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The multiphoton transitions in the hydrogen atom are investigated by taking into account the higher-order
terms arising from the S-operator expansion. These higher-order effects originate induced shifts and induced

breadths on the virtual-atomic-energy levels. It is shown that these perturbations play an important role for
resonant multiphoton processes. In this case, the theory predicts a particular flux dependence of the
transition rates. Furthermore, the well-known dispersion curves are strongly modified in the neighborhood of
any resonance. Thus the transition rates can exhibit several peaks. Numerical results are given for a
three-photon bound-free transition from the 2S state of hydrogen.

I. INTRODUCTION

The multiphoton-absorption processes are con-
veniently handled with the help of time-dependent
perturbation theory. ~ 7 Within this framework one
usually considers the lowest-order nonvanishing
term which describes the phenomenon of interest.
It seems that this approximation is not sufficient
for a good description of resonant processes and
when high-intensity radiation sources are in-
volved. ' In fact, among the higher-order terms
arising from the 8-operator expansion, some of
them give a contribution to the cross section which
may no longer by negligibl. It is easily shown
that the main contribution is brought by higher-
order terms involving photons of the radiation
field.

This paper is devoted to the analysis of higher-
order effects occurring in resonant bound-bound
and bound-f ree multiphoton transitions. It is
shown how these effects perturb atomic energy
levels. These perturbations caused by the Hamil-
tonian which produces the transitions originate in-
duced shift and induced breadth of intermediate
levels. As a consequence we find that the rate of
any process can be calculated by the use of two
equivalent methods. Firstly, one may consider
the contribution coming from all the relevant terms
of the S-operator expansion, each of them exhibit-
ing unperturbed atomic energies. In this case,
the calculations are done in the so-called undis-
placed energy picture. Secondly, one may keep
only the lowest-order term in which the perturbed
atomic energies are substituted to the unperturbed
ones. The calculations are then worked out in the
displaced energy picture. The advantage of work-
ing in the undisplaced energy picture is that the
rate of any multiphoton transition may be numer-
ically calculated, up to an arbitrary order, with
great accuracy. This is because, in this case,
the implicit technique of Schwartz and Tieman'
may be applied for the evaluation of the sums over

the intermediate states. It is not so in the dis-
placed energy picture, but in this scheme the ex-
pression of the transition rate has a particularly
compact form which can be easily discussed.

In Sec. G we consider bound-free and bound-
bound multiphoton transition rates as deduced from
the lowest-order term of the 8-operator expan-
sion. Radiation corrections are taken into account
through the electron propagator discussed by
Low. "

The higher-order effects due to the radiation
field are introduced in Sec. III. We find that the
dominant contribution is brought by the terms
which involve the repeated occurrence of absorp-
tion followed by emission, and emission followed
by absorption, of a photon of the incoming light. »

These effects are summarized into a perturbed
propagation operator which is subjected to a care-
ful analysis. We show how the higher-order terms
originate a shift and a breadth of the atomic levels.

The aim of this paper is to investigate the effects
of an intense radiation field on resonances occur-
ring in intermediate states. Then, for shortness,
we have overlooked an unessential treatment of
perturbations on initial and final atomic states.
For further discussion the reader is referred to the
paper of Sen Gupta' and to references quoted in.
The case of resonance is discussed in the displaced
energy picture. It is found that the order of non-
linearity (as defined in Ref. 9), of any muitiphoton
process varies rapidly with regard to the wave-
length of the radiation. When damping phenomena
are taken into account, the values of the order of
nonlinearity exhibit typical variations about the
ones previously found from unperturbed theories.
This fact has been confirmed by recent experi-
ments. ' '7 In addition, these variations can ex-
plain the discrepancies which exist between theo-
retical' ' and experimental results. 8'9

In Sec. IV, the procedure for calculating the Nth-
order matrix element is discussed and some nu-
merical results are given in Sec. V.
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II. LOWEST-ORDER MUI.TIPHOTON PROCESSES
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In E»I. (2. I) m„„(»o) is expressed in terms of 5„„(»o) and y„„(&o), which denote the natural level shift and the
natural level width, respectively,

(2. I)

For brevity we put tf =c = I, but we restore h and c in the computational formula. In previous papers, 6'7

we have calculated the cross section for some multiphoton processes occurring when a hydrogen atom is
irradiated by an intense light source. It has been seen that, when the energy corresponding to one or sev-
eral absorbed photons approaches that of a transition line, the cross section becomes infinite; then the the-
ory fails at exact resonances. This difficulty can be avoided by using the electron-propagation operator
derived by I ow~~:

w„„(»o) = &„„(»o)+-.'i y„„(»o) (2. 2)

(2. sb)

For the N-photon bound-bound transition the matrix element is

In the nonrelativistic dipole approximation it is found that
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p is the electron momentum and e"(k) is the photon polarization vector Th.en, the natural breadth of the
resonant line acts as a damping factor which makes finite the corresponding cross section. The 8-matrix
element describing the N-photon bound-free transition is

S'„"~P'=(-ie)"f dx„ f dx~, f dx,(n, -Ãl 3(i„(x„)I4'(x„)

SQ(x»»p xN»)P'(x»», ) Q'(xz)Sz(x2, x,)P'(x~)
I
io(xx))

I n~) . (2.4a)

where
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m=1 III

XS~(x„,x„,)g (x„,) )»f. (x,)S»;(x„x,)$ (x,) Iio(x,)) In, ), (2. 4b)

(2. 5)

(2.6)

jf»(x,) = [I. —5(i, j)g'(x, ) 5(+i,j)g (x,),
5(i,j) is the Kronecker symbol, and the notation@' is used for g; y»A;{x), where the y, are the Dirae ma-
trices. The positive- and negative-energy parts of the em potential A'(x) are given by

g(x)=[~-(x)] -I -&2g
I
—'=" '„, -,„(k), "dk .

In E»ls. (2. 4), the radiation field is described in terms of the occupation number state In); I io(x, )) and

li„(x~)) are used for the initial and final atomic states, respectively.

III. HIGHER-ORDER EFFECTS

The rates of bound-free and bound-bound transitions calculated from E»ls. (2. 4) are the lowest-order ap-
proximations to the considered processes. In fact the S-operator expansion provides many higher-order
terms. For a well-defined atomic transition involving absorbed and emitted quanta, only terms leading to
the correct final occupation number state do not vanish. It may be easily verified that the remaining high-
er-order terms can be set up from the lowest-order one by the admixture of contributions owing to one or
several processes which may be summarized in the following manner: The electron absorbs a photon of
the radiation field and then emits the same quantum; or a photon of the field is emitted first and then ab-
sorbed. These processes are both described by the operator Mz defined as

M (xz, xa) =(ie) [g-(x,)S,(x„x,)g'(x, )+g'(x,)S,(x„x.)A (x,)] (3.I)

Such an operator can act at any stage of the Nth-order multiphoton transition. Then, aQ elements of the
S-operator expansion may be rearranged to put forward particular sets of terms which are summed. In
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using a standard technique of resummation of diagrams, ' one observes that the expression of transition
rate obtained by this way can be deduced from Eqs. (2.4) in replacing the electron-propagation operator Sz
by the perturbed propagator Sz given by the integral equation

Sp(xgt xg) Sg(xly x2) + f f dx'dx "S~(xgt x )~it(x 0 x )SE(x t x2) (S.2)

Then, the N-photon bound-free and bound-bound transition rates including higher-order effects are to be
calculated from the matrix elements expressed in Eqs. (3.Sa) and (3.Sb), respectively:

S'„,(~)
= ( —ie)" f dx„ f dxg 4 f dx~(n~ -N~ 3(i„(x„)

~

xg'(x„)S~(x~, x„~)g'(x„q) g'(x2)S~(xp, xg)A'(x)) '~ zo(xq)) n~), (3.Sa)
N fO

0„",,'"=(-ie)"Z, dx„~~ x„, ~l dx, n, — +, 1, 8&i„(x„)(g„(x)
m=1

xSp(x& x~ &))It (x& &)
' '

g (x~)S~(x2 x&)$ (x&)
~
io (x&))

~
n, ) . (3.Sb)

In Eqs. (3. 3) the functions Sz lying near the initial and final states give some contributions which are the

same as the ones arising from corrections to external. electron lines. Such contributions will be ignored

throughout this paper.

Following Low" we set

A. Calculation of S+

S~(x„x,)= 2
. Z

~

d(oO„, ((o)e' ' 'a'q, (x,)q, (x,),
27l ~

(3.4)

where Ois an operator acting on the radiation-field states. The summations run on the complete set of

atomic states, discrete plus continuum. Substituting Eqs. (2. 1}and (3.4) into Eq. (S.2) and taking the

inner product with $„(x,)P . ~n(xz) we find

&f4)(tf t2)
' d(oO ((u)e'

1 g
't COf( if ts)

+ .
~

~

dxadx4 d» ~ i Pm("3 z s~ 4
27/i ~+ & —~m& f&

xg d~&g„(x4)O„„(&oa)e'"2 '4 2' (3.5)

Then, we introduce the operator 0 defined as

Q„„((o)= 0'„„((g)+ n„„((o)

with

a'„(k)a„(k)
Vn„„((g)=Q Z I dk

and

+
( } + ~ ~

I4m4(k)i4~„(k) a„(k)a„(k)
co;+(o+ I k) —w;;(co)

I.",(k)I ",„(k)
(d 4+ QP —Ik I

—%4~((d)

(3.e)

(3.&)

(S.8)

I4„"„(k)=,(, (m~ n Z„(k) e'"'*~n) (3.9)

It should be pointed out that ata/V is the flux operator in natural units.
After some algebraic manipulations one finds that 0„„is given by the equation

( ) O„„g Q„,((o)O,„((o)
&m+ & mm(~) & ~m+ & mm(&)

which yields

(S.10)

( )
1 Q„„((o)O„„((o) g Q„,(&u}O,„((o)

&n+& nn(~) |dn+& nn(&) &nn &n+& I'nn(&)
(3.11a}
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( )
n„„(0t)o„„((0) g n t(0t)ot„(to)

&u„+ 0t —W„„(0r);t.„0t„+&0 —90„„(&d)

Let the operator U(&o) be such that

(mlitt) . (3. 11b)

U „((d) =0

0 „((0)= U„„((g)0 (0t)

if m=n

if m4n

(3. 12a)

(3. 12b)

Then from Eqs. (3.11a) and (3.12b) one finds that the diagonal part 0„„(0t)can be expressed in the form

where

0„„((g)=
1

0t„+0t —90„„(td)—~„'(0t)

»n

(3.13)

(3.14)

and

( )
n „(0t) g n t(0t)U;„(td)

tdm+ —~~(&) ttn &m+ & —~m(&)
(3. iS)

while the nondiagonal part 0„„is deduced from Eqs. (3.12b), (3. 13), and (3.15). Substituting Eqs. (3. 12b)
and (3.13) into Eq. (3.4) one finds that S~ is given by

1 i (x ) & (x )
2tti „td„+0t —ce„„-W'„„'(&g)

+ . Q d(0
1

mfn
mAn

(tn(X1)kn(X2)
U ( )

t(u( f& t23 (3 16)0t„+&d —u „„(0t)—ll.„'(0t)

In the future the off-diagonal part of S~ will be neglected because it is of higher order in e than the diag-
onal one.

In contrast to Eq. (3.2), Eq. (3.16) exhibits the expression of the propagation operator in the displaced
energy picture.

B. Resonances

(3. 17a)9"'"=F"~Sd„~"'~' (N~ )

Z""'"=F~-' Sd"'"~'g((N-1) — ) .
In Eqs. (3. 1V) p(¹d9) is the density of final atomic states and g[(N —1)&of —0t,) is the atomic-line-shape
function defined as

(3. 17b)

We consider a radiation field of fixed amplitude with small random-frequency variations. We are led to
phase diffusion, and no detailed treatment of this model will be presented here, since number of authors
have used ft for describing a well-stabilized laser beam. ' As a result of heavy calculations, it ap-
pears that at each step m of the interaction, the linewidth b of the light gives rise to a damping factor
(imfb) associated with the absorption of the mth photon. Then, multiphoton bound-free and bound-bound
transition rates may be derived from Eqs. (3.3), by the use fo a propagation function which differs from
Eq. (3.16) by the additional damping caused by the radiation field. For a linearly polarized field in a pure
state, it is found that

2(-,'y, +N'f)
(td 0+Ãdf td~) 2+ (-,

'
N—'X+ N'ft) 2 (3.16)

where y& is the width of the final state and &0 and cof are the unperturbed energies of the initial and final
state, respectively.

The Nth-order reduced transition matrix elements are given by

+Ns0 Z AJV, N 1( P)SN 1~Ã 2( P& Q&0 —(N —1)0tf)
lgf $39 ~ ~ ~ f fN

g(N) BB

V=1 f~f 5 9 eIO9$~ j

&&S„2,„2(k„-~0-(N-2)~,)" S,, 0(g, -~0-~,), (3. 19a)
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with

x fjN 2 NA{kps kg& (do hmlf o)} ~l, o(kp, k+ —(do —5(i)» (3 19b)

S„,„(k, (d) = h„„(k)
(d + (d„—w„((d) —W„„((d)—imob

4„"„)(k,k') = [1—t){v,)n)]a„„(k)+b(v, m)h„„{k'),

(s. ao}

(3.21)

(3.22)

(3.23)

(d+(d„—w„((d) —W ((d) —i[m -5(v, m)] b

$3„"))=(I„")~&+(d& —5(v, m)((d +(d ) (53O))=O}

k and k, denote the photon momentum of the incoming and outgoing quanta, respectively. The function
W((d) deduced from Eq. (3.14) is given by the series

where

W „(~)=ZI) „(~)+Z' Z a.,(~)
1

D ((d) + ~

(d +(do —Woo((d)
™ (3.24)

( ) g ~f
h„,(k,)h,„{R,) h„,(k,)h,„(17,}

(td +tay+tdp Wy(td) IU +IBg Qlp Ngj(td))
(3.25)

The polarization index has been dropped in the above equations since no confusion can exist. Further-
more for brevity, the intermediate states have been denoted by their lower subscripts, i.e. , i,- 1,
io- 2, .. .. As is easily seen from Eqs. (3.17)-(3.25), the multiphoton absorption rates have a somewhat
complicated flux dependence. This is due to the occurrence of the complex quantity W((d), which has a
simple meaning when it is split into its real and imaginary parts. Thus, Eq. (3.24) yields

W„„((d)=a ((d)+-,'il'„„((d), (s. as)

where

&„„((d)= &'.„"((d)+&".„)((d)+".
I'„.((d) = I'„„"((d)+I""'((d)+".

(3.2Va)

(3.2Vb)

6'" and I" ", the ith approximations to 6 and I', are the real and the imaginary parts of the successive
terms of the series Eq. (3.24), respectively. It is simple matter to interpret h{(d} as the level shift and
I'((d) as the level breadth originated by the radiation field on the virtual level of energy (d. If the energy
~ coincides with the energy &„of the level n, then one deals with the shift and breadth of the atomic level
n. Recent experiment have confirmed such atomic perturbations. 5~~ Far from resonance the expressions
for the corresponding quantities can be simplified. They are given in the Appendix.

Suppose that a particular level (n, l„)))„)is energetically distant from the inital one by an integer multiple

p of the photon energy (do, i.e. , (d„- (do =(d„,o ~p(do. Such a resonance will cause important changes in the
multiphoton process. In order to simplify the discussion, let us consider a resonance occurring for
p =X- 1 in a N-photon bound-free transition. Before writing the expression for the resonant ionization
cross section we define the following quantity:

E (d I ((d „+¹d) +(N b+pyo) ((d() „+¹do)+(N b+-y ) p
(s. 23)

After summation over h the real and the imaginary parts of W~
) occur in the expression giving the first

approximation to the shift and breadth of the virtual level j of energy 0+X&, respectively. In using Eq.
(3.28) we have

(g) 4m'r20 1 I'
+BF

O' Q)p EOQ) p

Vr-2& I~~..~..N-2&~-2, 0

(do, ~~+ (N —2)(do —$~ WN o((do, (+ {N 3)(do) —g~~) W„o((do, ~+ (N —l)(dp) —W~ o((do, „+(N —1)(do)- o(N —2) b

1
(do, „+(N- l)(do-g„&o)((do, + (N-2)(do) —o(N 1)ob-2

P (N(d p) ~ (s. 29)
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prom Eq. (3. 29) it is clear that the resonance oc-
curring for the absorption of the (N —1)th photon
modif 1 es the behavior of the function W„"~3(+0 „
+ (N —l)ur&) related to the absorption of the (N 2)-th

photon. As the photon energy approaches the
resonant value ~~~

~ =&a„,0/(N —1), the argument of
the function W„"'~(&oa„+(N —1)sr~) becomes more
and more small. Then, if we plot the real part of
this function, say Re(W'„"z(+0 „+(N—1)~~)), against
the photon energy &~, the curve presents two ex-
trema at &u~=+~=sr~ + [(N —1) 5+2y„]/(N —1) and
is zero at exact resonance; i.e. , when ~~ = co&

(R)

On the other hand, Im/W'„"~z(z0 „+(N —1)&o~)) takes
its maximum value at exact resonance and is a
rapidly decreasing function everywhere. We de-
duce that its dominant damping effect is not ob-
tained when ~&-—&&. For these values of the photon
energy the quantity ~0 „~+(N —2)co~ —Re(W~ ~2) ex-
hibits a maximum (minimum) and a minimum
(maximum) successively. Then, one observes
that a resonance occurs for one of the two partic-
ular values ~~. The amplitude of the correspond-
ing peak on the dispersion curve has a weak de-
pendence with regard to the damping caused by the
induced breadth. The detuning of the resonance
gives rise to the reverse phenomenon. The above
energy difference becomes more and more large
and reaches a maximum for which the dispersion
curve exhibits a minimum. The extrema of the
function Re(W„'"~2) do not coincide exactly with those
pointed on the dispersion curve. The reason lies
in the fact that the resonance peak varies both with
the photon flux and with the photon energy. It is
straightforward that, as the intensity of the radia-
tion increases, the resonance (or the antireso-
nance) condition is satisfied for values of ~& which
depart more and more from +~. When low-
intensity radiation sources are involved (I& 10'0
W/cm ), the position of the resonance peak essen-
tially depends on the damping terms. Thus, for
light with narrow linewidth (& 1 A), the photon en-
ergy corresponding to the resonance peak is very
close to w~

' and is practically centered on this
value.

Finally, aside from the usual resonance peak,
the dispersion curve shows an additional peak
originated by the process discussed so far. It
must be pointed that these resonances give rise to
important changes for the flux dependence of the
cross section. One observes that az& can take
very large values when the intensity of the radia-
tion source is varied. The corresponding curves
are distorted and resonant. bumps appear. Thus
for particular values of the radiation intensity, the
cross section no longer varies as (E/E0) but
rather as (E/ED)~ ~. N' being the effective order
of non linearity, N'=N+e(cg&). The absolute value
of e(co~) may be large and its upper bound is es-

sentially determined by the damping terms. On
the other hand e(&u~) takes on positive as well as
negative values and its sign depends on the photon
energy. The quantitative analysis of Sec. V will
clarify the above discussion.

IV. INDUCED SHIFT AND TRANSITION-CROSS-SECTION
CALCULATIONS

The high-order matrix element occurring in the
multiphoton transition cross section and induced
shift can be calculated by the use of two different
methods. The more precise uses the summation
technique developed by Schwartz and Tieman. In
this case, the formula must be worked out in the
undisplaced energy picture. Then, the cross sec-
tions are not calculated from the closedform given
by Eq. (3.17), but rather in considering all the
contrQ)utlons to the process coming from all high-
er order terms of the 8-operator expansion.
Nevertheless, the computation cannot be achieved
in a simple way when the natural shift and breadth
of intermediate states are taken into account.
These quantities must be ignored in the numerical
evaluation. This approximation does not affect the
numerical results in all the off-resonant cases.
On the other hand, the damping brought by the
linewidth of the radiation field has the dominant ef-
fect in the close neighborhood of resonances.
Finally, by this method, the probability amplitude
of any multiphoton process is the sum of the prob-
ability amplitudes corresponding to the set of dia-
grams shown in Fig. 1.

It must be pointed out that the calculation in the
undisplaced energy picture allows accurate evalua-
tion of each term of the series occurring in the ex-
pression of the transition rates. Far from reso-
nances a good precision is obtained by taking into
account the first few terms of the series, but it
is not so in the presence of resonances. In this
case, we observe that the convergence becomes
more and more weak as the wavelength of the ra-
diation is tuned to the resonant one. A good ac-
curacy requires a prohibitive number of terms.
In order to avoid an unessential expense of com-
puter time, we have investigated the resonances by
the second method. The calculations are made in
the displaced energy picture. The sums over in-
termediate states are carried out over a sufficient
number of discrete states to get a good stability
for the numerical result. For processes involving
a small number of photons this procedure leads to
satisfactory results. The lacking terms corre-
sponding to the continuum part of the spectrum
originate the principal source of uncertainty. We
have calculated their contributions for a three-
photon ionization of hydrogen in the 2S state. The
error slightly varies with regard to the wavelength
but its average value is less than 16%. In this
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FIG. 1. Pictorial determination of
higher-order diagrams contributing to
a multiphoton process. M symbolizes
the operator defined in Eq. (3.1).

s

section we give the general formula for the multi-
photon transition cross section in the undisplaced
energy picture. The induced level shifts, the
bound-bound and bound-free multiphoton processes
are treated on an equal footing with regard to the
Nth-order transition matrix element. The corn-

pact serial form for the relevant expressions can
be easily handled for numerical analysis. All
formulas are worked out in the atomic unit sys-
tem. The high-order matrix element occurring
in the calculation of level breadth, level shift,
and multiphoton cross section is

ff(, ) = (i, I q, li,) (i2 I q, li,)(i, I q, li,)
[&oo —(o~&+ e(s —l)(o2 —i@ (s —l)b] ~ ~ ~ [(oo —&@2+ e(2)(d2 —ie (2)b][(oo —&o&+ e(1)(do —i22(1)b]

(4. 1)
where for convenience, we have introduced the parameters e(1), e(2), . . ., e(s —1). It is clear that the
values taken by these parameters will determine the matrix element connected to the process we consider.
We do not describe the method leading to the exact evaluation of If, o since it has been discussed at length
in previous papers. e'7 Nevertheless, the functions I', V, and y of Ref. 6 depend now on the set of param-
eters e(l), e(2), . . . , e(s -1). Finally, the set of e(luation which is to be solved may be written as

P2 2 1«e(» l&l p»(. (»'..(2& "~ s(s1& I p) +(I& 121p) y(s(2), s(2), ~ ",s(s 1) I p) f)(~(1)s 0)S "(nos 1&lp)p(«2). .~ ~ 4(s»

W'e(2)s 12lp»( (2)..(2&...'..'s(s 1) Ip) =&(12 lolp)y( ('2)',.14)~ ~ .'.'..(' » Ip) b(~(2) 0)S""(n» lolp)p( ('2)"~ ~ ~ ( -1& ')

(4. 2)

~(e(s - l»l. lp) y(("'»'Ip) =~(1.-&i.lp)i'(i. lp) -()(e(s —1) o)s'"-"(no l -1)~(1 -1 l ) .

K, B, and S are defined by

x(2', l
I p) = [p + 2(&do+ et&&, —le b) ] —+ 2[(l + 1)p —1] (4. 2)

d d'.
L&(l(, iglp) =(I( —i(+1) I

(2l(+1) d—+p d 2 +(i1 —I(+1)p, (4.4)

sIn (ln) =
1 2 z~B(n, llr) (4. 5)

where 2(] stjnds for the Laplace transform. The additional terms

(b(e„O)S('»(noi&lp)S'( tI l),'.....("1I ')]

on the right-hand side of E(I. (4. 2) arise from the exclusion of the state (no, l» m&), in the summations over
intermediate states, when e(j) = 0.

The induced shift of the ith level is given, up to the Nth-order approximation, by

N1 ~ s s1
4((( (s&() =Z [b(e(2j+1), 1)+5(e(2j+1), —1)] 5(e(2j), 0)$.„'((e(2s —1)])

s2.-1 p +0 j&0

where the notation (e(] is used for the set e(l), e(2), . . ., e(i); F is the photon flux in CGS units and

I'0= 3.22&&1034 cm a sec . The function 8« is defined as

8;q&((e(2s —1)])=(:„(l(,m(,'. . . , l2 1,m2, 1,
'

g,m))P„(, ' 1, " ')
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The angular function G and. the radial function P have the same meaning as the ones used in Ref. 6.
For bound-bound and bound-free transitions, the values taken by the parameters e(i) are determined

through formulas which are somewhat more complicated than the preceding one. This is because we must
take into account all the contributions arising from the repeated occurrence of processes involving absorp-
tion-emission and emission-absorption of photons. The values of the parameters r are easily determined
if we define the following functionals:

9„"'(j„)= V'(e(q„+ 3m —1), q'"'(q. )+I)+V'(e(q,„+3~ —1), ~
N "&(q„)—1),

)m

Z&„"&(j„)=p[ ~'[e(q„,+I+3m-3), g""'(q. ,+I)j, (4. 9)

where P,
""~=-g'"'/~» g'"' being given by Eq. (3.23). 5'(o., P) is zero unless any number o. coincides with P,

in which case it equals unity. q is defined in terms of the integer j as

Om lm-1+2 m z lo

In combining Eqs. (4.8) and (4.9) we define

~„"({,„p)= n i."'~,.~~." ~~v)~""~~„,~ .
m=1

Therefore, the cross section for the multiphonon bound-bound transition which takes place between the states
(nolonzo) and n~INm„) may be written as

2V EoQ)p Q)p p„g

oo 2

+Z Z N„"((j„.,})e.'„",', ((e(X-I+3u)}) goz- 1)~,-~g . (4. 13)
a=& &o&p &g„)

~o is the classical electron radius and the index v is related to the emission of the single photon of energy
~, in the Raman-like process we consider.

The ionization cross section for the state (noforno) is
2 2 ] F N1

(

Z&„"(X-I)eg, ((c(X—I)})
Go p +o(d p

OO F

+Z —, — Z WP(lj„,})SP,(fe(X- I+3a)}) p(X~,), (4. 13)
k=1 'OCOP (~a)

where n is the fine-structure constant. In Eqs. (4. 12) and (4. 13) the sum over ljj is achieved if we make
use of the following re'.ations:

jl+~R+ +2~1 + 1
& 2k

The induced shifts and induced breadths related
to some energy levels of H are computed at
10600 A. The value of the level shift, calculated
up to the third approximation, is to be deduced
froxD

In the first approximation, the level breadth is to
be determined from

The coeffzcxents A.„„B„»C», and D„, cccurr~ng
in Eq. (5. 1) are given in Table I where E is ex-
pressed in CGS units and 6„, and I"„,are in eV.
As an example, in Fig. 2 the values of several

level shifts are plotted against the photon flux I".
Apart from the 38 level, we are roughly concerned
with linear flux dependence. On the other hand, the
shift of the 18 level is such that the ionization po-
tential is slightly raised. From this last result,
an important lowering of ionization potential can-
not be invoked in order to explain the observed
abnormal value of the order of nonlinearity for
multiphoton ionization processes. A fu. rther re-
mark is that the 18 and'28 levels have nonvanishing
induced breadths with regard to electric dipole
transit1ons.

The theory presented so far is applied to a typical
three-photon ionization of hydrogen in the 2S state.
The calculations are worked out in the displaced
energy picture. %e have ignored the contributions
due to corrections to external electron lines. %e
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10"'

1017

qk)
9723 9725 9727

.:0(Cm2')

)b 1A)

10-15

curves shown in Fig. 6 exhibit decreasing values
for the order of nonlinearity; in varying the photon
flux a one-photon resonance with the 2P level
arises and the absolute value of the slope is rapidly
increased. It must be noted that for a given wave-
length the cross section shows several peaks as
the photon flux is varied. Each of them corre-
sponds to a particular level for which the resonance
condition is satisfied. For example, in Fig. 5 the
curve representing the plots of the cross section
at 9725 A has two resonance peaks. The first is
connected to a one-photon resonance with the 3P
level and the last involves the 5P level.

In Fig. 7 the order of nonlinearity for this three-
photon resonant ionization is plotted against the
wavelength (solid lines). We have considered the
previous typical values for the radiation linewidth,
but here the photon flux is E=10 cm sec . A
comparison with the corresponding dispersion
curves (dashed lines), shows that the important
variation in N' are originated by the one-photon
resonance.

FIG. 3. Three-photon ionization cross section of H in
the 2S state as a function of the wavelength (solid lines).
The dashed lines represent the real part of the denomina-
tor related to the first absorbed photon. The dotted lines
are the plots for the corresponding damping term. The
values of these two last quantities are to be read on the
right-hand-side scale. The photon flux is 10 ~ cm sec

.:cr (cm2}

lb. 1AI

10-15

with regard to the radiation wavelength and have
small amplitude. In contrast to the preceding
case, the resonance condition is obtained when the
energy difference &»,,~+ 2&~ is made as small as
possible and comparable to Re(g& W4~z(co~~, &+~~)).
In practice, the one-photon and two-photon reso-
nances cannot be identified without a careful anal-
ysis. One observes that the most sensitive effects
are originated by the one-photon resonance. This
is illustrated in Figs. 5and 6wherewehaveplot the '

three-photon ionization cross section against the
photon flux I'. The wavelengths are close to that
which induces a two-photon resonance on the 48
and 4D. The two sets of curves correspond to
equally spaced wavelengths located on both sides of
9725 A. The radiation linewidth is equal to 0. 25 A.

In Fig. 5, each curve shows a slope which is
greater than two, the value predicted by the lowest-
order theory. For a particular value of the radia-
tion intensity, a one-photon resonance with the SP
level appears. The corresponding resonance peak
is displaced towards lower intensity values when
the wavelength approaches the resonant one. For
values of the wavelength exceeding 9725 A the

I
I

P@)

9723 9725 9727

FIG. 4. Dispersion curves for the three-photon ioniza-
tion cross section of H in the 28 state (solid lines). The
real and imaginary parts of the denominator correspond-
ing to the second absorbed photon are represented by the
dashed lines and dotted lines, respectively. The right-
hand-side scale refers to these two last quantities. The

value for the photon flux is 10 9 cm sec
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]p -"4 P. (crn )

ii o (cm2)
qp-14

)0 -15 )p-15

0-16 gp-16

)Q 17

g-18

]0-19 qp-19

10-20 qp-20

F(cm 2sec')
ip~ ~0" ~030 ip3"

FIG. 5. Three-photon ionization cross section as func-
tion of the photon flux. The wavelengths considered are
greater than 9725.4 k The first peaks observed in the
curves are produced by a one-photon resonance with the
3P level. At 9725 A the second peak corresponds to a one-
photon resonance with the 5P level.

F(cm 2sec')
a ~ a ~ a ~ aal ~ ~ I k ~ Iltl E I I ~ sEkli

~028 qp29 ~30 qp31

FIG. 6. Three-photon ionization cross section as a
function of the photon flux. The wavelengths we consider
are smaller than 9725.4A. The peaks shown inthe curves.
are produced by the one-photon resonance with the 2P
level.

VI. CONCLUSION

This emphazises the fundamental role played by
the higher-order terms provided by the S-operator
expansion. We have shown that they must be taken
into account when a resonant multiphoton process
is considered or when high-intensity sources are
involved. In this last case a question arises about
the validity of the perturbation theory. Then, we
have limited ourselves to small photon flux values.
After summation of all nondivergent higher-order
terms, the expression for the perturbed Green's
function has been set up into a close form. It ex-
hibits significant modifications concerning its en-
ergy denominator. ~9 One observes that the virtual
levels, occurring in any multiphoton process, are
shifted and broadened. The calculation of the shift
and breadth have been carried out when the energy
of a virtual level coincides with the energy of a
real level. %e have seen that, in the hydrogen
atom, the ionization potential is slightly raised.
These perturbations in the energy of the virtual
levels strongly modify the behavior of any reso-
nant multiphoton process. The example we have
considered in Sec. V has shown that a two-photon
resonance induces a one-photon resonance in a
three-photon absorption process. In taking into
account the damping caused by the radiation, one
observes that the one-photon resonance produces
the dominant modifications. %'hen the value for

I I

-e {cm&)

Ib-o.ski

:(r {cm2).

Ib-»I

N'

:a (cm2) N'

Ib- o.zs Al
l~ 4'I
, t

I ) 3
I

I
I

I )fN
] alI ]

/
///

I~ /

gp S
, qk~

9723 9725 9727

ztk)
9725 9727

9725 9727

FIG. 7. Effective order of nonlinearity N' as a func-
tion of the wavelength (solid lines). The dashed lines
represent the three-photon ionization cross section. The
value for the photon flux is 10 cm 2 sec ~.

the radiation linewidth is increased, the two-
photon resonance effects becomes negligible with
regard to that induced by the one-photon resonance.
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A confusion can exist for the interpretation of the
remaining peak in the dispersion curve and only
a detailed analysis yields a correct identification.

It must be noted that the discussion can be ex-
tended to a more general case. One can imagine
that, in a N-photon absorption process, the
(N —p)th absorbed photon gives rise to a resonance.
Then, one would observe the resonances induced
by the (N P —-1)th and (N- p+ 1)th absorbed photon.

We have shown that in the presence of a reso-
nonance, the order of nonlinearity is a rapidly
varying function of the radiation wavelength.
Therefore, it is clear that this quantity no longer

I

represents the number of absorbed quanta. These
new effects predicted by this theory have been con-
firmed by recent experiments. ' ' Nevertheless,
their physical interpretation will need further
careful investigations.
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APPENDIX

W„„(—(g„) = d„"(—(g„)+d„„"(-(g„)+~ ~ ~ +-,'i[re'( —a)„)+I'„'P(-(o„)+ ],
where d„'~(&o„) and I'~ o(~„) are the ith approximation to the shift and breadth connected with the nth level,
respectively.

In the nonrelativistic dipole approximation it is easily shown from Eqs. (3.24) and (3.25) that when no
resonance occurs in W„„(—&g„), one gets

(Al)

We derive here the explicit forms of level shift and level breadth which are used in numerical computa-
tions. For this purpose, we split the complex perturbing term W ( —z„) given by Eq. (3.24) into its real
and imaginary parts. When this is done one finds

~(2), , f & '
g g g (t.).&(P.);g (P.).&(P.)&g I (P.)„(P.)k„(P.)„(P.)+

IIPO+p ~ g» a ~ — +p ~ — -+p y- a- ++p +a- -p

F(1)( )
F Q t'(P.).~(P.)». 0.).~(P.)».

( )+
+O(dp i (+;—&&+p &~ —(d&-p

I!(2)( ) g g g (P ) $(P )l9 (P ) l(P )0 r&0 JD kk j (~ )Xk(P )kn (~ )Sk(P )kn

! g ptl k (~ i &!!+ ~p) (&! &!! &p) (!dJ &!I) & (&k &!!+ &p) (&k &!! &p)

where p, is the z component of the electron momentum operator, i.e. , the component of the momentum op-
erator in the direction of the polarization of the radiation.

Apart from E which is expressed in CGS units all quantities appearing in (A2) and (A3) are dimensionless
multiples of atomic units.

Because of the smallness of the natural linewidth (y ~ l. 5X 10 a.u. ), we see that the dominant contri-
bution to I' is brought by I' ', then the higher-order approximations to I' will be neglected.

It is not so for 4. Thus it may happen that with increasing values of the flux the term ~ ' brings out
significant contributions and then acts as a smoothing factor which limits the growth of 6 with respect to
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