from (8) by setting j, = 4, and

S(t) =i e**u(||C™M| )R, I) (13)

where R is a reduced radial dipole matrix element
and the other symbols have their usual meaning, '3
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Therefore, the measurement of resonances in photo-
electron angular distributions should yield results
that can deviate considerably from those predicted
by the Cooper—Zare model.

III. EXAMPLES

We have then pointed out two key elements of the
effect of autoionization on photoelectron angular
distributions: One is the sharp spectral variation
of B and the other is the enhanced importance of
alternative angular momentum transfers., To il-
lustrate these resonant features of photoelectron
angular distributions we shall consider examples
from the photoionization of xenon and mercury.

A. Autoionization in Xenon

Ionization of xenon leaves the ion in a doublet
ground state,

Xe(5p° 18,)+ v(4, =1, m,==1)
~Xe'(5p° 2P5,,1 /) +e(1=0, 2) . (14)

The ionization potential for production of the lower
level 2P3 , of the ion doublet is Iy ,,=12.127 eV,

and the doublet splitting is I; j, —I;3,,=1.43 eV. The
spectral region between these fine-structure thresh-
olds was found by Beutler’ long ago to consist of

a Rydberg series of autoionization resonances,

with widths comparable to their level separations.
The autoionization consists of the escape of an elec-
tron, initially bound to the 2P%,, core. It is rep-
resented schematically by

50°CPT/nd | L toionization ) 9P CP3)€

5p°CP n's J=1, m=-1 5p°CP3 )€
Only the total angular momentum (J=1) and parity
(mr=-=1) are necessarily conserved in the automn—
ization. In particular, the orbital momentum T of
the photoelectron can be changed by the autoioniza-
tion process.

The Rydberg character of the series of autoion-
izing levels emerges when this spectral region
is mapped onto the scale of the effective quantum
number v, ;, with respect to the upper threshold
I, ;5 of the ion doublet, This quantum number is de-
fined by

ﬁCU:Il/a—l/zVi/z, (15)

where energies are in atomic units, The mapping
reveals that each pair of Rydberg levels, 5p°(3Py,z)nd
and 5p°(¢P3,)n’s, fits within one unit of v, , and
that the Beutler—Fano resonance profiles repeat
unchanged with period one in vy ;. On the other
hand, owing to the nonlinear relationship between
the energy 7Zw and the effective quantum number
Vi, the profile widths and separations decrease
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rapidly on the energy scale from about 0, 44 eV
(3.5 <v;,354.5) just above the 2pP3 ), threshold to
zero (vy ;=) at the 2P§ , threshold.

The linearity and periodicity of the Rydberg
series on the v, ,; scale is a central element of the
theoretical understanding of these resonances,
i,e., the whole autoionization region can be under-
stood from the properties of the spectrum over a
single unit range of v, ,,. Here, then, we want to
determine the angular distribution of photoelectrons
ejected into this spectral region and we will do
this for the single unit range 3.5 <y, /2 <4.5.

The first step is to analyze the ionization process
(14) according to the scheme outlined in Sec. II.
The angular momentum and parity quantum num-
bers are

J0=0’ jy=1) Jc::%, l=0, 2,

(16)

me=+1, m==1, w,==1, m=+1,

Note that J,= 3 since we consider only photon en-
ergies below I, ,,; 7,=+1 is determined by parity
balance with 7=~1; I=0, 2 is then fixed by an-
gular momentum balance with J=1, The angular
momentum transfers allowed are then determined
by Eq. (2) to be

j: =1 (parity favored) for I=0, 2,

(1)
J: =2 (parity unfavored) for I=2 .

Note that odd j, values are parity favored since
mym,=— 1, and that s waves (I=0) contribute only to
the parity-favored component. For this case, the
asymmetry parameter (8) is then

=[0(1)B(1) - 0(2)]/[0(1)+ 0(2)]. (18)
Now from (6) we have
315,(1)12 - 3(2)""2[5,(1)S,(1)" + 5,(1)'s,(1)]

pll)= 35,0+ 15, ]
(19)
and (9) and (10) give
of1)=3m2[|5,1)|2+ |5,(1)|?] (20)
o(2)=5m2|5,2)|?, (21)

where the subscripts +, —, 0, on S(4,) are replaced
with s or d for I=0or I=2, Therefore the asym-
metry parameter is given by

5o 1SV~ £ 15,2)1% - V2 [5,(1)5,()'+ 541541
IS5, MIZ+ 315,@) %+ 15,112

(22)
The parity-unfavored contribution to the asym-
metry parameter (22) is given by the photoelectric
intensity 15,(2)!2 for ejection of d waves into the
continuum with the transfer of two units of angular
momentum. The physical origin here of j,=2 is
the spin-orbit final-state interaction which causes
a breakdown of LS coupling as the electron escapes
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from the ion core. This may be seen by expressing
Eq. (2) for j, in terms of the approximately good
LS quantum numbers of the ion core, i.e.,

-j.t=ic+§c+-s', (23)
using the fact that J,=0. Now the electrons are
originally coupled into a singlet; i.e., before pho-
toabsorption the photoelectron’s spin was antipar-
allel to the net spin of the rest of the atom. In the
absence of spin-orbit interaction in the final state
the spins would remain antiparallel and therefore
yield §,+5=0 in (23). Thereby j, would be limited
to the single value j;=L.=1. Therefore, the con-
tribution of the j, =2 component to (22) is an index
of the effects of spin-orbit interaction on the photo-
ionization process.

To determine the angular distribution quantita-
tively, the transition amplitudes S,(j,) must be
evaluated. This is done in two steps. First the
S,(j;) are expressed in terms of the more familiar
reduced dipole transition amplitudes P§!)(J) charac-
terized by the total angular momentum J, Then,
the matrix elements P{'!(J) are determined semi-
empirically using the multichannel quantum-defect
theory (MQDT).® The Pi')(J) are evaluated in terms
of the interaction parameters of the MQDT, which
have been determined®® by fitting theory to spec-
troscopic measurements.

Reduced Dipole Matrix Elements P,‘ )

The formulation of DF, summarized in Sec. II,
expresses angular distribution in terms of rotation-
ally invariant matrix elements of a scattering op-
erator S, which connects the initial state (target +
photon) to the final state (residual ion + electron)
and which is characterized by the angular momen-
tum transferred between unobserved elements of
the “scattering process.” These matrix elements
are written

_gl(jt)z((Jcs)Jcsllg(jt)!JOjr'_:1)'

The formulation in terms of S matrix elements de-
rives from the original treatment® which is designed
for a class of reactions more general than photo-
processes. The formulation in terms of j, exploits
the incoherence of the angular momentum trans-
ferred between unobserved reactants to represent
the differential cross section by separate charac-
teristic contributions for the various j;. On the
other hand, photoionization calculations are con-
veniently done in terms of the more familiar re-
duced dipole matrix elements, rather than S matrix
elements, characterized by the total angular mo-
mentum J of the process, rather than the angular
momentum transfer j,. Two steps are required to
establish the connection between the amplitudes

§, (7;) and the reduced dipole transition amplitudes.
First, the connection is given between the scatter-

(24)
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ing amplitudes §;(j,) and S matrix elements?®
S, ()= (T 8 )W, 41| SW)| Tpdp=1), (25)

characterized by the total angular momentum o of

the whole system. Then the scattering amplitudes
S;(J) are expressed in terms of the usual reduced

dipole matrix elements®®

PiI= (I s)ol, I = || P |) (26)

normalized with the incoming-wave boundary con-
ditions (denoted by the minus sign) that are appro-
priate to photoionization,

The amplitudes S, (j,) and S, (J) are shown in Ref.
9 to be related by the recoupling expansion

((Jcs)Jcsllg(jt)lJojr= 1) =27 (= 1)o7 1274+ 1)
J

1 J, J .

x{ g1 jt} ()Wl [ S| odp=1).  (27)
The connection between the amplitudes S,(J) and

P)(J) is found by comparing the alternative ex-

pressions™ for the photoionization cross section
given in terms of these amplitudes by

o=4mraliw(2Jdy+ 1)1

X E Z} |(JcMc’ S, lma" lPEnl.,]'JOMO)Izy
MopmMg 1 (283)
0=3m3(2Jy+1)!

X2 u I(JcMc’ S, lmISIJoMOajrmr)lz

Mc“"”‘M(] 1
(28b)
In (28) the summations over m quantum numbers
and the factor (2J,+1)! arise from averaging over
the initial magnetic substates and summing over
the final magnetic substates and spin polarizations.
Using the expansions®

(JcMc’ Su, lmy - |P15117,]|J0M0)

= 20 @I+1YY3 (g M., sp, m| (T s)M, L, IM)
Tesd

X (T Wosl, J= | [P WTo) oM | Iy My, 5m,)

. (29a)
(JcMc» SK, lmIS(J)| JOMOyJme)

= 20 UM, su, lm|(J,s)d,,l, JM)

I esy
X((J,8 Wl | S@) | o3 )M | Jg My, 5,m,), (29b)

and the symmetry and orthonormality of the Wigner
coefficients, '* the summations over m quantum
numbers can be carried out to give

o=4makw@2Jy+1)!

X 2, [(@8) Tl 7= |[PIY|gy)[2,  (30a)
Tes

o=mx2Q2J,+ 1)
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x 2 @T+1)| (s Wl |S@) | Tpiy=1)|2.
e (30b)
Comparison of the two expressions (30) gives the
desired connection,

((J,8) T L| SW)| Ty jy=1)
=n(X)2 T+ 1)V2((J,8) T4, - |[P|7,), (31)

n(A ¥ = ar’aliv/3m2 . (32)

For the xenon example we have J; =0, and there-
fore J is restricted to the single value J=3,=1 and
J,s=j;. Accordingly, substitution of (31) into (27)
gives

((J,8) I =342 |S(5) | =0, j,=1)
=n(R)(27, + 1)2(= 1)!¢

X((Ie8)Tog=diel, T=1- [|[P[Jg=0),  (33)
for the connection between the amplitudes §,(j,) and
Pi(J=1).

Before proceeding to the evaluation of the ampli-
tudes Pi'3(J), it is important to note one new aspect
of the expansions (29), not included in the corre-
sponding expansion equation (5) or Ref. 9. This is
the explicit account taken here of the photoelectron
spin. This introduces an additional summation
over the total unobserved final-state angular mo-
mentum J,,. ¥ With this additional feature, the
whole analysis of Ref. 9 carries through as before
with the following additional result., The final-
state angular momentum J, is incoherent in both
the differential and integrated cross section, just
as j,; is incoherent, since the orientation of the core
(M,) and the spin polarization of the photoelectron
(1) are unobserved, and do/d must be summed
over all possible values of J,, [compare (30)]. This
means that the expressions given in Sec. II for ¢
and o8 must in general be summed over J,. Often,
however, as for the xenon example and, as we
shall see, for the mercury example as well, only
a single value of J,_  occurs.

Evaluation afP; '1(J) by MQDT

A fundamental concept of the MQDT is the resolu-
tion of the ionization process into an initial photon
absorption and the photoelectron’s subsequent in-
teraction with, and escape from, the target. These
two aspects of the process contribute different
characteristic elements to the ionization dynamics.
Photon absorption occurs inside the atom and is
characterized by real transition amplitudes

D = (aJ=1||P1|| 7, =0) (34)

connecting the atomic ground state to close-coupling
eigenstates (a| which depend on the electron-core
interaction at short range. [These eigenstates

(al, with standing-wave normalization, are dis-
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cussed in Ref. 8(c).] Electron escape, on the other
hand, probes the effects of long-range interaction,
in particular, the temporary retention of the elec-
tron by the 2Pj, ion to form autoionizing states.
The electron escape is characterized by the eigen-
channels (p| of elastic scattering of the electron

by the xenon ion in the Pj, level in the range of
electron kinetic energies € <Iy;; ~ I3, =1.43 eV, with
the whole system having angular momentum J=1
and odd parity. Retention of the electron in an
autoionizing state through excitation of the ion from
the 2P;, level to the 2P, level, causes the elastic
scattering phase shifts 77, to experience a pro-
nounced spectral variation that is the earmark of
multichannel resonance. This energy dependence
is described below and discussed in detail in Ref.
8(c). It constitutes a central aspect of the MQDT
treatment [see especially Fig. 2 of Ref. 8(c)]. In
essence, the sum of the phase shifts 77, for all
channels (p! undergoes a net increase of 27 for
every unit range of v,.,, i.e., every time the ener-
gy passes through the combined Beutler—Fano pro-
file of the two (ns, n’d)— (es, ed) autoionization
resonances,

The dipole matrix elements P}!’ are expressed
in terms of the amplitudes D, in two steps. First,
the final states ((J,s)J,¢l, JI, with standing-wave
normalization (i.e., without the “minus” quantum
number) are expanded into the elastic-scattering
channels (p! and then re-expanded in terms of the
close-coupling eigenchannels («!. This represents
real dipole transition amplitudes as

(T )l =1]|PH] |7, = 0)
=27 ()Wl p)p|a)D, , (35)

in terms of 7eal transformation coefficients (J,llp)
and (pl ). Next, the change is made from stand-
ing-wave to incoming-wave normalization through
multiplication by the phase factor

expli(oy;,— slr+w7,)]=i" expli(o;,,+ 77,)]. (36)

In (36) 0y, is the Coulomb phase argD(l+1-1i/k),
which is determined by the electronic orbital mo-
mentum ! and kinetic energy e(a.u.)=3%? in the J,
=% channel. The result is then

((Jcs)Jcsly J=1- HP[””JO:O)
citet1ae T ((U,s)Jol|p) e ™e(pla) Dy . (37)

In the Appendix it is shown how the various elements
of this expansion—the transition amplitudes D,, the
transformation matrices (pla) and (Jllp), and the
phase shifts 77,—are determined in terms of the in-
teraction paranmeters of the MQDT. These inter-
action parameters in turn have been determined for
our purposes by C. M. Lee®® and are tabulated in
the Appendix., Also, in the Appendix a simple
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method is given for the evaluation of the Coulomb
phase shift differences o0y,,,— 0; ;-1 Which occur in
the interference term of B(j;)say.

The spectral variation of the phase shifts 77, de-
termine the resonance pattern of both the integrated
cross section o and the asymmetry parameter B.

As outlined in the Appendix, in addition to the ex-
plicit dependence on 7, in (37), both sets of trans-
formation coefficients, (J,!lp) and (pl @), depend
on the 7, through functions sinw7, or cosn7,. The
dipole transition amplitude (37) contains the addi-
tional multiplicative factor ¢'"™, and is therefore
invariant to the transformation 7,~7,+1. Now
each 7, is a strongly nonlinear but monotonically
increasing function of v,,. This functional depen-
dence is characteristic for each p. Under the
transformation v, —~ v,/ +1, the curves 7,(v, ) for
different p permute among themselves such that the
same set of curves occurs for each unit range of
vi2. Two of the 7, curves will be shifted upward
by 1 in the permutation, corresponding to the net
increase by 27 in the elastic-scattering phase shift.
But each shift by 1 leaves (37) invariant. Further,
since (37) is summed over all p, the permutation
merely amounts to interchanging terms of the sum,
and therefore the permutation also leaves (37) in-
variant, We therefore obtain the fundamental re-
sult that the dipole transition amplitude (37) is in-
variant under the transformation v = v, +1, €x-
cept for the slight energy dependence of the Coulomb
phase.

This invariance accounts for the periodicity of the
Rydberg series of autoionizing levels. The period-
icity is exact in the integrated cross section, for
which the Coulomb phase effect vanishes altogether
because of the incoherence of the transition ampli-
tudes for alternative orbital momenta . Further,
the Coulomb phase effect is small in the asymmetry
parameter for low v, and becomes rapidly negligi-
ble as v/, increases, owing to the corresponding
rapid decrease in the change of electronic kinetic
energy per unit range of v,;,. That is, the reso-
nance profiles in B are themselves very nearly also
periodic in v, with period 1.

The amplitudes for transitions into the channels
(o] superpose coherently in the angular distribution,
and the resulting interference terms are propor-
tional to cos(o,— o+ 77, — 77,). These interference
terms vanish in the integrated cross section (see
Appendix) but they cause the angular distribution to
contain information not present in the integrated
cross section, This circumstance is especially im-
portant to the theory for the following reason: The
semiempirical fitting procedures used by Lee®?
and earlier by Lu,?® based on photoabsorption (in-
tegrated cross section) measurements, have en-
countered difficulties which have prevented, so far,
the unambiguous determination of all of the interac-
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tion parameters of the theory. Independent infor-
mation contained in measured angular distributions
should help in removing these ambiguities. Con-
versely, however, it should be kept in mind that the
measured spectral variation of 8 may differ from
the results given here, owing to these uncertainties
in the values of the semiempirical interaction pa-
rameters utilized in this paper. Nonetheless, these
differences should be minor. The gross features
of the B resonance will remain.

Results for Xenon

The results are given graphically in Fig. 1 for
one unit range of v,/ from v,;,=3.5 to v,;,=4.5,
corresponding to the range of photoelectron kinetic
energies 0,196 <e¢ <0.635 eV, Figure 1(a) gives
the integrated cross section ¢, The broad maximum
peaking at v,,,~0. 75 (modulo 1) is due primarily to
autoionization of 5d5(2P;’,2)nd. The autoionization
of 5d°(P; ) ns is concentrated at the “s resonance ”
on the high-energy shoulder of the broad peak at
v12~0.975, As an index of the strength of parity-
unfavored ionization, the ratio

r=0(1)/[0(1)+ 0(2)]

is plotted in Fig. 1(b). This ratio could range be-
tween 1 for fully parity-favored (j,=1) ionization,
and zero for fully unfavored (j,=2) ionization.

Since s waves contribute only to (1), # is also an
index of the relative strength of s- and d-wave
ionization. Finally, in Fig. 1(c) the spectral varia-
tion of the asymmetry parameter g is plotted, show-
ing a pronounced resonant structure in the photo-
electron angular distribution.

The spectral variation of B8 shows two striking
features as vy, increases: There is first a broad
dip (width =0.1 eV) toward 8=-1 (j,=2), and then
a rapid oscillation (width =0.06 eV) across the s
resonance in the integrated cross section. This
behavior can be understood qualitatively when
viewed with the corresponding spectral features of
oand . The broad minimum in g at v,;,~0. 64 oc-
curs when the photoelectric current is a minimum,
Further, s-wave ionization is negligible in this re-
gion, and the minimum of B is paralleled by a cor-
responding minimum of ». Then, as the photoelec-
tric current rises and passes through the broad d-
resonance maximum in o, parity-favored d-wave
ionization increases, resulting in an increase of »
and a corresponding increase of g away from — 1,
In the region of the s resonance the coupling be-
tween the s- and d-wave ionization channels pro-
duces sharp variations in the relative contributions
of s- and d-wave ionization. These variations are
reflected in the rapid oscillation of B across the s
resonance: First, immediately below the s reso-
nance, s-wave ionization is depressed and d-wave
ionization is enhanced, resulting in a sharp rise of

(38)
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FIG. 1. Plot of xenon autoionization cross section and

photoelectron asymmetry parameter resonance for one
unit range of v;5. (a) Integrated cross section o=¢(1)
+0(2); (b) dimensionless cross-section ratio o(1)/o; (c)
asymmetry parameter 8. Note the breaks in the ordinate
scales, and the nonlinear scale of electron kinetic energies

B away from the s-wave value B=0, and a corre-
sponding dip of ». Then, s-wave ionization rapidly
increases to a peak at the s-resonance maximum,
sending B near 0 and » toward 1. Finally, on the
high-energy side, s-wave ionization drops off once
again, 7 drops and levels off, and B rises to a
smooth plateau.

This cycle will repeat periodically in v, ,, with

RESONANCES IN PHOTOELECTRON ANGULAR DISTRIBUTIONS

1983

period 1, up to the threshold of the 2P}, level. The
Coulomb phase interference term causes B(v,;,
=3.5) to differ from B(v,,=4.5) by 0.3.

An analogous B resonance occurs in all of the
rare gases, and in fact the calculations also have
been performed for argon, showing results similar
to those for xenon. The xenon example is given
here since xenon has the broadest resonances and
therefore is a good candidate for experimental veri-
fication,

As pointed out in Sec. II, resonances in B are to
be expected, in general, whenever autoionization
occurs. Indeed, going to higher photon energies
the rare gases provide another example of this ef-
fect, in the region of nsnp®CS, ) n'p — ns?np®(?P°)

% [es, ed] resonances of the Rydberg series con-
verging to the nsnp®2S, ;, level of the rare-gas ion,
These resonances have not been sufficiently well
resolved by photoelectron spectroscopy to map the
resonant structure of B, but evidence of the effect
is already apparent in the measurements by Codling
and Mitchell® for argon and in the recent results of
Van der Wiel and Brion'® on neon.

B. Autoionization in Mercury

As a further example consider the photoionization
of mercury below the first excited state of the mer-
cury ion. Production of the ion ground state,

Hg(5d'%6s® 1Sp)+v(j,=1, my=~1)

- Hg*(5d%s 2S,p)+e(l=1), (39)

has an ionization potential of 10, 43 eV. Embedded
in this ionization continuum are autoionizing Ryd-
berg levels 5d°6s2(2D)np and 5d°6s?(D)n’f converg-
ing to the first excited term 5d°6s?(D) of the ion. !’
The lower level 2D s of the doublet has the ioniza-
tion potential 14, 83 eV, and the spin-orbit interac-
tion raises the 2D;, level 1,87 eV higher. Auto-
ionization occurs between these fine structure 2D
thresholds, analogous to the xenon example, but
here we consider rather autoionizing levels in the
4.43-eV spectral range between the %S, , and 2Dg,
levels of different terms.

This first autoionization region provides a striking
example of the theory. Owing to parity and angular
momentum conservation, the electron must leave
the atom with the single orbital momentum /=1,
The Cooper~Zare formula! then predicts that the
electron is ejected with full anisotropy, i.e., that
the angular distribution is fixed at cos?6 (8=2), in-
dependently of dynamics, throughout the whole
spectral range. Actually, this will be the case only
if the spin of the photoelectron and the net spin of
the rest of the atom remain coupled into a singlet
through the ionization process, for only then must
the electron necessarily carry away the full anisot-
ropy of the photon-atom interaction. If ionization
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proceeds through autoionizing levels in which the
spins are coupled into a triplet, then the angular
distribution can be depolarized by the unobserved

nonzero spin'® and B can deviate from 2.
The angular-momentum-transfer analysis of the

ionization reaction provides the quantitative basis
for these ideas. Since J,=0 and J,=S,=3, the
angular momentum transfer (2) becomes for this
case

Je=8,+8. (40)
Thus the allowed angular momentum transfers are
B=2),
je=1 (parity unfavored, g=-1).

j:=0 (parity favored,
(41)

If the spins remain antiparallel, then only j,=0 can
occur and from (6), 8=2 as predicted by the Coop-
er—Zare formula. On the other hand, j,=1, with
B=-1, arises because spin-orbit forces disturb
this singlet coupling. The observed asymmetry pa-
rameter is [cf. (6) and (8)]

B=[20(0) - 0(1)]/[0(0)+ o(1)], (42)

which ranges from B=2 (cos?6) for fully-parity-
favored ionization, to f=-1 (sin®) for fully-parity-
unfavored ionization., From (9) and (10) the inte-
grated cross sections are given by

0(0)=425,(0)|2,
o(1)=3m2|5,(1)[2.

However, from (33), thematrix elements S, are di-
rectly proportional to the corresponding reduced
dipole matrix elements P5'?, and the angular dis-
tribution depends only on the ratio of p-wave ioniza-
tion with j,=0 or j,=1. This dependence is con-
veniently characterized by a strength parameter

_ |P§1(0)12— | PEMI(1)12
S = TR(0)1Z+ [PET(1)IZ

which ranges from s =1 for fully-parity-favored
ionization, through s =0 for equal intensity with
js=0and j, =1, to s=—1 for fully-parity-unfavored
ionization. In terms of s the asymmetry parameter
(42) becomes

B=%(33+1)1 (45)

i.e., B=2fors=1, B=3%for s=0, and B=-1 for
s=-1.
Niehaus and Ruf® have measured B at two closely

(43)

(44)

J

a= 1 , 2
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spaced energies in the 25, 2= 2Dy /2 Spectral region,
using the ArI doublet resonance lines at 11,63 and
11,83 eV. The lower line falls on the high-energy
shoulder of the autoionizing level [5d°CD;,,)652]
X6p35 °D5 for which the electron and core spins are
coupled into a triplet. ® At this lower energy they
find B=1.25+0.1, corresponding to s=0.5. At

11. 83 eV they find 8=2.13+0. 1, corresponding to
s=1.0. [For dipole ionization 8 can be no larger
than 2 and therefore this latter value may reflect
experimental uncertainty, ] Over an energy range
of 0.2 eV the strength parameter changes by a fac-
tor of 2, This indicates that indeed parity-unfa-
vored ionization is substantial in this autoionization
spectral region. It would be very desirable to fully
map the spectral variation of B throughout this
range,

IV. CONCLUSION

Resonant structure in photoelectron angular dis-
tributions is predicted to be a general feature of all
atomic and molecular autoionization resonances.
These B resonances are sensitive probes of atomic
and molecular dynamics. They can determine the
cumulative effects of forces that might go undetected
in direct ionization., Owing to the interferences
present in all angular distribution measurements,
the measured B spectra contain new and independent
dynamical information not available in integrated
cross sections., The experimental investigation of
these angular distribution resonances is an essen-
tially untapped and rich resource of information for
chemical physics.

ACKNOWLEDGMENT

I am grateful to Professor U. Fano for valuable
discussions and for his encouragement,

APPENDIX
MQDT Interaction Parameters

The reduced dipole matrix elements (37) are
evaluated for xenon in terms of the following inter-
action parameters, which have been obtained by
Lee.%? (i) One set of parameters consists of
five real dipole transition amplitudes D,. The
quantum number « of the close-coupling eigenchan-
nels runs from 1 to 5 and corresponds approximate-
ly to the five LS channels of the electron—ion-core
system at short range, with J=1 and 7=~ 1:

3 , 4 5
(A1)

LS channel = p°d °DY, p%d P, p°d 3PS, p% °P9, p’s 'PS.

The values of D, normalized per unit energy range in atomic units, are
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D,/V3=-0.28462, 4.09991, —0.50779, —0.03106, 1.83506 .

The factor 1/V3 in (A2) is necessary because the
D,, as defined here by Eq. (34), are rotationally
invariant matrix elements of », whereas Lee®®
and Lu®‘® define the D, as matrix elements of z
[see Eq. (2.4) of Ref. 8(c)]. The two definitions
are made equivalent through multiplication by
{(z/r@)?=1/V3. With this normalization, the unit
of cross section mZn(4)? [see Egs. (20), (21), (32),
and (33)] is determined by setting )\":Ia,z, since
the MQDT interaction parameters are assumedto be
constant throughout the autoionization range from
Iy to 1,59 This gives m%n(4;.,)? = 3.6 Mb.

(ii) Another set of parameters consists of five
close-coupling eigenphase shifts mu,, or the equiv-

1985
3, 4 |, 5
(A2)
I
alent quantum defects
a= 1 , 2, 3 , 4 5

ke =0.360, 0.120, 0.560, 0.040, - 0.007.
(A3)
(iii) The last set of parameters forms the 55 or-
thogonal transformation matrix

Ui = (J,(s)j | )Y, (A4)

connecting the close-coupling eigenchannels (aJ|
to the asymptotic jj-coupled dissociation channels
(J,(Is)j, JI. In (A4), the quantum number i of the
dissociation channels is given by

i= 1, 2 3, 4 5 3
jj channel=2Pdsp , *Pipdsss, *P3pSies “Piadsp s “PirSire - (A5)
The transformation matrix is
o= 1 2 3 4 5

i=4| 0.67094 0.65800 0.34073 -0.00514 0.02744

1/ -0.36223 0.69301 -0.62240 -0.00545 =-0.03342
U= 2|-0.64673 0.29448 0.70336 -0.00230 0.01741 (A6)

5/ 0.01115 0,00640 0.02454 0.81549 -0.57810

3]-0.01573 0.00451 -0,03462 0.57871 0,81463

and is published here for the first time, 8®

Evaluation of Dipole Transition Amplitudes

Using these interaction parameters, the elements
of the expansion (37) are determined as follows:
From (A5) we see that there are three elastic-
scattering eigenchannels (p| open below I, ;. The
corresponding phase shifts 77, are determined for
each value of v,,, as roots of the cubic equation ob-
tained by setting to zero the determinant of the
linear system [Sec. IIIA of Ref. 8(c)]

3
2 l:— cotm(vy s +T,)d,

=1
i=1,2,3.
(A7)

The transformation coefficients (pl &) which connect
the elastic-scattering channels (p| to the close-cou-

5
+( 23 Uy cotm(vyys + Ba)Us;y )} ¢=0,
a=1

[

pling channels (al is expressed in terms of a vector
A [defined in Ref. 8(c)] by
(|la)=A4/N,, (A8)

where N, is 2 normalization factor given below.
The vector A is determined from the system of
equations [Eq. (3.23) of Ref. 8(c)]

22U sinm(py — 7,)Aq =0, i=1,2,3. (A9)
o

The transformation coefficients ((J,s)J .l p) are
given by
(Ves) s =l | )
=23 ((J,s)d o =dsl|i= 0 (s)§) 7Ty, /N, ,
i

(A10)
in terms of the geometrical transformation coeffi-
cient
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((8) s =52 | (15 )7) =0
1 lj
— (e 1V cHi*1(05 1/2 (o 1/2)2
=(=1)7e¥* 125+ 1)3(25,+ 1) {1 7,7,
(A11)

of the dynamical transformation T,,, given by [see
Eq. (3.21) of Ref. 8(c)]

T1o=20 Ujgcosm(py—7,)As, i=1,2,3, (A12)
[+
and of the normalization factor N,, given by
3
No=2 |7y (A13)
Incoherence of Channels p in the Integrated Cross Section

The integrated cross section is proportional to

22| P, G)l2. (A14)
it

But, owing to the orthonormality property
E (p'IJcs =jtl)(Jcs :jtllp')zépp' ’ (A15)
14

(A14) is incoherent in the transition amplitudes for
the alternative channels p, i.e.,

z Ip,(j,>|2=§( ).

This result corresponds to Eq. (3.25) of Ref. 8(c).

(A16)

27 Ay D,
[+3
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Evaluation of Coulomb Phase Shift Differences

The Coulomb phase difference ¢;— o, which oc-
curs in the interference term of the asymmetry pa-
rameter (22) can be conveniently evaluated using
the following algebraic scheme which derives from
Bethe. ! The difference o,,,— 0, can be repre-
sented as the angle of a right triangle whose adja-
cent side A, opposite side O, and hypotenuse H are
given by

A=jt(j¢+ 1)— (Z/k)2 9
0==(z/k)2j,+1),
H={[(j,+ 1P+ (2/kR][72+ (z/RR ]} 2,

where the ionic charge is Z and the photoelectron
kinetic energy is € (a.u. )= 3%k%. These relations are
exact and therefore valid for all values of k%, Thus,
e.g., cos(o;~ o) for the xenon example (Z=1) is
given by

cos(o,— 0,) = (2k% = 1)/(4k* + 5% + 1)1/2

(A17)

(A18)

and is seen to increase monotonically from -1 at
k=0to +1 at k=, This treatment of Coulomb
phase differences is simple and bypasses the nu-
merical errors which may occur when the phase
shifts are first calculated separately as arguments
of the complex I function and then subtracted.
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Elastic total and spin-exchange cross sections are computed for electron scattering by Li, Na, and K,
for energies below the first excitation threshold. The method used is the variational form of solution of
continuum Bethe-Goldstone equations. Results are in substantial agreement with close-coupling

calculations and with recent experimental data.

I. INTRODUCTION

This paper presents results of variational calcu-
lations of electron scattering by Li, Na, and K at-
oms in the low-energy region, below thenyp excita-
tion threshold for atomic ground-state configura-
tions n#ys. The method has been described in suf-
ficient detail elsewhere,! and will not be repeated
here. Variational equations are solved equivalent
to the continuum Bethe—Goldstone equation for the
incident and series electrons in electron-alkali-
metal-atom scattering.? The method is similar to
that of Harris and Michels.® The specific varia-
tional formalism used here isthe “optimized anom-
aly-free” (OAF) method. *

Detailed close-coupling calculations of low-ener-
gy-electron scattering by alkali-metal atoms have
recently been published. °*®* The present results,
using quite different methodology, essentially con-
firm these close-coupling results, while providing
a test of the new methods used here. Only the low-
est-order phase shifts have been computed (L=0, 1,
2 for singlet and triplet states). The results ob-
tained indicate that in the elastic scattering region
higher-order phase shifts would simply duplicate

results already obtained by close-coupling calcu-
lations or by the polarization formula used by
Moores and Norcross for L= 8,

Theoretical and experimental results on elec-
tron—-alkali-metal elastic scattering have been re-
viewed by Bederson.” Recent literature is dis-
cussed by Moores and Norcross.®

II. CHOICE OF BASIS FUNCTIONS

In a previous publication! we have described an
investigation of the relative convergence properties
of two methods of choosing basis functions for lin-
ear expansion of the variational wave function.
Radial orbital basis functions are of the form

by=Nr"'e™"Y,,(6,0) . 1)

With the e”+ He problem as atest case, two methods
of choosing basis functions were examined: (i) a
sequence of exponents ¢ in decreasing geometric
progression for fixed », complemented by an in-
creasing arithmetic sequence of exponents for the
same index n, (ii) a sequence of exponents ¢ in
incrveasing geometric progression for fixed », com-
plemented by a sequence with fixed & and increas-
ing powers n. It can be shown that both methods



