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When an atom emits or absorbs radiation in the presence of perturbing atoms, satellite bands

frequently appear in the spectrum. Such bands may occur when the active atom is subject to equal
forces in the two states involved in the transition for some particular configuration of perturbers. In
this work a semiclassical approach is used to derive an approximate expression for the one-perturber
spectrum in the two-state adiabatic approximation. The expression, which involves an average over Airy
functions, is readily adapted for rapid numerical evaluation. Also, an analytic expression for the rate of
decline in intensity on the classically forbidden far side of the satellite is found. The semiclassical
one-perturber line shape for satellite bands is compared with the classical and quantum-mechanical

counterparts for the case of resonance broadening of the Lyman-u line in absorption. The semiclassical
line shape is found to be much more realistic than the classical shape in which the. satellite appears as
a singularity. The semiclassical treatment provides an interpretation of the shape of a satellite band in

terms of the intermolecular potentials, a possibility not evident in the exact quantum-mechanical

treatment.

I. INTRODUCTION

Satellite bands in the spectra of metal atoms
perturbed by foreign gases have been the subject
of many investigations, both experimental' and
theoretical. The bands, as well as the shift and
broadening of the central line, are due to unequal
perturbing effects of the foreign gas on the two
states of the metal atom involved in the transition.
The appearance of satellite bands has most often
been attributed' to the occurrence of equal forces
(that is, parallel potential-energy curves) on the
metal atom in the two states at some particular
configuration of metal atom and foreign gas atoms
or molecules.

Although the pressures at which satellite bands
are usually observed are too high for the one-per-
turber line shape to be adequate in itself, it is an
important contributor in the wings of a spectral
line. A realistic and tractable formula for that
shape has not been available. A useful formula-
tion should take cognizance of the fact that most
experiments are done with a thermal distribution
of translational energies; it should be simple
enough so that it is amenable to interpretation, and
it should predict a realistic shape.

The most commonly used line shape is the clas-
sical one (usually in the quasistatic approxima-
tion). There are two potential-energy curves
required, representing the interaction of the active
atom in each of the two states involved in the tran-
sition with a perturber atom. The difference be-
tween the two potential-energy curves is the dif-
ference potential.

The classical line shape for satellite bands is
not realistic. The classical line shape has a sin-
gularity, the classical satellite, when the differ-

ence potential has an extremum. The intensity is
zero outside the classical satellite. This is a di-
rect result of the conservation of momentum in
the classical Franck-Condon principle, a condition
not necessary in the quantum-mechanical treat-
ment.

The quantum-mechanical one -perturber line
shape is exact, but the formulation is not amena-
ble to interpretation. Furthermore, it is very
expensive to compute. There have been only two
complete quantum-mechanical calculations of the
shape of a satellite band, one of which will be re-
ported here.

In Sec. II we use a semiclassical approach to
derive expressions for the shape of satellite bands
for the two-state adiabatic one-perturber case. In
Sec. III we introduce a parabolic approximation to
the difference potential and perform a thermal av-
erage to obtain an equation for the line shape that
is realistic and depends explicitly upon parameters
characterizing the potential-energy curves. In
Sec. IV we compare classical, semiclassical, and
quantum-mechanical calculations for a satellite
band in the red wing of the resonance-broadened
Lyman- a. absorption line.

II. SEMICLASSICAL APPROXIMATION

The derivation will be presented for the case of
absorption via a parallel transition. Spontaneous
and induced emission and nonparallel transitions
can be handled similarly. The basic quantum-
mechanical expression for the absorption of radia-
tion of frequency v by a pair of colliding atoms to
go to a free state of the electronically excited pair
ls

n„(b-a)=Av f dE, E i E ~ ~ 7' (E ),
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with

A = 64 tl' (O«B«B«A p /3 C (21tjlk T) (2)

r„(E,)=Z 2 ~, S„,I&g",«'ID„Ig~"'&I'. (3)
J' J'

Here 5 represents the initial electronic state and
a the final state, E, and Eb are the energies of nu-
clear motion in the two states, K= (2pE/ff ) ~,
is the statistical weight of state 5, n& and v~ are
the number densities of the active atoms in their
initial state and of the perturber atoms, respec-
tively, S«. is the Honl-London factor, B is the
dipole-strength function, g ' is the mave function
for nuclear motion, and c, h, p, , 4, and T have
their usual meanings as the speed of light,
Planck's constant, the reduced mass of the pair
of colliding atoms, Boltzmann's constant, and the
absolute temperature. As a result of the approxi-
mations that will be made later, the expressions
that are derived are also applicable when the final
state is a bound state.

We will concentrate our attention on the function
T,(E«). The first assumption is that the wave num-
ber E~ is sufficiently large that many angular-mo-
mentum states contribute and the JWKB approxima-
tion for the wave functions is appropriate. This
assumption will be good for most heavy atoms and
for light atoms at high temperatures. It follows
that the wave functions for allowed values of J' are
approximately equal to g, ~' . Thus,

magnitude, the choice of r, in Eqs. (6) and (7) is
somewhat arbitrary. The effects of a change in
the choice of x, can be considered to be taken up
in the values of 5, and 5, which are functions of
x„as well as J; but still independent of z. A
logical choice of y, is the larger of the two clas-
sical inner turning points. We will make the as-
sumption later that the distance at which the tran-
sition occurs is far from x, .

If we nom define

= f [K,'(r) K.'-(r)] dr+ 6,' 6.'- (10)

y,'(r) = y«(r)+ 4.'(r)

= f [K,'(r)+K.'(r)]dr+6,'+6,',

xD„(r) [cosQ (r) —cosp, (r)]dr' . (l3)

Since cosQ. (r} is a rapidly oscillating function of
x, it will contribute little to the integral so that

g '
g

"«' = —'[K K /K (r)K (r)] ~

x [cosp '(r) —.cosg, (r)) . (12)

From Eels. (5} and (12), we obtain

T„(E,)= E(2Z—+1)
t

T.««}=-~ ~~(~+1)
I

& g «"
I
D (r)

I g '"'
& I

' .

Also, ~J mill be replaced by its average value co

(—,
' for a homonuclear molecule).

We write g, ~' and g, ~' in the JWKB form

g,"«' = [K, /K«'(r)]" 'sin [f"K,'(r) dr+ 5 «),

K, K.
T„(E«)=- Z(2J'+—1) ~( «) '~(

)

xD„(r) cosP (r)dr . (14)

The function g (r) is now expanded in a Taylor
series about a point xo,

g,"'= [K./K.'(r)]"'sin [f K.'(r) dr+6.'],
where

K,'(r) = [K,' 2~ V,(r)/a' Z(Z-+1)/r']"' -(6)
and

K, (r) = [K, —2p V, (r)/ft —Z(Z+ 1)/r ]', (9)

with V, (r) and V, (r) the potential functions in the
initial and final state. The function V, (r) is re-
stricted to be negative in the region of interest to
avoid problems near classical turning points.
Since we will be concerned only with the variation
of the JWKB phase with x and not with its absolute

The derivation to this point closely follows that of
Jablonski; however, me are interested in contri-
butions to T„(E«) from internuclear distances r
where the potential curves are parallel. The
third-derivative term must therefore be retained
and the derivation departs from that of Jablonski.
We differentiate Eq (10) to obt.ain

y'(r, ) = K,'(r, ) -K.'(r,),
0"(ro) = K«'(ro) —K"(ro)

4.'"(ro) =K«" (ro) -K."(ro) .

(16)
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We choose ro to be a point of stationary phase so
that xo is defined by the equation

K, (~0) = K, (~o) .
Equation (1V) can be rearranged to give

r v(~,)+I v, =hv,

(1V)

(18)

where vo is the frequency of the unperturbed line
and the difference potential

~~(~) = I".(~) —I' (~) .
Then ro, as defined implicitly by Eq. (18), is a
function only of the frequency v. The correspond-
ing expression for Q is

y'(~) = ~+qg'+8)', (2O)

where g = r —ro. With the cubic term absent this
is the formused by Jablonski to derive the semi-
classical expression for the classically allowed
absorption. With the cubic term added, a simple
transformation permits the integral in Eq. (14) to
be evaluated as an Airy function.

Two problems now arise: ~0 is, in general, a
multivalued function of v; Eq. (18) will have com-
plex-valued solutions for frequencies farther from
the central line than the satellite. In Sec. III, ap-
proximations are introduced that circumvent these
difficulties and also lead to accurate formulas for
the semiclassical shape of satellite bands which
are susceptible to interpretation in terms of the
potential energies of interaction between the atoms.

III. APPROXIMATE ANALYTIC EXPRESSIONS

&D„(~)cos(n+ y$ + 6g') d$ . (21)

If xo is far from r, , the integration limits can be
extended to -~ and +~ since for large values of
g the integrand will alternately become positive
and negative and the contributions will largely
cancel out. If, in addition, we consider that the
dipole-strength function D„(r) and K, (r) and K, (r)
are slowly varying functions of r in the vicinity of
xo, we can write

The substitution

x= g+y/35

gives

x [ f cos(n+yg +5) )d&) . (22)

(23)

The method described in Sec. II is an accurate
interpretation of satellite bands in terms of the
JWKB approximation. In this section we will make
two additional approximations in order to obtain
equations which are easy to evaluate and interpret.
We first introduce Eq. (20) into Eq. (14), so that

K, K.T.(&~)=4 & (2~+1) K~(,)K'~(, ) I

p 00

2y3 y2
cos ~+ -p —g —+g 5 dg (24)

We expand the cosine,

c os Q + gg g
3g

+ x 5 c os Q +
2 QQ

cos x 3Q
+ x ~ )

—sin n + — —
&- sin —x —+

275 )

and recognize that the sine function is an odd function of x and thus integrates to zero, so that
I

2 3 00 8

T„(E,)=Z (2 J+I) &u K, K, D'„(r,)cos n+2V&z K„(ro)K,(~o) ~

cos —
3

x+5x'
l

dx
J

The integral is now in a standard form for the Airy function~ (Ai), and we obtain, after converting the sum-
mation to an integration,

I'„(Z,)=~v'K, K. cos' ~+ —,lD,', (~,) (3S)"'K„'(g,)K.'(~„) Ai' —(3V)-"' —ld[Z(@+I)],
(2V)

where J is the maximum value of J for which pen-
etration to the distance xo is possible.

The function n is a rapidly varying function of
J, so the random-phase approximation is used to
replace the square of the cosine by its average
value of —,'. We then introduce Eq. (2V) into Eq. (1)

to obtain

e„(b- a) = (A~(un'p/a') J dE, e x,&' "'

~f, "[D'„(.)/K;(.)K.'(.)](»)"'
x Ai'[- y'/(38)"']d [Z(v+1)] . (28)
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Now

y=-,' [Z,'(r, ) -IC,'(r,)],
which simplifies to

r= l ~V'(r, )/2A,'(r,)h'.
Also,

5 ='—, [Z,"(ro) -K,"(ro)],
which is expanded to

(2s)

(3o)

(31)

ZV(r)=h(v, —v, }+—,'aV"(r )(r r—„)', (38)

where r represents the position of the extremum
in the difference potential and v, is the frequency
of the classical satellite so that b. V(r„)= h(v, —vo).
Then from Eq. (18),

bidden region of the spectrum. We overcome these
difficulties by the expedient of assuming that the
difference potential can be represented by a quad-
ratic. This is the second approximation:

q~ v"(r, )
" /a v'(r, )

6 K a (rp) I yj, g g V"(ro)

b V'/2b V"=h(v —v, ),
and from Eq. (34),

(3S)

t' 2Z(Z+ 1) p [V,'(rp}+ Va(ro)] 'I

&V'(rp) 2 J'(J+ 1)
sc,' (r,}/av"(r, ) r o

u [V.'(r,)+ Vb(ro)l „1
k

This condition should be met whenever the JWKB
approximation is valid, except near points of in-
flection in the difference potential. We must have
pl l g yl I

It is convenient to define

z -a/a &V'(ro)
y ha I+ (rao)] [2gV (r )]4/a (34)

so that

a/(36)4/ a

From Eqs. (8) and (34),

dy y h'[2b U"(r,)]
d [i(Z+ 1)] 3(2p)' r,' [SV'(r, )]' (36)

Combining the preceding equations with Eq. (28),
we get the expression

n„(b-a) = [6+v Avp roD„(ro)/h ] a(b U'//av")—
xj dE, e a/" j™~y 'Ai'(y)dy, (3V)

0 ~mj. n

where the integration limits y „and y ~ are ob-
tained by substituting Z= 0 and Z= Z in Eq. (34).
This expression is accurate within the limitations
of the JWKB approximation and it holds for both
the red and violet satellites. However, rp ls a
multivalued (we will assume double-valued) func-
tion of v and analytic continuations are necessary
in Eqs. (18) and (34) in order to obtain absorption
coefficients for frequencies in the classically for-

We now introduce the first approximation in ad-
dition to the JWKB and stationary-phase approxi-
mations. We neglect the second term within the
square brackets in Eq. (32). That is, we assume
that

(2 /h a)a/a [Ifz( )] a/a (2/ VI )-1/ah(v v)

(40)
We now assert again that K, (r) is a slowly varying
function of x and use

K, (ro)=K), (r„) . (41)

Then Eqs. (39) and (40) provide the necessary ana-
lytic continuation to treat frequencies outside of the
classical satellite. That is, h(v, —v) may be posi-
tive or negative.

If we define

I'(y)=-j I 'W'(t)dt,

I (y)= j t 'Ai.'(t) dt,
then

a'„(b- a) = 6(um Av p rDo„(ro) h(v, —v) h (aV")

{42)

x h(v, —v) (44)

and y „depends upon the properties of the poten-
tial functions only at the point where they are par-

xj dE, e ~'"[I'( y )-I'(y „)]. (43)

This expression is accurate within the limitations
of the quadratic approximation to the difference po-
tential. The n' function is to be used for frequen-
cies farther from the unperturbed line than the
classical satellite v„whereas the e function is
to be used inside the classical satellite. The mag-
nitude of y ~ is greater than that of y „;how-
ever, for frequencies inside the satellite, y is neg-
ative so actually y &y „. If a fixed energy re-
sult is desired the integral can be eliminated and
E can be set to a fixed value. For that purpose the
functions I'(y) are displayed in Fig. 1 and tabu-
lated in Table I.

The minimum value of y, y „, corresponds
[from Eqs. (40) and (41)] to the maximum value of
If, (r„). For fixed energy Ea that value is achieved
when J=0. Thus,

&o
—2P Vy(r ) ~i

~~
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—I (-Y)——I (+Y)

tion with E~(y(0)) = 0. We can therefore combine
the two terms in Eq. (47) into a single integra. l with
a range of integration between 0 and ~. We do this
and reexpress the function E„(y) in a convenient
form to achieve the final result, which is suitable
for numerical evaluation:

n'„(b-a) =6(uw AvroD„(ro) (kT) e'

x(p/k'z V")2" T'(u, T*), (46)

where
C3
C)

0.00 1.00 2.00 3.00
Y

Q. 00 5.00 6.00

FIG. 1. Functions I'(y) and I"(y). They diverge at y =O.

u = (V, /k kT b, V,") k(v, —v),
the reduced temperature

T+ = kr/ V,(r.-),

(49)

allel. The form of y is, however, more com-
plicated since it corresponds to the minimum value
of K, (r ). That value is achieved when Z=g„, the
maximum value of J for which penetration to the
distance z is possible. The value of y ~ will be
infinite for energies of collision sufficiently high
so that a rotational barrier of that magnitude either
does not exist or occurs at a distance smaller than

For lower energies, y ~ depends in a com-
plicated and detailed manner upon the longer-range
part of the potential V,(r).

A considerable simplification is achieved by in-
tegrating Eq. (43) by parts. We find

o.'„(6-a)=6(uv AvV. roD„(ro) k(v, —v)5 (av") '

x -»([I'(y. )-I'(y. .)]e"'&],
p OO

+kT I' (y ~) —I' (ymg, )
a b b

xe t'"dE, . (46)

The first term is zero at the lower limit because

and the line-shape function

r (u, r*)= I.I f y-'Ai'(. y)

«~ (- [Iu'I/y'+ «&*Iu'I/y')/&'l] dy

The function h(f) does not have the same form
throughout the region of integration, though it is a
continuous function:

(6l)

0 l (g&oo
a,(L), 0-L&l .

The value of A.(f) depends on the potential at long-
er range than x and must be written implicitly.
We write

E,(f) = V„(r„)(l —g)+k J„(J + 1)/2p, r, (53)

&,(t) = k'&„(Z + i)/2q[- V,(r„)]r„',
so that

E,(~)= V,(.) [i-~-~,(~)].

where J, the maximum value of J for which pene-
tration to the distance x with the energy of colli-
sion equal to E„ is obviously a function of E.(t;).
Then

(o)=y .(o)=y(o) (46)

and at the upper limit because of the exponential
factor. Now y ~ is a nondecreasing function of the
energy and y „is a monotonically decreasing func-
tion of the energy E„. Therefore, the second term
within the square brackets in Eq. (46) can be re-
written as

kT [f I '(y)e & dy+ f I '(y)e &~ dy] .
(47)

The energy E, is a function of y, but it does not
have the same functional form in the two terms in
Eq. (47) since in the first term the integration var-
iable stands for the variable y ~ and in the second
y „. However, if we consider Eb to be a function
of y over the domain 0& y & it is a continuous func-

0.5
1.0
1.5
2.0
2.5
3.0
3.5

0
5

5.0
5.5
6.0

4.3435(-2)
4.3895(—3)
5.6425(-4)
7.4797(- 5)
8.6697(—6)
1.1993{-6)

4.O324(- 1)
1.4119(-1)
5.1585{-2)
2.7942(-2)
2.6481(-2)
2.1820(-2)
1.3994(-2)
1.1498(-2)
1.O794(-2)
7.9959(-3)
7.OO15(-3)
6.3647(-3)

TABLE I. Function P(y). (The power of ten is indicated
in parentheses. )
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T (U, T")
TN

~ C)~ O

Q 1

C)
C)

Q)
t

C7
C)

C)
'-i0. 00 -7.00 -Q. 00 -1.00 2.00

U

5.00

FIG. 2. Function T~(g, T*) plotted vs g for several
reduced temperatures. The potential used is an attrac-
tive x 6 potential of arbitrary strength. The W = curve
is independent of the potential chosen.

The spectrum associated with the satellite (at this
level of approximation) is independent of the short-
range part of the potential.

The evaluation of b„(1') is the primary obstacle
to determining the shape of the spectrum, so al-
though when the potential is known it is a simple
matter to evaluate b,(f) nu, merically, it is tempt-
ing to try further approximations which may cause
knowledge of the potential to be unnecessary. There
are two possibilities which will be discussed here.

(i) Often only the long-range form of the potential
is known. If the potential for x& x is assumed to
be an inverse power potential, the essential fea-
tures of the spectrum will be retained and the
method will be applicable to many actual circum-
stances. We assume

V, (r) = -c„/r" .
The effective potential including the centrifugal
repulsion is then

(56)

e'Z„(Z„+1)/2q = nc„/2r"

Then from Eq. (54),

~,(1) = n/2R"-',

(56)

where R = r/r„. The height of the maximum in
U(r) is Z.(l), so

Z, (g)=(n-2)c„/2r" .
Then from Eq. (55),

f = 1+(n —2)/2R" n/2R"—

(6O)

Equations (59) and (61) give a.(f) parametrically
in R Thus h, (f) d. epends only on the form of the

U(r) = —c„/r" +J(J+1)h /2//, r (57)

If n & 2, U(r) has a maximum at r for a value of J,J, such that

(62)

TABLE II. Function T'(I, ). (The power of ten is
indicated in parentheses. )

0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
8.2
8.6
9.0
9.4
9.8

10.2

T"(I, )

4.v42(-2)
1.399(-2)
4.evv(-3)
1.644(-3)
5.939(-4)
2.184(-4)
8.135(-5)
3.057(-5)
1.15V(-5)
4.4o5(-6)
1.685(-6)
6.466(-v)
2.49o(-v)
9.617(-8)

T (-u, )
1.vos(- 1)
1.619(-1)
1.205(- 1)
s.5v9(- 2)
6.618(-2)
5.V93(-2)
5.505(- 2)
5.341(-2)
5.13V(-2)
4.883(-2)
4.622(-2)
4.3S9(-2)
4.196(-2)
4.O36(- 2)
3.S98(-2)
3.vv4(- 2)
3.660(-2)
3.555(- 2)
3.45v(-2)
3.366(-2)
3.2s3(-2)
3.2oe(-2)
3.134(-2)
3.oev(-2)
3.0O4(- 2)
2.944(-2)

potential, not on the strength; that is, it depends
on g, but not on c„.

(ii) For high reduced temperatures, T"» 1, the
value of h.(f) will not affect the answer and all ap-
proximations mill be unimportant. The infinite
temperature limit is also asymptotically correct at
finite temperatures for frequencies well outside the
classical satellite, u» 1, since in that case the
contributions to the integral from the interval
0» «1 will be small due to the increase in the
magnitude of the argument of the Airy function.
The limit is

T'(u, )= ~u~ J, y 'Ai'(~y)e' " ' ' 'dy. (62)

The function T'(u, T*) is displayed in Fig. 2 for
several reduced temperatures for the special case
of a long-range inverse-sixth-power potential. The
infinite temperature limit T'(u, ~) is a universal
function independent of the system and, as such,
is tabulated in Table II.

The magnitude of the absorption on the far side
of the satellite is expected to decay exponentially.
It is of interest to determine analytically the rate
of that decay in the limit that the frequency is far
from the satellite, We do this by assuming the
asymptotic form of the Airy function for large posi-
tive arguments so that

Ai2( )
1 v 1 -1/8 -4y /s
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C)
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CO
CU
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~Q
I
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g CU

0
I
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&O
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FIG. 3. Potential curves for the X and 8 states of the
hydrogen molecule with their corresponding difference
potential.

x1 exp( —3u' [z —(-', )"'/u]'jdz . (66)

The width of the Gaussian factor decreases faster
than the origin (u 3/z vs u ~) for large u, so we ex-
tend the lower limit on the integral to -. Then

+(u Oo) (l 08~)-1/zu-1/2e-12 u
1 3

(67)

Equation (67) should be useful as an analytic ex-
pression for the absorbance far in the wings of an
atomic line past the satellite band.

IV. COMPARISON OF CLASSICAL, SEMICLASSICAL,
AND QUANTUM-MECHANICAL CALCULATIONS OF
SATELLITE BAND IN RED WING OF RESONANCE-

BROADENED LYMANm

There are many contributions to the resonance
broadening of the Lyman-a line corresyonding to
transitions from free states of nuclear motion in

Then after a change of integration variable,

T'(u, )=(u/6v) J e "/'"" ' 'dz . (64)

The integrand is a sharply peaked function with the
maximum occurring when the negative of the argu-
ment of the exponential is a minimum. It is thus
appropriate to expand the magnitude of the argu-
ment about its minimum value,

A(z)= (12) +3 [z —(-', )'"/ ] (66)

so that

7"(u, ) =- (u/6m) e "

either the singlet or triplet molecular electronic
states representing the interaction of ground-state
atoms to one of the family of molecular states rep-
resenting the interaction of 2 I' atoms with ground-
state atoms. These contributions are additive in
the Born-Oppenheimer approximation with appro-
priate statistical weights. This study is restricted
to transitions from the X Z' state to the 8 Z„'

state, the process by which broadening farthest to
the red is possible.

The two potential-energy curves and the differ-
ence potential are shown in Fig. 3. The difference
potential has a minimum at a separation of 4. 1
bohr and energy corresponding to a wavelength of
1623 A. The result is that absorption at wave-
lengths greater than 1623 A is classically forbid-
den. It is of considerable importance for stellar
atmosphere calculations' to determine accurately
the rate of decrease of the absorption toward the
red from 1623 A. The quantum-mechanical calcu-
lation gives a numerical result and the semiclassi-
cal treatment gives, in addition, an analytical ex-
pression for the rate of decrease of absorption.

The potential curves used in the calculations to
be described are those given by Kolos and Wol-
niewicz. ' The dipole-strength function for the
X-B transition is that determined by Browne.

A. Classical Formulation

The classical result for this system has been
reported for one temperature. The formula to be
evaluated is '

o.'„(b a)=4. 3928xlp +nt, n~ &u~D (r) r

d(hv) ) '
t

r V, (r) '/'

(xy, v

(68)kT

Here n~ and g~ are the number densities of the ac-
tive atoms in their initial state and of the perturber
atoms, respectively, &, is the statistical weight
of the initial electronic state, D(r) is the dipole-
strength function for the transition, hv is the tran-
sition energy, r is the internuclear distance at
which the transition occurs, I/, (r) is the initial-
state potential, and 5 is a complicated function
of E and r representing the maximum value of the
impact parameter for which penetration to the dis-
tance r is possible with the energy of collision
equal to ekT. If all quantities on the right-hand
side are in atomic units, a„will be in units of cm .
The energy integration was done numerically using
Laguerre -Gauss integration.

The classical, semiclassical, and quantum-
mechanical results are compared in Figs. 4-6 for
three different temperatures. The classical ab-
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FIG. 4. Comparison of the classical, semiclassical,
and quantum-mechanical one-perturber line shapes for
the satellite band at a temperature of 500 K. The classi-
cal absorption coefficient has a singularity at A. =1623 A

corresponding to the minimum in the difference potential
of Fig. 3.

0
sorption coefficient diverges at X=1623 A, ex-
hibits no oscillations for wavelengths less than
1623 A, and is zero to the red of the satellite. The
absolute intensity is accurate, however, and ap-
pears to bisect the quantum oseillations. The in-
tegrated absorption should be useful for total
cross-section determinations. '

8. Quantum-Mechanical Formulation

In the quantum-mechanical formulation the pro-
cess is one of free-bound absorption. For any rea-
sonable temperature the free-free contribution to
the quasimolecular absorption from the X to the B
state is negligible except for wavelengths near that
of the atomic line. The basic formula is [Eq. (10)
of Ref. 5(a)]

16s v h (2p.) i
(1'p(5 0) = h)y 3 sy sp

(2 ~T)ass

x [& g,"[LI[g."' '&[', (69)

where E„ is the initial-state energy of nuclear mo-
tion, ~J. is the rotational meight, 8«. is the Honl-
London factor, K=(2pE, /Iia) ~a, and g,"'~ and g,

" '~

are the continuum and bound wave functions for nu-
clear motion.

In performing the calculation we were primarily
concerned with the long-wave-length portion of the
spectrum and temperatures near 5000 K. A total
of 66 partial waves were used for transitions to
low-lying vibrational levels and levels up through
v= 26 were considered out of a total of approxi-
mately 40. The results are not accurate near the
atomic line due to the neglect of high vibrational

FIG. 5. Comparison of the classical, semiclassical,
and quantum-mechanical one-perturber line shapes for
the satellite band at a temperature of 1000 K.
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FIG. 6. Comparison of the classical, semiclassical,
and quantum-mechanical one-perturber line shapes for
the satellite band at a temperature of 5000 K.

levels and the continuum in the upper state.
The wave functions were determined using

Numerov integration and the matrix elements were
then evaluated using Simpson's rule. Within the
limits of numerical accuracy in evaluating the in-
tegrals the result represents a lomer bound to the
total absorption coefficient since it arises from an
incomplete sum of positive contributions. A simi-
lar straightforward computation for. a system such
as Cs-Ar would require many more partial waves
and mould be unfeasible without additional numeri-
cal approximations, such as interpolation over
partial-wave contributions.

The quantum-mechanical result for I yman-n
resonance broadening provides a good benchmark
for assessing the merits of proposed approximate
treatments. The absolute intensities in the region
A. & 1400 A for T & 5000 K should be accurate to
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within 10%, and thus represent an accurately de-
termined spectrum for a satellite appearing in the
red wing of a collisionally broadened line under
conditions in which the one-perturber approxima-
tion is valid. The results are shown in Figs. 4-6.

The satellite band is found to be quite broad
(width - 80 A), there are quantum oscillations on
the near side of the satellite, and the absorption
falls off exponentially on the far side.

C. Semiclassical Formulation

The semiclassical formulas were derived with
the expectation that they will prove to be sufficient-
ly accurate and easy to apply to provide a useful
tool in investigating satellite bands in the spectra
of metal atoms perturbed by rare gases. The
availability of an accurate quantum-mechanical
spectrum for the resonance broadening of the Ly-
man-n line affords an excellent opportunity to test
the validity of the semiclassical approach by direct
comparison with an exact result. The formula is
given by Eq. (48). The derivations in Secs. II and
III were performed for the case of free-free ab-
sorption; however, the stationary-phase integra-
tion is applicable to free-bound transitions as well.
Therefore, Eq. (48) is applicable to the resonance
broadening of the Lyman-e line even though the
spectrum is dominated by free-bound transitions.
The computation is discussed briefly in the Appen-
dix.

The spectrum is compared with the quantum-
mechanical and classical results in Figs. 4-6. The
shapes of the semiclassical and quantum-mechani-
cal spectra are in excellent agreement. The os-
cillations occur at about the same positions with
similar amplitudes. The exponential decrease of
absorption outside the satellite is roughly parallel
to the quantum-mechanical curve. The deviation
of the absolute absorption coefficient from the
quantum-mechanical one increases with increasing
distance from the satellite. The agreement is ex-
cellent near the center of the satellite, but the
semiclassical spectrum is lower inside the satel-
lite and higher outside. The probable reason for
this is the quadratic approximation to the differ-
ence potential.

The X Z'- B Z„' quasimolecular transition is the
most important contributor to the absorption spec-
trum far in the red wing of the Lyman-n line. The
absorption decreases exponentially on the red side
of the satellite band (X & 1623 A). Equation (67) is
evaluated to give an analytic expression for that ab-
sorption when X» 1623 A. The result is

n (b-a)=3. 916X10 e A.
'

455 63350. 280 808—

4960
8

455. 6335

(70)
The formula shows the correct qualitative be-

havior with temperature and frequency. It pre-
dicts an exponential decrease in absorption with
frequency with the rate of that decrease inverst. 'ly
proportional to the cube root of the temperature.
A least-squares fit of the quantum-mechanical co-
efficients to the form of Eq. (67) was made to com-
pare with the factor 4960/T, which is dominant
in the rate of decrease of absorption. The best
case is that of T = 1000 K with the fit comprising
wavelengths between 1800 and 2000 A. The semi-
classically predicted exponent, 496, was 20/0 too
low. At some temperatures the exponent was as
much as 30/o lower than the fitted value. The dis-
crepancy is probably due to the quadratic approxi-
mation to the difference potential that was made in
Sec. III.

U. CONCLUSIONS

We have applied ttie semiclassical theory to de-
rive relatively simple expressions for the shape of
satellite bands. The basic result is the formula of
Eq. (48). Various approximations can be intro-
duced by modifying the function A(g). One of these
gives the correct asymptotic intensity outside the
satellite [Eq. (67)]. Another type of approximation
is to replace the average over initial energies by
a single collision energy, say E= kT. This approx-
imation is most easily introduced into Eq. (43).

We have demonstrated that the semiclassical
formula represents the shape of satellite bands
quite well at a minimum of computational effort.
The computation time per frequency for one tem-
perature for the quantum-mechanical result was
approximately 4—,

' min on a CDC 6400 computer; for
the semiclassical result it was 2 sec and for the
classical result 25 msec on an IBM 360/65 com-
puter. The quantum-mechanical computation was
done in such a way that the spectrum was evaluated
at many temperatures for little additional cost;
however, there is still a great difference in dif-
ficulty between the methods. This difference will
increase in going to heavier atoms such as alkali-
metal and rare-gas atoms.

The semiclassical line shape when coupled to an
appropriate method for handling many perturber
interactions should serve as a very useful tool in
investigating satellite bands.
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APPENDIX: COMPUTATION OF SEMICLASSICAL
SPECTRUM

The computation involves determining b (g) and
then T'(u, T~). The absorption coefficient is then
obtained by simply multiplying T'(u, 7*) by the
factors appearing in Eq. (48).

A. Computation of h(f)

The value of 6(&) is zero for g ~ 1. For 0 ~ g& 1,
&(f) = b, (f). A grid. of r values starting at v„ is
chosen. For each value of z the value of J which
will give a barrier maximum at that distance, J,
and the corresponding barrier height E, are
found. Then

'( )20&m

h'Z (J„+1)
2pr„'V, (~„)

(V2)

The result is a table of values of g vs 6, . We then
interpolate on this table to get ~,(g).

B. Computation of T'-(u, T*) [Eq. (51)]

An integration grid in y is chosen. When u is
positive, the integration is straightforward, since
the integrand vanishes rapidly for large y. Simp-
son' s-rule integration is used. When gg is negative
the integrand vanishes as y

'~ when y is large,
which is not fast enough for rapid convergence.
For large y, the Airy function oscillates about
(2w)

'
y '~, so this contribution is subtracted out

and the remaining integrand is integrated by an av-
eraging technique. The nonoscillating contribution
that was subtracted out is then done analytically in
case 7*=~ and corrections to it are evaluated by
I egendre-Gauss integration when T* & ~. The g = 0
case is a special one. T(0, ~) can be evaluated
analytically. A separate integration is required
when I'*&~.
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