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A general formalism is presented for the description of elastic scattering of electrons from
hydrogenlike atomic systems. The total wave function for the two-electron system is put forth as a
multiconfiguration expansion in terms of suitably normalized orthogonal orbitals. These radial orbitals, as
well as the coefficients of the expansion, are determined variationally via a system of coupled °
integrodifferential equations. The formalism is applied to the calculation of elastic electron-hydrogen
scattering in the energy range below the first resonance for the 'S state of the two-electron system.
Accurate phase shifts are obtained with short expansions, as the newly introduced orbitals obtained by
numerically integrating the integrodifferential equations account quite adequately for short-range

correlation.

INTRODUCTION

Phase-shift calculations for the elastic scatter-
ing of electrons from one-electron atom or ion
targets have been carried out by many workers. !
The approach generally taken is to calculate an ap-
proximate total wave function of definite total angu-
lar momentum, parity, and spin. Such wave func-
tions, called partial waves, represent standing-
wave stationary-state solutions to the Schrddinger
equation for a continuum state of the system con-
sisting of the target atom (or ion) and the scatter-
ing electron. The partial wave contains an “open-
channel” term consisting of an antisymmetrized
product of the ground-state wave function of the
target with an “open-channel orbital ” used to de-
scribe the scattering electron, as well as a “bound
part” which is square integrable in both electronic
coordinates in the usual way. The open-channel
term is, of course, not square integrable as the
scattering orbital has sinusoidal dependence for
large argument.

The scattering orbital is expressed in one of two
ways. Some workers? use an analytic expansion in
terms of known functions wherein the coefficients
of this expansion, including the phase-shift param-
eter, are determined variationally via a system of
linear algebraic equations. Other methods® allow
complete variational freedom for the open-channel
orbital and determine it via an integrodifferential
equation. These latter methods have the additional
advantage that, when properly formulated, they
yield approximate phase shifts which are rigorous
lower bounds to the true phase shift,*

The bound part of the partial wave plays a par-
ticularly important role in the description of cor-
related electronic motion which takes place in the
vicinity of the target, and the most accurate phase-
shift calculations to date employ wave functions for
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which the bound part depends explicitly upon the in-
terelectronic separation.® This dependence is
chiefly responsible for the high accuracy obtainable
using such wave functions, yet, at the same time,
it presents serious obstacles to calculations of
electron scattering phenomena involving many-
electron target atoms. This situation has led other
workers, even in the case of scattering from atomic
hydrogen, to express the entire partial wave solely
in terms of products of one-electron functions. ®
These expansions are generally less efficient in
terms of the expansion length needed to achieve a
desired level of accuracy in the phase shift, yet a
method of this type can be adapted with relative
ease to problems involving scattering from more
complex targets.’

Perhaps the most attractive of the methods which
employ one-particle functions exclusively is the
“close-coupling ” technique,® where target eigen-
states in excess of that needed to construct the
open channel term are used with square-integrable
“closed-channel orbitals ” to construct the bound
part of the partial wave. Hence, in the close-
coupling method, the bound part is expressed in
complete analogy with the open-channel term and
the individual terms of the bound part are called
“closed channels. ” This method is directly ap-
plicable to problems involving inelastic scattering
and it is especially suited to describing the opening
up of a new scattering channel. Moreover, the
phase shift obtained from the close-coupling wave
function is a rigorous lower bound to the true phase
shift, °

In view of the many strong points of the close-
coupling technique, it is most unfortunate that, ex-
cept for very low scattering electron energies, the
accuracy obtainable through its use is rather lim-
ited, This situation stems chiefly from the fact
that the target eigenstates used to build the closed-
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channel terms are not spatially compact enough to
allow an adequate description of close-range cor-
relation. Attempts have been made to modify the
close-coupling scheme by replacing some of the
target eigenstates by other functions which are
more compact spatially. Calculations of this type,
called “pseudostate ” calculations, have been car-
ried out by Burke, Gallaher, and Geltman, ! in the
case of electron scattering from atomic hydrogen,
using “pseudostates ” derived by Damburg and
Karule, ! which account for the ground-state po-
larizability of the hydrogen atom. Their results
indicate that the use of spatially compact pseudo-
states markedly improves the accuracy of the
close-coupling scheme. Moreover, the desirable
property of providing rigorous lower bounds on the
phase shift is retained.

In the pseudostate calculations mentioned above,
as well as in all close-coupling calculations, the
open- and closed-channel orbitals are variationally
determined by a system of coupled integrodifferen-
tial equations. The pseudostates, however, like
the target eigenstates characteristic of the close-
coupling method, have not been permitted to take
part in the variational process. Seaton'? has sug-
gested that the pseudostates be determined on the
same footing as the closed-channel orbitals. In
the simpler problem of the elastic scattering of
positrons from atomic hydrogen, Ruffine!® deter-
mined a pseudostate variationally. In Ruffine’s
calculation, one closed-channel orbital and one
pseudostate were determined along with the open-
channel function by a system of differential equa-
tions. The results he obtained for the phase shift
were quite good in comparison with calculations
where full variational freedom was not permitted
for the pseudostates. "

Another class of methods, which have been ap-
propriately called “hybrid ¥ methods, !* append to
a close-coupling wave function of one or several
terms, an additional expansion in terms of known
functions. In these methods, the open-channel
orbitals and any closed-channel orbitals which may
be present are determined from a system of inte-
grodifferential equations, and a set of linear alge-
braic equations furnishes the coefficients of the ex-
pansion. In such calculations, the lower bound
property of the phase shift is retained. Burke and
Taylor®® have used a method of this kind to combine
the high accuracy of the Hylleraas—type expansion
involving explicit dependence upon the interelec-
tronic distances with the advantages of close cou-
pling. Their method, which is in many respects
ideal, is, unfortunately, not easily adapted to
problems involving more complex target atoms.
Gailitis, '® using a single close-coupling term, has
performed similar calculations wherein the ap-
pended expansion does not make use of explicit de-

pendence on the interelectronic separation, and,
for that reason, is less efficient than that of Burke
and Taylor in terms of expansion length.

In this paper we present a method in which we
append to the requisite open-channel term, a
bound part consisting of a multiconfiguration ex-
pansion using a set of orthonormal orbitals. These
orbitals are allowed to participate fully in the vari-
ational process. They are determined along
with the open-channel orbital and the coefficients
of the expansion by a system of coupled integrodif-
ferential equations. The wave function so obtained
can be written in the form of a pseudostate expan-
sion in which the pseudostates are variationally
optimal. Using this method, we have numerically
integrated the equations for the 'S state of the e-H
system in the energy range below the first reso-
nance, obtaining optimal orbitals and accurate
phase shifts which are rigorous lower bounds to
the true phase shift. The expansions are quite ef-
ficient with respect to the number of orbitals
needed to achieve a desired level of accuracy.
Close-range correlation is accounted for quite
adequately as most of the orthonormal orbitals are
large only in the neighborhood of the target. Po-
larization effects are automatically exhibited by
the orbitals since the asymptotic behavior of the
optimal orbitals is, in general, of a damped oscil-
latory character. The orbitals are, of course,
energy dependent and as the scattering electron’s
energy approaches the threshold for target excita-
tion, some of the optimal orbitals automatically
assume the form of hydrogenic eigenstates. The
method can also be viewed as an application to
scattering problems of the multiconfiguration
self-consistent-field method used with much suc-
cess in bound-state atomic calculations,

FORMALISM

We consider the calculation of those continuum
states of a two-electron system which describe a
situation where one of the two electrons remains,
on the average, in the vicinity of the nucleus with
charge Z. The system is described by the usual
nonrelativistic spin-independent Hamiltonian op-
erator (in atomic units),

== 3V IV Z =y Z vy (1)
Here, 7, and 7, are, respectively, the distances
of the two electrons from the nucleus and 7, is the
interelectronic separation. The motion of the
nucleus is neglected.

We wish to calculate ¥, ¢z(T;, T;), which is the
spatial part of the total two-electron wave func-
tion; it is to be 'understood as a real standing-wave
solution of the Schrddinger equation:

3C¢LMSE (?'1, Fz):Ez/)LMSE (Fl, Fz) ) (2)
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where E is the fixed and given total energy of the
system.

The invariance properties of 3C with respect to
rotations and inversions as well as exchange of the
electronic coordinates imply that ¥;,5z, as is in-
dicated by its labels, can be chosen to be an eigen-
function of the square of the total orbital angular
momentum operator and of its z component, with
eigenvalues L(L +1) and M, respectively. The
total spin quantum number S determines the sym-
metry of §;, sz under coordinate exchange. When
either of the coordinates T, or T, become large, the
partial wave must “dissociate ” into a product form
consisting of the target ground state multiplied by
a scattering orbital describing an electron of defi-
nite angular momentum, This implies that the in-
version symmetry of ¥,z is completely deter-
mined by the total orbital angular momentum quan-
tum number L, Thus, only the “normal” spectral
terms, which are the only ones occurring in one-
electron spectra, are permitted. Wave functions
of the opposite parity are excluded.

In the description to follow, considerable use
will be made of the angular functions defined by’

Yii10(Qy, 92)222 Cci, 1’ Lym,m', M)
m m

X th(91)Yl'm' (92)1
~-L<MSL 3)

where the Y,,,(R) are ordinary spherical harmonics
and the C(l, 7', L; m, m’, M) are Clebsch—Gordan
coefficients. The permissible pairs (I, 7’) used

in the specification of the Y,;;. are given by the
set

U, ={(l,1") such that I+1’is even

and [1-1"|<L<1+1'}. (4)
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These pairs lie within and on the boundaries of the
region of the I, 7’ plane bounded by the lines

1+1'=L,
I-1'=1, (5)
1'-1=L,

Pairs satisfying Egs. (5) yet excluded from U,
because I+’ is odd lead to angular functions with
“abnormal ” parity behavior. These ideas are il-
lustrated in Fig. 1 for L=0, 1, 2,

The total wave function can be expanded accord-
ing to

Yruse @1, Tg)= (ry,) 1 20 @1 55,1071, 72)

XY 1110 (R4, @), (1, 1")ev,. (6)

The biradial functions @ ;¢ ;;- can easily be shown
to satisfy

B rspue (1), 72)= (= 1)5® 1510y (7, 71). (7)

The asymptotic behavior of ¥ y¢, is summarized
in the equations

Yruse (1:1 ’ ;z )= (7’1"’2)-19913 1)Prr (73)

XY yor (R, ), 73—
(8)

l!)LMSEGU ?z)z(" l)s("’ﬂ’z)-lqou, (1’1)9913(1’3)
XYpyzo (@1, &), 7~

where @,,(r) is the hydrogenic ground-state orbital

‘P1s(7’) =978%/2)0-2r 9)
and
O )= Asinlkr+ k™ (Z-1)Inr +9], 7=, (10)

The function ¢, () is the scattering orbital; A is
the amplitude, usually taken to be unity, % is the

7’ VEd 4
7 7 € 7 ©
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5 5 D 5 & ©
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3 3 © 3 © ©
2 2 D 20— ©
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L=0

FIG. 1.

L=l

Permitted pairs used in the construction of the angular two-particle functions Y, (Qq, Qy), illustrated for

L=2

L=0, 1, 2. Points indicated by @ are used for the “normal” terms for which ®Y ;= (~1)£¥;,,,.. Points indicated
by O are used for the “abnormal” terms for which ®¥ ;.= (~1)¥y,,. ..
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wave number defined by

%k2+els=E,
1)
€15=— %Zz ’

and 7 is the phase shift.

The indices LMSE, being good quantum num-
bers, are constant for a given calculation; hence
we suppress them on both ;¢ and Uy, writing,
in view of Eqs. (6) and (7),

Zp(fn Fz)= (717'2)-12‘1’11' (ry, 72)Y 1,0 (Ry, ),
x(,1Nev  (12)

B,10(ry, 75)=(=1)5®,0,(v5, 7). (13)

We turn now to the detailed consideration of the
functions ®,,.(r,, 7,). In practical calculations we
use, instead of the infinite set U, a finite subset
[v]Cv which is arbitrary except that if (Z, ') is in-
cluded in it, so also is (I, I). For this chosen
subset [V], we propose to determine the functions
®,,;. variationally.

Since the set [V ] contains a finite number of
pairs (I, 1), it will be convenient to introduce the
running index v which is in one to one correspon-
dence with the pairs (I, I ") belonging to [V]. This
correspondence can be set up in a variety of ways
and a convenient choice is illustrated in Fig. 2 for
L=4. We adopt the convention that v=1 corre-
sponds to the “scattering term” (0, L), Moreover,
if v corresponds to (I, I ’), we shall understand v
to be that value of the running index corresponding
to the exchanged pair (I’, I). We indicate the cor-
respondence by writing v - (I, I’) and introduce V,
the set of v~ (I, 1’) for (I, ") e[v].

We want to approximate &,,.(r;, 7;) by a finite
bilinear expansion in functions of the single argu-
ments 7, and 7,. If a pair of such functions occurs
in the construction of ®,;, then the member bearing
the coordinate »; must vary for small argument
as 'r'l‘" while the function with argument 7, behaves
like 74'*! as 7, approaches zero. This occurs be-
cause of the angular dependence of the function
Y;;.(R,, Q,) which accompanies &,,.(r,, 7;) in the
expression (12) for the total wave function. More-
over, in order to satisfy the exchange condition
Eq. (13), the functions used to describe ®;;» must
be used with arguments exchanged to construct the
function ®,,;. With these facts in mind, we intro-
duce functions ¢,,, and ¢3,, m=1,2,..., N,,
where, as -0,

qavm(r)zrl#l ’
(14)
Pin@) 7P,
where v~ (I, 1) and 7~ (1, I).
As the notation indicates, the functions ¢,,, de-

/

4
7 - =
6 /| / viv] [v]v
. / - 1{5| [6]8
o / _g 214 77
[ FLP L= 3[3] |8]6
3 N\
» a1 /7 4l2] [9]9
//3\ 8 s 511
I e N 5/

I 23 45677

FIG. 2. Assignment of values for the running index v
replacing the pair index (I,7’) €[U] for L=4. By con-
vention v =1 corresponds to the pair (0,L). The relation-
ship between v and 7 is also illustrated. Note that the
points corresponding to the indices vand 7 are symmetri-
cally placed about the line 7=1’. In this case the ele-
ments of the set V are the integers 1-9.

pend upon both indices I and I’ We have intro-
duced one set of functions for each point (I, ) of
the set [v]. To construct the functions ®;,, and
®,.,, both sets of functions ¢,,, and @3, are needed.
In Fig. 2 for example, we use the products formed
from ¢Xm(71) and ‘PSn(TZ)’ m=1,2,.., yNy3 n
=1, 2,...,N;; N;=N;, to construct @, 4(ry, 73).
All products are used which are not ruled out by
the asymptotic behavior of the wave function. Note
that in this example, v=1-(0, 4) and =5~ (4, 0).
The same functions with arguments interchanged
are used to construct &, ¢(ry, 7,), where v=5
~(4,0)and v=1- (0, 4). Note that if v=(,1’)
and w— (I, I’") with I '#1"’, the two sets of func-
tions ¢,, ) and @,,() behave for small » like #**!
according to Eqs. (14), yet these functions are, in
general, completely different. This is a departure
grom the usual orbital model; it is adopted because
of the greater flexibility afforded to the wave func-
tion and the ease of implementation in the two-
electron case,

The approximations to the functions @,;.(r,, 7,)
are now given by

q)v (1’17 ”'z)= (7’1"'2)-1 E E qaum (lrl )rvmn¢5n(7z) ’ ‘ (15)

where v~ (I,1"), 7~ (', 1), and
rumn= (" l)srﬁnm' (16)

In Eq. (15) the summations over m and # run from
1 to N, and N3, respectively. Note that, evidently,
N, =Nj;. 17)

In case I=1’, so that v=7, Eqs. (14) reduce to a
single set, and Eqs. (15) and (16) still apply;
®,(7,, 7,) becomes a quadratic form in the functions
Pom¥), m=1,2, ..., N,.

According to Egs. (8), which indicate the asymp-
totic form of ¥, two of the orbitals introduced have
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a special significance. The orbital ¢,,,(r) is the
hydrogenic ground-state function ¢,,(r), while
@1,57(7) is the scattering orbital ¢, (r). We have
adopted the convention that the fixed hydrogenic
function is numbered first among the orbitals
@1,”), n=1,2, ..., N;, and the continuum orbital
@pz () is numbered last among the functions ¢7,, (),
m=1,2,..,,N,. All of the remaining orbitals
Oom”), m=1,2, ..., N,; veV, are square-inte-
grable functions. In scattering processes, ¢,, de-
scribes the target, ¢,; describes the scattered
electron at large distances from the target, and
the remaining orbitals describe interactions taking
place in the vicinity of the target; these include
polarization, correlated motion, and resonance
formation.

In the expansion (15) for ®,, the continuum or-
bital ¢3, y7 €an only be paired with the target eigen-
state ¢,,;. This implies that

T, v = (= 1)S48,,= (= 15T, e« (18)

Because all possible products of square integrable
orbitals are permitted in (15), some auxiliary con-
ditions must be imposed upon the ¢, to guarantee
an unambiguous expression for ®,. Unique coeffi-
cients I',,, can be specified only if some orthog-
onality and normalization requirements are placed
upon the ¢,, (). Even with such requirements im-
posed, the square integrable ¢,, can only be de-
termined up to a unitary transformation, and fur-
ther specification is demanded. For these reasons
we require that, for fixed v, the square-integrable
functions (including ¢,, if v =1) shall satisfy the
equations

<¢vm| (pvn) =0Opn
(19)

- <(pvm |hv| (pvn) = WymOmn

where
dz
2hv=7—l(l+1}r'2+227'1, v=(,1"). (20)

The particular choice of these conditions is dic-
tated by the physical consideration that, as the in-
cident electron’s kinetic energy approaches the
target excitation threshold, soms of the ¢,,,(7)
must become hydrogenic eigenfunctions. The con-
ditions (19) allow this to happen in a natural way.
We wish to emphasize that the relations (19) ap-
ply only between functions bearing the same index
v. Refer again to Fig. 2, where v=2 corresponds
to the pair (7, 7’)=(1, 3), while v =7 corresponds
to the pair (Z,7")=(3, 3). The pair (3, 1) corre-
sponds to v=2=4. The two sets of functions

(p4n(7’)1 n= 1, 2, es ey N4
Gim), m=1,2, ..., N,
have the same behavior for small argument; all of

these functions start out near 7 =0 proportional to
7*. The ¢,, form an orthonormal set which diag-
onalizes the operator %, in the Hilbert space avail-
able to them. According to Eqs. (19) with v =17,
the functions ¢,, are also an orthonormal set and
diagonalize the same operator in their Hilbert
space, yet they have no orthogonality relations
with the ¢4,.

The scattering orbital @7, y; is required to be
orthogonal to the rest of the functions ¢3,:

<(p.1'N‘il(an>:0' (21)

In Fig. 2, v=1-(0, 4), sothat 7=5-~(4,0), If
there are N; =N, functions associated with the
point (4, 0) then the continuum orbital is ¢;, n5 and
is orthogonal to each function ¢s,, m=1,2, ...,
Ns;—1. Note that all of the other points in the dia-
gram correspond to sets of square-integrable func-
tions only.

According to Egs. (12) and (15), the partial wave
can be written

‘p(-fu ?a)= (71”2)-12 DY Pom(71)

X Pumn(pt-m(yz)yv (Qly Qa) . (22)

To determine the functions ¢,,(7) and the coeffi-
cients T',,,, we form the functional
L@)= [ &%, [ dF*Ge- BN,

and calculate the first variation of L:

(23a)

SL[)=2 g a’r, Sdst oY* (e~ Ep

*

—j d’?ls' do <zp* 2% _ 5y -%> . (23p)
w ony, ony

From this expression we see that the function

¥, T,), for which SL(¥) vanishes for all variations

8y(r,, T,) such that the “surface term ”

I} %
J’ &, L do (zp*—‘;;;—p - azpz—z;) (24)

also vanishes, must satisfy the Schrddinger equa-
tion (2).

We substitute ¥(T,, T,) as given by Eq. (22) into
Eq. (23a)and carry out the variation (23b) permitting
only variations in the radial functions ¢,,, () and
the coefficients I',,,. These variations are re-
stricted so that the surface term (24) is always
zero., We introduce for convenience the functions
Uym () defined by

Uym (’V) :E rvmn(pgn(’r) . (25)
n
Note that according to Eq. (14),
U @) =¥ =0, (26)

According to ¥qgs. (22) and (25) we may write



| =3

Ty, )=y RDIDD Com (V1 Mo (7)Y, (R, Q) .

27)
The variational condition that 6L () shall vanish
for all permitted variations &y leads to the system
of equations

[h;_X(¢vm9 (pvm)— Wym + E]uvm
—Z) Z) ,X(§0my (Pwn)uwn
w n

+8,1(@1al il O1np) Ui =0,  (28)

for the functions u,,(r). Here, v—(l,1’), veV,
weV, m=1,2,...,N,; n=1,2,...,N,, but
(v, m)# (1, N7). The one-electron operator %; is
given by Eq. (20) and the prime in Eq. (28) indi-
cates that the term

X(¢vm’ (pvm)uvm ’

is not included in the summation. The auxiliary
functions X(¢@,,, @.,) are defined by the equations

X(@oms Puon) =27 Cos X" (@umy Puom) »
v (29)

Xv((pvm’ (pwn): (ZV +1 )-1 [:’ij ¢vm(s )s-v-l(pwn(s)ds
0

+1""'15 cp,,,,,(s)s”cpw,,(s)ds],
where '
CL,=(=1"21+1)Q21"+1)2p +1)(2p"+ 1)
x[c@, p, vy 0,0, 0)
xWw(t, 1" p,p"; L, v)CU', p", v;0,0,0)], (30)

v=(,1")and w—(p, p'), and C(, p, v; 0, 0, 0) and
w(,1’ p,p’; Lv) are the well-known Clebsch-
Gordan and Racah coefficients, respectively. !
The index v in Egs. (29) and (30) has the range
specified by the conditions

li-pl<v<tis+p,
l27-p"|<v<t’sp", B1)
(= 1f#=(=1F=(-1)"",

There is one differential equation for each inde-
pendent radial function. We see from Eq. (28) that
there is no equation for uhv;(”)- This is so because
its functional form is prescribed by the “dissocia-
tion” requirement and therefore cannot be varied.
We obtain it from Egs. (18) and (25):

uiy;(r)= (= 1)SA@,,(r). (32)

We wish to call attention to the terms in Eq. (28)
of the form

8,1 <¢Im ' th ¢TNT_>“TN‘{ .

SELF-CONSISTENT-FIELD CALCULATIONS FOR THE... 1949

These terms occur in the system (28) because of
the orthogonality condition (21) imposed upon the
scattering orbital ¢,, (7). These terms would not
appear at all if, instead of Eq. (21), we required

<¢im‘hi+%ka‘¢u>=0; (33)

however, the resultant lack of orthogonality be-
tween ¢,; and the square integrable orbitals ¢j,,,
m=1,2,..., N;-1, makes the determination of
the functions u,,, () more difficult in practice as
the iterative scheme used to determine these func-
tions is less stable when strict orthogonality is not
maintained between the scattering orbital ¢,, and
its square integrable companions. For this rea-
son, condition (21) was adopted.

The system (28) is solved iteratively: approxi-
mate orbitals u,,, () and ¢,,(r) must be in hand.
The quantity

S,,m(’}’) =E E ' X(¢um» (pwn)uwn
w n

+8,1(01nl b1l oup Uiy (34)

is computed using these approximate functions and
then used as a “source term ” in Eq. (28) which is
treated as a second-order ordinary differential
equation for the function u,,,(r). The “Coulomb
potential ” X(¢,,,, ¢,m) 2s well as the “orbital en-
ergies ” w,,, given by Eq. (19) are computed using
approximate ¢,,(r). Numerical integration of the
differential equation then furnishes an improved
function u,,(r). For the square-integrable func-
tions, unique solutions, regular at the origin, are
obtained. A unique improved continuum function
u,y,,(r) is also obtained if the condition of unit ampli-
tude for large 7 is imposed.

Once the improved functions u,,, () are obtained
by numerical integration, a revised set of @3, ()
are furnished by constructing appropriate linear
combinations of the #,, () which satisfy the condi-
tions (19) and (21). The expansion coefficients
T,,.. are obtained by projection:
m=1,2,..., N,

v

Tomn= <uvm l <p5n> s

n=1,2, ..., N,. (35)

The coefficients T'y,,, 7 and T3, vy, are, of course,
fixed with values given by Eq. (18). The T,,,, so
obtained, are forcibly symmetrized according to
Eq. (16) so that the exchange condition (13) is sat-
isfied as the iteration proceeds. From the sys-
metrized T,,, and the revised ¢3,, a further re-
vised set of «,, are constructed according to Eq.
(25) and the source terms S,,,(r)and the Coulomb po-
tentials X(¢,,, ¥.m) are recomputed. The process
is repeated until convergence of the ¢,,(r) and the
T,nn is achieved.

As is characteristic of self-consistent-field
methods in general, Eqgs. (28) are nonlinear in the
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orbitals ¢,, and the solution of the system must be
obtained iteratively, in contrast to the “close-
coupling ” and “pseudostate ” equations for which
noniterative schemes for solution have been de-
vised.'® Nevertheless, the iterative scheme used
in solving Egs. (28) converges quite rapidly in
practice and the functions ¢, so obtained are
variationally optimal.

The iterative process can be started by choosing
for the square integrable ¢,,,(») a suitable linear
combination of Slater functions which satisfies
Egs. (19) and which spans the region of coufigura-
tion space in the neighborhood of the target. The
initial approximation to the scattering orbital
@, (¥) is taken to be

Oar(r)=ud, (r) - 2z <u2Ll¢Tn>¢'in(7’) , (36)

where u), satisfies the “source free ” equation

& -
(W +2Z’}’ - ZX((pls, qox.s)‘*'kz)ugll:o’ (37)

and the solution of Eq. (37) regular at the origin
with unit amplitude at « is chosen. The initial set
of T',,., can be taken as follows:

Ty=1=(- l)srT.N{.l ’
38)
Tyn,=0 all others.

Of course, other more accurate starting sets may
be used if they are available. All that is necessary
is that the approximate ¢, satisfy the conditions
(19) and (21) and the T,,,, satisfy the symmetry
condition (16).

Equation (27) expresses the partial wave in
terms of the functions ¢,,, and «,, where the «,,,
are given by Eq. (25). We could have written in-
stead

Zﬁ(f‘l, -fz)zpw(?'u ;2)'* sz(fu ~I.'2) ’
Py(ry, Y‘z)= (7’1"’2)-1[‘P13(”1)FkL(7‘z)YLM0L (2, 2)
+(- 1)S<P13(7’3)FkL(1’1)YLuLo(Q1a 92)] ’

sz(;l! ;2)2 (7172)-12 Z; '¢vm(rl)uum(rz)yv(ﬂ17 QZ) ’
where P is a projection operator which projects ¥
onto all states included in an ordinary close-cou-
pling expansion of one term, and @ =1- P. The
function @y contains only functions which are
square integrable and the function u,,,(»,) which is
paired with ¢,,(r,) is identical with the function

U, (7;) appearing in Eq. (27) with the exception that
if L=0 we require in (39) for v=1- (0, 0),

(ulml(pls>=0y m=2,37"',N1- (40)

Thus, any component which #,,, may have had in
Eq. (27), along ¢,(»), has been absorbed into
Fy() in Egs. (39). The function Py is the com-
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TABLE I. Structure of the wave functions.

(N 0,0) 1,1) 2,2) 3,3
v 1 2 3 4
m 1 2 3 4 5 1 2 3 1 2 1
Z/)1 1s ks
Py 1ls 2s ks
P3 1s 2s ks 2p
Py 1s 2s 3s ks 2p 3p 3d
b5 1ls 2s 3s ks 2p 3p 4p 3d

Yg 1s 2s 3s 4s ks 2p 3p 4p 3d 4d 4f

plete open-channel part of the partial wave .

A system of coupled equations entirely equivalent
to Eqs. (28) can be derived for F,, and the u,, in
Eqgs. (39), and the variationally determined total
wave functions obtained from the two systems are
identical. In particular, they yield the same phase
shift. The arguments of Hahn, O’Malley, and
Spruch? establish that for a wave function of the
form of Egs. (39) determined with full flexibility
for the open-channel function Py, the calculated
phase shift is a rigorous lower bound to the true
phase shift in the elastic scattering energy range.
Thus the phase shift determined by Eq. (28) is
certainly a rigorous lower bound to the true phase
shift in the energy range considered here.

RESULTS

Calculations were carried out for the S state
of the system e-H in the energy range ¢;, < E <e¢,,,
using wave functions of increasing complexity. In
Hartrees,

E=¢ ,+3k%, €,=—-0.500, €;,=—-0.125,
S

The wave functions used are labeled ¥,, n=1,

2, ..., 6, and the orbital structure of these partial
waves is exhibited in Table I. For example, the
approximate total wave function §; has the form

‘l)s(?n ;z) =(ryry)™? {[ P17ty () + oy (71 )t (75)
+ Qs )ty (75) ] Y,(Q,, 2)

+ gDzi,(?’l)uap(’Va)Yz(Qn Qz)} . (a1)

Here we have departed from the formal notation
of the text and adopted instead a “spectroscopic ”
notation. Table I gives the “spectroscopic ” label
corresponding to the index pair (v, m) for each
approximate wave function used. Thus for ¥,

P1,1=P1s
¢1,2=¢23 ’

P1,3= Pps »
and

P2,1=P2p .
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In all of these wave functions, ¢,, is the hydrogen
ground-state orbital and ¢,, is the scattering or-
bital. The spectroscopic label on a # function
simply indicates which ¢ function is paired with it
in the approximate partial wave given by Eq. (27).

Because the #,, are linear combinations of the
@5m according to Eq. (25), the expression (27) for
the total wave function is not manifestly symmetric
in T; and T,. These functions nevertheless possess
complete exchange symmetry according to Eqgs.
(15) and (16);

Ua(Ty, T2)=0,(F,, T,), 7=1,2,...,6. (42)

Only ¢, among the functions ¢,, used in the con-
struction of the wave functions ¢, has a prescribed
form

(43)

Exchange symmetry of the functions ¥,(T;, T,) then
forces the function u,,,(r) to have the identical form

Ups(r) = 01,r). (44)

The function ¢,,(r) and therefore u,,(») have the
asymptotic behavior: For » = «,

@1s7)=27e"",

@ps @) =sin(kr + 1),

(45)
uy, () =sin(kr + 1),

where we have imposed unit amplitude normaliza-
tion on the total wave functions. The remaining
functions are square integrable.

The function ¥, is identical to the “one-state ”
close-coupling function ¥, ., and reproduces the
phase shifts determined by other workers as is il-
lustrated in Table II. If we compare the two func-
tions,

zl)l(;ly .r.z) = (r72) 1 0ry) us4 ()

+ qphs(yl)uks(’ra )] Yl(nly QZ) ’

- - (46)
D1 eelTy, Tp)= (”17’2)-1[¢1s(7’1)F13(1’2)
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+ Fi(r)01,(r2)] ¥1(Q4, ),

we note that ¥,(T,, T,) is not manifestly symmetrical
in its arguments. The two functions are in fact
identical and the connection between them is ex-
hibited in the relations

qaks(r) =F1.s(7)— (Fls l ¢1s>§013(7) ’
: 1)

uu(y): Fls(”)“' <F13| ¢1s>¢1s(7’) .

The continuum function F;,(r) of the close-coupling

model is determined from the differential equation

[hl - X((Pls’ (ols)"’ %kz]Fls - X(<p137 Fla)(pla

+<¢lslhl+%k2|F13>¢ls=0, (48)

where

-1

&
h1= d72+r N (49)

Do

while the equation

[hl - X(qplsv (pls)+ _lz_kz ]uls - X(qpls’ ¢ks)uks =0,
(50)
supplemented by the linkage relations
‘Pka('r) =u1,('r)— <ulsl (pu)‘pls('r) ’

uks(’i’)=¢1s(1’), 61)
determines the functions u,,(r) and ¢,,(r). Note
that no term proportional to ¢,,(r) appears in Eq.
(50). This is so because ¢,,(r) is an eigenfunction
of the operator %, and the two conditions (21) and
(23) are, in this case, equivalent, so that the term

<‘P1s|h1| Ors) Uns(7)

does not appear in Eq. (50).
We next compare ¥, with the corresponding “two-
state” close-coupling function ¥, ... We have

() Gn ;z) = ("’17’2)-1[‘/’13("'1)““("’2)4' P2 (1)t (72)

+ Qs (1 )20 (75)] V1 (R4, 25),

TABLE II. Phase shifts n for 1S elastic scattering of electrons from hydrogen atoms.

15 50
k U Vee® Y2ee” ¥o* ¥ ee” Y358 ° ¥s® term® ¥ term® ¥s* vg® 712°
0.1 2,396 2.404 2.420 2.491 2.529 2.537 2.539 2.548 2.550 2.549 2.553
0.2 1.871 1.878 1.894 1.974 2,043 2.047 2.060 2.060 2.061 2.067
0.3 1.508 1.519 1.533 1.596 1.657 1.673 1.673 1.688 1.690 1.690 1.696
0.4 1.239 1.257 1.266 1.302 1.390 1.389 1.405 1.408 1.409 1.411 1.415
0.5 1.031 1.046 1.062 1.093 1.155 1.172 1.174 1.189 1.192 1.194 1.202
0.6 0.869 0.89 0.906 0.93 1.006 1.013 1.029 1.032 1.035 1.041
0.7 0.744 0.77 0.791 0.817 0.875 0.882 0.902 0.919 0.921 0.924 0.930
0.8 0.651 0.70 0.716 0.773 0.823 0.799 0.857 0.875 0.877 0.879 0.883 0.886

2Present model wave functions.
bClose~-coupling wave functions, Refs. 1 and 8.
®Pseudostate wave functions, Ref. 10.

dAnalytic expansion wave functions, Ref. 19.
®Schwartz’s Hylleraas-type wave functions, Ref. 5.
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Py cc(fl, Y‘z)= (r73) o130 Fyy () + F iy (r,) 035 (r5)

+4953(7’1)F23(7’z)+F2§(71)¢§§(”z)]Y1(91, 2), (52)
where

01:(r) = () =27e™ (
53)
053(r) =2 %22y — y2)e™ V2

are hydrogenic radial eigenfunctions.

In the close-coupling function %, .., both Fy, and
F,, are determined by solving coupled differential
equations. Likewise, in ¢, #;, and u,, are simi-
larly determined from the system

[hl - X(‘plsy ¢1s)+ %kz ]ula_ X((plsa <p23)u23

= X(@14, Prs)rs=0,
(54)
[hl—X(‘st, ©as)+ E+<¢zslh1|¢zs)]”23

—X((pau ¢1s)u13 —X(<st, qpks)uhs

+ <¢Zs!h1,¢ks>uks=0 ’
supplemented by the linkage relations

</’2s(1’) = [uas(?’)" (uas] D1s >(P13(‘V)]N5; ’
(55)

‘pks("’):uls(”)' <u1.s | ¢2a>¢23(7) - <u23 | ¢ls>¢la(7')’

where
NZs = (<u2.s |u23> - <u23l <pls >2)1/2 . (56)

The function i,, involving only three pairs of
functions, is somewhat more compact than ¢, .
The important distinction, however, between the
two functions is that in #,, the orbital ¢,, is not
arbitrarily prescribed. Table II compares the
phase shifts obtained from both %, and ¢, ., over a
range of energies. As a benchmark for compari-
son we take the accurate Schwartz values. A
small but significant improvement in 7, over 7, ..
is noted throughout the energy range considered,
namely, 0.1 <k <0.8.

Figure 3 illustrates ¢, (») for several values of
k and also compares these functions with the hy-
drogenic orbital ¢z;(»). A dramatic departure
from gs; is exhibited for all 2 values examined.
The more compressed appearance of ¢,, suggests

1.0

ENERGY DEPENDENCE OF ¢,
—— k=2 —m——k=5 —-—k-8
-------- HYDROGENIC FUNCTION ;¢

-1.0

FIG. 3. Variation of @y, with scattering electron
kinetic energy. Orbitals are taken from the wave func-
tion ¥,.

TABLE III. Orbital energy of the 2s orbital for different

k values.

k was(W) Was(ha + P3suss)
0.2 0.191 0.026
0.5 0.117 - 0.025
0.8 -0.031 ~0.108

For the hydrogenic 2s orbital
5= €95=—0.125

that it is describing the close-range interaction
more adequately than is ¢y;. The illustrated de-
pendence of ¢,, on wave number shows that the
compression increases toward low 2 values. Even
for £=0. 8, which is fairly close to the 1s - 2s ex-
citation threshold, the appearance of ¢,, is still
quite compact relative to ¢3;. These results are
in agreement with the “orbital energies”

Wae == <¢23|h1| (p23> ’ (57)

which are given in Table III. For the hydrogenic
function ¢33,

wsz=€3,=~0.1250,

and we see from Table II that positive values of
wy, are obtained for low & values indicating that
considerable continuum contribution is present in
the function ¢,,. On physical grounds, it might be
expected that as % increases toward the 1s —~2s ex-
citation threshold of the atom core, the function
@, Would tend to become the hydrogenic ¢s;, while
the function u,, would expand to become a continu-
um orbital, This cannot happen for a wave func-
tion as simple in form as §,. It is the exchange
symmetry of ¢, which permits us to express u,,,
Uss, and u,, linearly in terms of ¢,,, ¢z, and @,
but ¥, with only three pairs of functions comprising
it cannot exhibit proper behavior as threshold is
crossed and still maintain its exchange symmetry.
The difficulty is removed by adding an additional
pair, @g,(r;)us,(#;) to 3. This gives a wave func-
tion of the form

11)(‘1.'1, ;z):[¢1s(”1)“1s(7’z)+ @271 )t (75)

+ Qa5 1) U3s2) + Qpg (7)) s (7)1 Y1 (R4, Q). (58)

In this case, u,, is a linear combination of ¢,
@2, and @z,. The orbital ¢,, is now free to be-
come the hydrogenic function ¢s; as k& increases
and threshold is crossed, while @3, and u,, will be-
come continuum orbitals. The other orbital ug,
will go over into a constant multiple of the hydro-
genic function ¢z; and the entire wave function will
become equivalent (above threshold) to the close-
coupling function ¥, ...

Figure 4 illustrates the change in the form of
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ENERGY DEPENDENCE OF ¢, ,WITH ¢, PRESENT
-1.0 —— k=2 —+—k=8 -—--k=5
--------- HYDROGENIC FUNCTION ¢z

FIG. 4. Variation of ¢, with scattering electron kinetic
energy in the presence of ¢g,.

@25 When we add @g,(r;)us(7,) to 3. Table II
shows the effect that the addition of this term has
upon the 2s “orbital energy ” w,,. We note that the
addition of the @, orbital allows ¢,, to become
less compact spatially and to relax toward larger
values of 7, although the compactness of ¢,, still
persists markedly for low 2 values. The orbital
energy w,, becomes lower throughout the examined
energy range and as k approaches the 1s— 2s exci-
tation threshold, ¢,, bears a much stronger re-
semblance to the hydrogenic function ¢s;.

We discuss now the function 3 which includes a
term

r172) 0ap(r )ty () Y5 (Qy, Rp), (59)

designed to account for angular correlation. The
index v=2 on Y,(R,, €,) corresponds to the pair
index (, 7')=(1, 1). The functions u,(r), us, (),
and uzl,(r) are determined from the system of equa-
tions

[y = X(@15, P1s)+ 2% Jtt1s = X (@15, P2e)thas
= X(@15) Prs)trs = X(P1s, P2p)thzp=0,
[7y = X (025, Pog)+{P2s | h1‘ Pas) + Elttgg
= X(@os) P15)th1s = X(@ag, Prs)tins
= X(Pag, Pap)tizy+{Pas| 1y | Gpsdttas=0,
[y = X(@2p, @2p)+{(Pap|Bz| 02 + Elutz, ©0)
= X(Paps P10)%1s = X(@2p, P2g)thas

- X((pZI’, ¢ks)uks =0 ’
supplemented by the linkage relations

P2s(r) = N 35[uss (r) - <u23| P15)01s)],
§0k3(7’)=u13(1’)_ <u1.9l ¢13>¢1s(r)_ (ulsl ¢z,)(ﬁ23(1’),

@ap#) = N3z, (7) (61)
where
Nz: = «qu|qu> - (uz.s l 9013 >2)1/2 ]
(62)
Npp = (Usp 'uzp>1/2 .

In Table II we compare the phase shifts obtained
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using ¥, with those obtained from the “three-state”
(1s-2s-2p) close-coupling wave function ¥; ., and
also with those obtained from the function 3 ;5
which differs from ¥; ., in that the hydrogenic 2p
eigenstate has been replaced by the function

Pape () = (32/129)V2%(1 1 37 )e™" 63)

derived by Damburg and Karule to account fully for
the ground-state polarizability of the hydrogen
atom. ™ The wave function ¢, is that used by
Burke, Gallaher, and Geltman in their “pseudo-
state ” calculations. !® Note that the pseudostate
@35 is quite compact spatially; its exponential de-
pendence being characteristic of the hydrogen
ground state rather than of the 2p eigenstate. Table
II indicates that 33, which employs variationally
optimal orbitals ¢,, and ¢,,, yields more accurate
phase shifts over most of the energy range exam-
ined. Only for £=0. 8 does ¥;,, yield a more ac-
curate value than y;, and this is understandable be-
cause ¥ depends upon ¢,, through the single term
(59) where u,, is proportional to ¢,, according to
Eq. (61), while %5, depends upon functions of p
symmetry according to

[‘Pzp' (1) Fape r3) + Fpe (r1)@zpe )],

so that ¢; ,; enjoys an advantage with respect to its
description of radial correlation which becomes
more important as & approaches the excitation
threshold. The close-coupling function ¢; ., also
enjoys this advantage over 3 and it also has the
correct form for crossing threshold, yet even at
E=0. 8 the use of a single optimal term (59) in ¢,
is sufficient to produce a more accurate phase
shift. The deficiency of §; with respect to radial
correlation can be overcome by the addition of an
additional orbital of p symmetry. This has been
done using the wave function ¥, where the third
quantum level has been included and additional
optimal orbitals ¢g,, @35, and @;, have been em-
ployed. The results of these calculations are
listed in Table II.

One of the drawbacks of the pseudostate approach
is the difficulty in choosing proper pseudostates.
In the work of Burke et al.,' calculations were
reported where a compact pseudostate ¢z, of d
symmetry was included in the pseudostate expan-
sion but that the phase shifts obtained from the
1s-2s-2p’-3d’ expansion were virtually indistin-
guishable from the 1s-2s-2p’ results. This situa-
tion does not imply that functions of d symmetry
are unimportant, but indicates the difficulty en-
countered in choosing suitable pseudostates. In
this connection, for £=0.5, we performed a calcu-
lation where we'began with the optimal function 5
and added additional optimal orbitals ¢4, ¢3,, and
¢34- These were added one at a time in order to
see what effect each of these orbitals would have
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1 [a0]

RADIAL ORBITALS FOR THE WAVE FUNCTION Y,
-1.0 FOR k=.5

Sy =y ~ by,

FIG. 5. Optimal orbitals from the wave function ;.

on the phase shift 7; given by ¥;. In this context,
it is to be remembered that the addition of a new
orbital to a wave function of the present model en-
tails a reoptimization of all previous orbitals, a
characteristic feature of self-consistent-field cal-
culations. For £=0.5,

11)3"7‘]3=1.1724 ,
Bs+ Pag = Thyags = 1. 1748 ,

04| (a) B
.03 / N\
o2t [ \

Ol / \ .

. TN

Y3+ Pap= Nsezp = 1. 1794,
Y3+ P3q =~ Ngeza= 1. 1788, (64)

We see from these results that although ¢, contrib-
utes less than @3, or @3, in increasing the phase
shift, each orbital contributes significantly and
none can be ruled out on the grounds that its effect
would be too small. It seems clear that choosing
pseudostates is a process which requires extreme
care and that it is much more effective to deter-
mine them via the variational principle.

The optimal orbitals ¢,,, ¢,s, and @,, used in ¥y,
are illustrated for £=0.5 in Fig. 5. Figure 6 il-
lustrates an interesting feature, namely, that the
variationally determined orbitals ¢,, and ¢,, have
damped oscillatory behavior for large argument.
This effect is particularly striking in the case of
the function ¢,,(r), for which the oscillations damp
out with an amplitude proportional to 2. The cor-
responding oscillations in the orbital ¢,,(r) fall off
like ™. The source of this behavior is to be found

ra ' U
l[2 Il4 6 + 18 20 22/ 24 26

-0l .

=02~

=03

(b)

.00005—

00001
—.0000I—

—.00005—

-.0001-

P VI I /I NN
\

28 30

FIG. 6. (a) Oscillatory behavior
of @g,(7) in the region 10 =» =32 a.u.
(from the wave function y; for %
=0.5). Oscillations damp out as »~2,
(b) Oscillatory behavior of @, (») in
the region 14 <y =35 a.u. (from the
wave function 5 for £=0.5). Oscil-

lations damp out as .
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FIG. 7. Comparison of ¢,, with the hydrogenic eigen-
state ¢5. The optimal orbital ¢,, is taken from the wave
function g for £=0.5.

in the coupling terms present in the differential
system (60).
The term

X((Pzp; 4913)“13, (65)

is responsible for the oscillatory behavior of u,,
and hence ¢,,. For large 7,

X(¢zp, Q16) = cé,l <¢2p|1’| D1s g, (66)

and according to Eq. (45) we see that (65) is a
driving term proportional to

2 sin(er +7),

and accounts for this dependence in the tail behav-
ior of @,,.

Since X(¢,,, ¢;,) decays exponentially for large »
according to Eq. (29) and the orthogonality between
@, and @,,, the direct coupling term involving the
continuum function #,, does not function as a driving
term which can affect the tail behavior of @,,.

Since u,, falls off as e™”, the oscillatory behavior
of u,, and hence of ¢,, can only come from the cou-
pling to u,, through the term

X(@ng, ©2p)thap . (67)

As we have seen, for large », and some constant
a,

Uy, (r) = v sin(lr + 1), (68)
while
X(¢zsy (Pzp)zc%,z (‘stI'V'(P‘g,,)"’-z ’ (69)

so that (67) is a source term which for large 7 is
proportional to

rsin(er +7),

and accounts for this dependence in the tail behav-
ior of ¢,,. These asymptotic damped oscillations
represent polarization effects and it is interesting
to note that such effects make themselves known
directly upon the form of the optimal orbitals and
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TABLE IV. Comparison of present model phase shifts
with rigorous limits for £=0.4.

Wave

function Orbitals n('s) Limit?
Py 1s 2s ks 1.266 1.270 s
s 1s 2s ks 2p 1.390  1.403 sp
by 1s 2 3s-ks 2p 3p 3d 1.405  1.411 spd
s 1s 2s 3s ks 2p 3p 4p 3d 1.409  1.411 spd
g 1s 2s 3s 4s ks 2p 3p 4p 3d 4d 4F  1.411 1,413 spdf

2Reference 20.

that this comes about automatically in the present
method.

Figure 7 illustrates the difference between the
function ¢,, and the hydrogenic eigenfunction ¢s;,
where

@5;(r) = (2V6) 22T (70)

Note that the variationally determined orbital ¢,,
has its peak much closer to the target atom than
does the hydrogenic function ¢z;. This illustration
is for £=0.5.

Considerable continuum contribution is present
in @,,(r) as is indicated by its orbital energy

wy,=+0.182, %k=0.5,
which is to be compared with the values
€gp="0. 125, w2,:=—0.081

characteristic of the hydrogenic eigenstate ¢z; and
the Damburg and Karule pseudostate ¢,,., respec-
tively.

Some idea of the efficiency of the present model
wave functions can be obtained by comparing the
phase shifts obtained using ¥; with those obtained
recently by Chung and Chen.'® These workers used
a wave function of the form

¢(—1=1, Fz) =(rmy)? {‘P 1871)G1s3) + Gy (1)1, (73)

TABLE V. Expansion coefficients for y;, £=0.5.

T,

vmn

1.217
- 0.859
0.746
1.000
—0.134
-0.029

—0.032

—0.085
- 0.075
0.178

—0.031
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TABLE VI. Orbital energies for the orbitals of the wave
function ¥4, £=0.5.

Label v m Wym
1s 1 1 —0.5000
2s 1 2 —0.0654
3s 1 3 +1.0887
2p 2 1 —-0.1120
3p 2 2 +0.2088
3d 3 1 +1,2299

+QZZ} sz(rl;.,rge-(url*ﬂrz)
n pv

+7irye” 1) p (cos@,,)}.  (71)

In the summation, six terms of s type and nine
terms of p type were included. The open-channel
function used was

G,,(r) = (sinkr + tann coskr)(1 - ™7 ) + 2 d,r"e"

(72)
and @ is the projection operator,

Q= [1 - ‘ 9913(7’1»((?13(7’1)‘ ] [1 - |¢1.s(7’2)> <‘P1s("’a)| ] .

(73)
The coefficients A}, and d, as well as the open-
channel parameter ¢ were calculated for each en-
ergy value considered in the range 0.1 <k <0. 8,
The other nonlinear parameters «a and g were de-
termined and used over the entire energy range.
The phase shifts obtained with this wave function
are compared with those obtained with ¢; in Table
II. These results show that the present model
wave functions are quite efficient with respect to
the number of terms needed to produce phase shifts
of comparable accuracy.

Further calculations were carried out with the
more elaborate wave functions ¢, ¥5, and Pg. The
results of these calculations are presented in Table
IT where it is seen that accurate phase shifts are
obtainable with short expansions within the present
model; the most elaborate wave function used in
these calculations, namely, §g, is constructed from
only 11 optimal orbitals.

Another indication of the efficiency of the present
model wave functions is obtained by comparing our
results with the exhaustive variational bound cal-
culations performed for 2=0.4 by Aronson, Hahn,
Henry, Kleinman, and Spruch?® where they obtained
limiting values of L=0 phase shifts obtainable when
the angular symmetry of the one-particle functions
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FIG. 8. (a) Optimal orbitals of a symmetry from the
wave function ¥, for £=0.5. (b) Optimal orbitals of p
and d symmetry from the wave function y, for 2=0.5.

used in the expansion of the total wave function is
required to be less than a specified value. Thus,
had we used only orbitals of s symmetry in the con-
struction of ¥, then according to Aronson ef al.

the best phase shift obtainable would be n,=1.270,
(for 1S, £=0.4). Using ¥, which uses only the
optimal orbitals ¢,, and ¢,, we already obtain 7,
=1.266. Table IV compares present model phase
shifts with these rigorous limits,

In Fig. 8 the optimal orbitals from ¢, are illus-
trated for £=0.5. Table V gives the expansion
coefficients TI',,, for this wave function. Finally,
Table VI presents the corresponding orbital ener-
gies.
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A systematic study of the cross sections for K -shell ionization by 2.0-MeV-electron impact has been
made as a function of atomic number. The cross sections for 32 elements from V (Z=23) to Bi (Z=83)
were first measured relative to each other, and then were normalized to 43 b at Sn (Z=50). Thus
systematic errors usually associated with absolute measurements were minimized and did not obscure
minor variations in the Z dependence of the cross sections. The measured values drop from 353 b at
V to 9.9 b at Bi. The general trend of the Z dependence of the data is in agreement with theoretical
predictions of Kolbenstvedt. However, variations in cross sections by as much as 30% from one
element to the next are not accounted for by the theory.

I. INTRODUCTION

The subject of inner-shell ionization by relativ-
istic electrons has not been studied in any great
detail either theoretically or experimentally. This
is evidenced by both the lack of rigorous relativ-
istic calculations for K-shell ionization and the
sparsity of cross-section measurements. Specif-
ically, K-shell ionization cross sections have been
measured for only seven elements in the MeV en-
ergy range, and most of these measurements were
at or below 2 MeV.!~* A series of experiments has
also been performed in the extreme relativistic

range of electron energies from 150 to 900 MeV, in
which K-shell ionization cross sections were mea-
sured for eight elements ranging from Cu to Bi.?®
Within the experimental error limits of these mea-
surements, the dependence of the K-shell ioniza-
tion cross section on the electron energy has been
found to be a smooth function. This feature is in
agreement with the predictions of all existing theo-
retical approaches. 58

Theoretical treatments of K-shell ionization by
electrons are in the majority of cases completely
nonrelativistic® and hence not applicable to the
present experiment. In the work of Arthurs and



